CAYLEY'S THEOREM - ANSWER

 $\underline{\text{Theorem:}}$ Every finite group G is isomorphic to a group of permutations acting on a set of objects.

<u>Proof:</u> Instead of a more formal argument, we'll simply take a typical finite group and show how to find a permutation group that is isomorphic to it. In particular, let's look at D_3 , the group of symmetries of an equilateral triangle.

This group is generated by rotations about the center flips about various axes of symmetry. Also, below is a multiplication table for D_3

	(1)(2)(3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	(1 3 2)
$\overline{(1)(2)(3)}$	(1)(2)(3)	(1 2)	(1 3)	(2 3)	(1 2 3)	(1 3 2)
$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	(1)(2)(3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(2 3)
$\begin{pmatrix} 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1)(2)(3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$
(2 3)	(2 3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1)(2)(3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$
$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1)(2)(3)
$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	(1 3 2)	$\begin{pmatrix} 1 & 3 \end{pmatrix}$	(2 3)	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	(1)(2)(3)	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$

Furthermore, if we use letters to represent the various rotations and flips, then we can rewrite our multiplication table as follows.

$$e = (1)(2)(3)$$
 $R = (1 2 3)$
 $R^2 = (1 3 2)$
 $F = (2 3)$
 $FR = (1 2)$
 $FR^2 = (1 3)$

When we look at this table, we notice that each row is a permutation of elements in the very first row. However, this does not mean that we are going to say that R is given by the following permutation:

$$R = \begin{pmatrix} e & R & R^2 & F & FR & FR^2 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ R & R^2 & e & FR^2 & F & FR \end{pmatrix} = (e, R, R^2)(F, FR^2, FR)$$

No, instead we have to be a little more sophisticated so that things will work out easily in the end. In particular, remember that we want to thinks of our initial elements as occupying positions. Thus, e is in the first position, R is in the second position, R^2 is in the third position, F is in the fourth position, F is in the fifth position, and F is in the sixth position.

We can now set up our permutations correctly. In the maneuver R, he first element, e, moves from position one to position three which corresponds to R^2 .

	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}
	e	R	R^2	$\boldsymbol{\mathit{F}}$	FR	FR^2
\overline{e}	e	R	R^2	F	FR	FR^2
R	R	R^2	e	FR^2	F	FR
R^2	R^2	e	R	FR	FR^2	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	F	FR	FR^2	e	R	R^2
FR	$egin{array}{c} R \\ R^2 \\ F \\ FR \\ FR^2 \\ \end{array}$	FR^2	$\boldsymbol{\mathit{F}}$	R^2	e	R
FR^2	FR^2	$\boldsymbol{\mathit{F}}$	FR	R	R^2	e

The element in the third position, R^2 , moves to the second position which corresponds to R.

	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	6^{th}
	e	R	R^2	$\boldsymbol{\mathit{F}}$	FR	FR^2
e	e	$R \swarrow$ R^{2} e FR FR^{2} F	R^2	F	FR	FR^2
R	R	R^2	e	FR^2	$\boldsymbol{\mathit{F}}$	FR
R^2	R^2	e	R	FR	FR^2	$\boldsymbol{\mathit{F}}$
$\boldsymbol{\mathit{F}}$	F	FR	FR^2	e	R	R^2
FR	FR	FR^2	$\boldsymbol{\mathit{F}}$	R^2	e	R
FR^2	FR^2	$\boldsymbol{\mathit{F}}$	FR	R	R^2	e

And the element in the second position, R, moves to the first position which corresponds to e.

In other words, so far, we have (e, R^2, R) . Continuing, we see that the element originally in the fourth position, F, moves to the fifth position which corresponds to FR.

	1^{st}	2^{nd}		4^{th}	5^{th}	6^{th}
	e	R	R^2	F	FR	FR^2
\overline{e}	e	R		F	FR	
R	R	R^2		FR^2	F	FR
R^2	R^2	e	R	FR	ED^2	
$\boldsymbol{\mathit{F}}$	F	FR	FR^2	e	R	R^2
FR	FR	e FR FR ²	$\boldsymbol{\mathit{F}}$	R^2	e	R
FR^2	FR^2	$\boldsymbol{\mathit{F}}$	FR	R	R^2	e

The element originally in the fifth position, FR, moves to the sixth position which corresponds to FR^2 .

And the element in the sixth position, FR^2 , moves to the fourth position which corresponds to F.

	1^{st}	2^{nd}	3^{rd}	4 th	5^{th}	6^{th}
	e		R^2			FR^2
\overline{e}	e	R	R^2	F FR^{2}	FR	FR^2
R	R	R^2	e	FR^{2}	\boldsymbol{F}	FR
R^2	\mathbf{p}^2	0	R	FR	FR^2	F
$\boldsymbol{\mathit{F}}$	F	FR	FR^2	e	R	R^2
FR	FR	FR FR ² F	$\boldsymbol{\mathit{F}}$	R^2	e	R
FR^2	FR^2	$\boldsymbol{\mathit{F}}$	FR	R	R^2	e

Thus, the complete permutation for R is $R = (e, R^2, R)(F, FR, FR^2)$. Similarly, the permutation for F, when we construct it by thinking of the positions that our original elements get move to, is $F = (e, F)(R, FR)(R^2, FR^2)$. Now from our multiplication table we can see that $RF = FR^2$, and this latter element corresponds to the permutation $RF = FR^2 = (e, FR^2)(R, F)(R^2, FR)$. And finally, if we manually multiply our permutations, then we get $RF = (e, R^2, R)(F, FR, FR^2)(e, F)(R, FR)(R^2, FR^2) = (e, FR^2)(R, F)(R^2, FR) = FR^2$.

So what does this show us? Well, we've demonstrated how to convert each element in our group to a permutation that acts upon the elements of the group, and we've shown that a product such as $RF = FR^2$ gives us the same result,

 $RF = (e, R^2, R)(F, FR, FR^2)(e, F)(R, FR)(R^2, FR^2) = (e, FR^2)(R, F)(R^2, FR) = FR^2$, when we express our group elements as permutations. Therefore, every finite group G is isomorphic to a group of permutations acting on a set of group elements themselves.

. 🗆