THE FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS - PROOF

Theorem: Let G be an abelian group such that |G| =p" for some prime p. Then
G =A®Q where Ais a cyclic group of G that is of maximal order.

Proof: Let G be an abelian group such that |G| =p" for some prime p. We will proceed
by induction on n. Thus, if n=1, then |G|=p, G is cyclic, we can let A=(a) for any

aeG, G=A, and we are done. Hence, suppose that n=1 and assume the induction
hypothesis that the theorem is true for any m<n. If there exists ae G such that
A=(a)=G, then, again, we are done. Thus, suppose G is not cyclic and that a G such

that A:<a> =p™ where p" is the largest order of any cyclic subgroup of G. Suppose
also that there exists be G — A such that B=(b), |B|=|(b)|= p" where p" < p™, and
ANB=e. Now consider G/B. We have that |G/B|=%=E—j= p"" 1. Hence, our
induction hypothesis applies and since ANB=(a)N(b)=e, it follows that for aB e G/B,
|(aB)|=|(a)|=|A|=p™. Thus, using our induction hypothesis, G/B =(aB)®Q/B for some
subgroup Q of G such that B<Q <G. We now ask the question is ANQ=e? If not, then
there exists a' e ANQ suchthat a' =e and a' ¢ B. Hence, a'B<(aB)(1Q/B and a'B=B.
But this contradicts our induction hypothesis that G/B =(aB)®Q/B since by definition
of a direct sum we must have (aB)(Q/B =B, the identity in G/B. Consequently, it must
be true that ANQ=e. Furthermore, since G/B =(aB)®Q/B , it follows that G = AQ, and
since ANQ=e, we now have that G=A®Q. Notice also that if [B|=|(b)|= p", then

Kb"” >‘ =p and ANB =<a>ﬂ<bpﬂ>: e. In other words, if G has a subgroup of order p’

whose intersection with A is e, then G has a subgroup of order p whose intersection with
Aise.

Now suppose that there exists be G- A, A=(a), such that (a)N(b)=e and
[(b)|=p" < p™ =|(a)|. Inthis case, just as we assumed that p™ is the maximum order for

any cyclic subgroup of G, we may assume that p" is the minimum order for any cyclic

subgroup of G that meets the conditions above. In particular, if we consider b, then

‘<bp>‘ = p"" < p" =|(b)| implies that b” ¢ G— A, and, hence, b®  A. Thus, there exists a

positive integer i such that b? =a'. Our claim now is that p divides i, and we’ll prove this

claim using proof by contradiction. Thus, assume that p does not divide i. Then it is also

true that p™ does not divide £:ip"“l. Hence, ﬁzipm‘l is not a multiple of p™, and
p p
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therefore, apT =a®"" #e. Buton the other hand,

a®" = (@)"" = (P)P" =(b")*"/P =b"" = (b*")*"/P" =(e)""/" —e, and thisis a
contradiction. Therefore, p divides i, and so we can write i = jp for some positive integer
j. Now let y=a'b. Ifywere an element of A, then a'y =b is also an element of A
contradicting our assumption that b¢ A. Thus, y ¢ A. Furthermore,

y? =(a'b)’ =a PbP =a"'a' =e. But now since we have found an element y ¢ A such
that yP =e for p a prime, it follows also that (a)N(y)=e and we can now repeat our
earlier arguments to conclude that there exists a subgroup Q such that G=A®Q.
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Corollary: Since when G is an abelian group such that |G| = p" for some prime p, we can
write G = A®Q where A is a cyclic group of G that is of maximal order, it follows that

we can do the same with Q and then continue until we have G written as a direct sum of
cyclic p-groups.

The Fundamental Theorem of Finite Abelian Groups: If G is a finite abelian group such
that |G| = p{*py? -...- p¢ for primes p*, p32,..., p¢* , then we can write G as a direct sum of
cyclic p-groups using each prime p, that divides the order of G.

Proof: Our last corollary to the Sylow theorems showed that we can write G as a direct
sum of its Sylow p-subgroups, G = $n®S,®..®S,. Also, our theorem and

corollary above show that each Sylow p-subgroup can be written as a direct sum of cyclic
p-groups. Thus, combining these results, we can also write G as a direct sum of cyclic p-
groups using each prime p, that divides the order of G.



