
THE FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS – PROOF 
 
 

Theorem:  Let G be an abelian group such that nG p=  for some prime p.  Then 
G A Q= ⊕  where A is a cyclic group of G that is of maximal order. 
 
Proof:  Let G be an abelian group such that nG p=  for some prime p.  We will proceed 
by induction on n.  Thus, if 1n = , then G p= , G is cyclic, we can let A a=  for any 
a G∈ , G A= , and we are done.  Hence, suppose that 1n ≠  and assume the induction 
hypothesis that the theorem is true for any m n< .  If there exists a G∈  such that 
A a G= = , then, again, we are done.  Thus, suppose G is not cyclic and that a G∈  such 
that mA a p= =  where mp  is the largest order of any cyclic subgroup of G.  Suppose 
also that there exists b G A∈ −  such that B b= , rB b p= =  where r mp p≤ , and 

A B e=∩ .  Now consider G B .  We have that 1
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−= = = ≠ .  Hence, our 

induction hypothesis applies and since A B a b e= =∩ ∩ , it follows that for aB G B∈ , 
maB a A p= = = .  Thus, using our induction hypothesis, G B aB Q B= ⊕  for some 

subgroup Q of G such that B Q G≤ ≤ .  We now ask the question is A Q e=∩ ?  If not, then 
there exists ia A Q∈ ∩  such that ia e≠  and ia B∉ .  Hence, ia B aB Q B∈ ∩  and ia B B≠ .  
But this contradicts our induction hypothesis that G B aB Q B= ⊕  since by definition 
of a direct sum we must have aB Q B B=∩ , the identity in G B .  Consequently, it must 
be true that A Q e=∩ .  Furthermore, since G B aB Q B= ⊕ , it follows that G AQ= , and 
since A Q e=∩ , we now have that G A Q= ⊕ .  Notice also that if rB b p= = , then 

1rpb p
−

=  and 
1rpA B a b e
−

= =∩ ∩ .  In other words, if G has a subgroup of order rp  

whose intersection with A is e, then G has a subgroup of order p  whose intersection with 
A is e. 
 
Now suppose that there exists b G A∈ − , A a= , such that a b e≠∩  and 

r mb p p a= ≤ = .  In this case, just as we assumed that mp  is the maximum order for 

any cyclic subgroup of G, we may assume that rp  is the minimum order for any cyclic 
subgroup of G that meets the conditions above.  In particular, if we consider pb , then 

1p r rb p p b−= < =  implies that pb G A∉ − , and, hence, pb A∈ .  Thus, there exists a 

positive integer i such that p ib a= .  Our claim now is that p divides i, and we’ll prove this 
claim using proof by contradiction.  Thus, assume that p does not divide i.  Then it is also 

true that mp  does not divide 1
m

mip ip
p

−= .  Hence, 1
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−=  is not a multiple of mp , and 



therefore, 
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= ≠ .  But on the other hand, 
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= = = = = = = , and this is a 
contradiction.  Therefore, p divides i, and so we can write i jp=  for some positive integer 
j.  Now let jy a b−= .  If y were an element of A, then ja y b=  is also an element of A 
contradicting our assumption that b A∉ .  Thus, y A∉ .  Furthermore, 

( )p j p jp p i iy a b a b a a e− − −= = = = .  But now since we have found an element y A∉  such 
that py e=  for p a prime, it follows also that a y e=∩  and we can now repeat our 
earlier arguments to conclude that there exists a subgroup Q such that G A Q= ⊕ .   

,  
 
 
Corollary:  Since when G is an abelian group such that nG p=  for some prime p, we can 
write G A Q= ⊕  where A is a cyclic group of G that is of maximal order, it follows that 
we can do the same with Q and then continue until we have G written as a direct sum of 
cyclic p-groups. 
         ,  
 
 
The Fundamental Theorem of Finite Abelian Groups:  If G is a finite abelian group such 
that 1 2
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1 2, , , knn n

kp p p… , then we can write G as a direct sum of 
cyclic p-groups using each prime ip  that divides the order of G. 
 
Proof:  Our last corollary to the Sylow theorems showed that we can write G as a direct 
sum of its Sylow p-subgroups, 1 2
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G S S S= ⊕ ⊕ ⊕… .  Also, our theorem and 

corollary above show that each Sylow p-subgroup can be written as a direct sum of cyclic 
p-groups.  Thus, combining these results, we can also write G as a direct sum of cyclic p-
groups using each prime ip  that divides the order of G. 
         ,  


