Lesson 19

SEMIDIRECT PRODUCTS - ANSWERS

Below is the subgroup lattice for D_4 , the dihedral group of order 8 that is associated with the symmetries of a square.

 $D_4 = \{ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) \}$

Let $C_2 = \{(), (1,3)\}$ and let $C_4 = \{(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)\}.$

1. Verify that $C_2 \cap C_3 = ()$, that the identity is the only element in the intersection of the two subgroups.

Direct examination of the elements of the two subgroups confirms that $C_2 \cap C_3 = ()$.

2. Verify that $C_2 \cdot C_3 = D_4$, that the product of the two subgroups gives us back the entire group.

()() = ()()(1,2,3,4) = (1,2,3,4)()(1,3)(2,4) = (1,3)(2,4)()(1,4,3,2) = (1,4,3,2)(1,3)() = (1,3)(1,3)(1,2,3,4) = (1,4)(3,2)(1,3)(1,3)(2,4) = (2,4)(1,3)(1,4,3,2) = (1,2)(3,4)

Therefore, $C_2 \cdot C_3 = D_4$.

3. Verify that $C_2 = \{(), (1,3)\}$ is not a normal subgroup of D_4 .

If a = (1,2), then $a^{-1}C_2a = (1,2) \begin{cases} () \\ (1,3) \end{cases} (1,2) = \begin{cases} () \\ (2,3) \end{cases} \neq C_2$. Hence, C_2 is not a normal subgroup of D_4 .

4. Verify that $C_4 = \{(1), (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)\}$ is a normal subgroup of D_4 .

Every element of D_4 can be written as a product of an element in C_2 and an element in C_4 . Hence, if *ab* is an element of D_4 where *a* is an element of C_2 and *b* is an element of C_4 , then we need to argue that $(ab)^{-1}C_4(ab) = b^{-1}a^{-1}C_4ab = C_4$. Well, it's clear that conjugation of C_4 by the identity gives us back C_4 , so we can assume that a = (1,3) and

$$(1,3)C_{4}(1,3) = (1,3) \begin{cases} () \\ (1,2,3,4) \\ (1,3)(2,4) \\ (1,4,3,2) \end{cases} (1,3) = \begin{cases} (1,3)()(1,3) \\ (1,3)(1,2,3,4)(1,3) \\ (1,3)(1,3)(2,4)(1,3) \\ (1,3)(1,4,3,2)(1,3) \end{cases} = \begin{cases} () \\ (1,4,3,2) \\ (1,3)(2,4) \\ (1,2,3,4) \end{cases} = C_{4}. \text{ And finally,}$$

since *b* is an element of C_4 , conjugation of C_4 by *b* must also give us back C_4 . Hence, $(ab)^{-1}C_4(ab) = b^{-1}a^{-1}C_4ab = C_4$, and C_4 is a normal subgroup of D_4 .

5. Conclude that D_4 is isomorphic to the semidirect product of C_4 by C_2 , $D_4 \cong C_4 > \triangleleft C_2$.

Since $C_2 \cap C_3 = ()$, $C_2 \cdot C_3 = D_4$, and C_4 is a normal subgroup of D_4 while C_2 isn't, it follows that D_4 is isomorphic to the semidirect product of C_4 by C_2 , $D_4 \cong C_4 > \triangleleft C_2$.