π Day

$$
\pi
$$

π

Why is this number different from all other numbers?

π

Why is this number different from all other numbers?

We begin to explain ...

A verse in the Bible seems to give an exact value of "3" for pi.
"He made the sea of a casting ten cubits from one lip to the other lip, circular all around, five cubits its height, a measuring line thirty cubits could encircle it all around."
-I Kings 7:23 (circa 550 BCE)

However, in Hebrew, each letter is also a number, and an odd spelling of the word for "measuring line" seems to indicate how to get a value for pi that is accurate to four decimal places.
measuring line thirty cubits קוה שלשים באמה
incorrect \rightarrow קוה 111
correct $\rightarrow \mathrm{p}=106$

$$
\pi=\frac{30}{10} \cdot \frac{111}{106}=3.141509434 \ldots
$$

Additionally, there is an extraordinary "Bible code" where the digits 3,1,4,1,5 appear in this verse from First Kings beginning in the middle of the word for "circular." The length of the skip sequence for this code is $\mathbf{8 , 9 7 6}$ letters.

$$
\begin{aligned}
& \vdots \rightarrow 3 \\
& \kappa \rightarrow 1 \\
& \vdots \rightarrow 4 \\
& \kappa \rightarrow 1 \\
& \pi \rightarrow 5
\end{aligned}
$$

$\frac{7}{7}$		$\left.\frac{4}{\pi}\right)^{n}$								$\xrightarrow{\square}$		From: To:	$\begin{array}{\|l\|} \hline 1 \text { Samuel 25:40 } \\ \hline \text { Isaiah 26:2 } \\ \hline \end{array}$		
\% ${ }_{\text {d }}$	Modify Matrix	Zoon-in	Zoon-out	$\begin{gathered} \text { Previous } \\ \text { code } \end{gathered}$	Hext code	$\begin{gathered} \text { Additional } \\ \text { code } \end{gathered}$	$\begin{gathered} \text { Identify } \\ \text { word } \end{gathered}$	Proxinity rank	$\underset{\substack{\text { Unmark } \\ \text { all }}}{\text { nem }}$	$\begin{aligned} & \text { Saue } \\ & \text { screen } \end{aligned}$	$\begin{aligned} & \text { Print } \\ & \text { screen } \end{aligned}$	Skip :8976			
s:												(1)(1)(1)(7)			X Cancel

 2
 ? :

Here are some early estimates of pi and the dudes that did them.

The Rhind Papyrus

"Cut off 1/9 of a diameter and construct a square of the remainder. This has the same area as the circle."
-Ahmes the scribe 1650 BCE

$$
\pi=\frac{256}{81} \approx 3.160493827
$$

Archimedes
 287 BCE - 212 BCE

"The ratio of the circumference of any circle to its diameter is less than $31 / 7$, but greater than 3 10/71."

Claudius Ptolemy 90-168 CE

$\pi=3^{\circ} 8^{\prime} 30^{\prime \prime}=3+\frac{8}{60}+\frac{30}{3600}=3.141 \overline{6}$

Tsu Ch'ung Chih b. 429 CE

$$
\pi = \frac { 3 5 5 } { 1 1 3 } = 1 1 3 \longdiv { 3 5 5 }
$$

This is my favorite! Easy to remember using the odd numbers, 1, 3, 5.

Brahmagupta 598-668 CE

$$
\begin{gathered}
\pi \approx \sqrt{9.65}, \sqrt{9.81}, \sqrt{9.86}, \sqrt{9.87}, \ldots \\
\pi \stackrel{?}{=} \sqrt{10}=3.16 \ldots \quad \text { (close, but no cigar!! }
\end{gathered}
$$

In 1761, Lambert proved the pi is irrational. I am also

 irrational.
Johann Heinrich Lambert 1728-1777 CE

*If x is rational, then $\tan (x)$ is irrational
$* \tan (\pi / 4)=1$

* Therefore, $\pi / 4$ is irrational
*Therefore, π is irrational (1761)

Pi is also related to the problem of "squaring the circle."

Squaring the Circle

*Using a compass and straightedge, construct a square with the same area as a circle
*Equivalent to constructing a line of length π

Euclid

circa 300 BCE

1. A straight line segment can be drawn joining any two points.
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint
 as center.
4. All right angles are congruent.
5. Given any straight line and a point not on it, there "exists one and only one straight line which passes" through that point and never intersects the first line, no matter how far they are extended.

Compass \& Ruler Constructions

*Euclid's Postulates \rightarrow
*Compass \&Ruler Constructions \rightarrow
\&First and Second Degree Polynomials \rightarrow
\& Polynomial Equations with Integer Coefficients \rightarrow
*Algebraic Numbers \rightarrow
*If you can square the circle, then π is algebraic

Ferdinand von Lindemann proved that pi is "transcendental." I am also transcendental.

Ferdinand von Lindemann 1852-1939

*If x is algebraic, then e^{x} is transcendental (i.e. not algebraic)
$*$ If π is algebraic, then so is $i \pi$
$* e^{i \pi}=-1$, an algebraic number
*Therefore, π is transcendental (1882)
*Therefore, you can't square the circle

Ferdinand von Lindemann's tombstone shows pi inside

 a square.

By the way, I'm mathematically descended from Ferdinand von Lindemann. You just go back from me to my advisor in graduate school, then back to her advisor, and so on.

THE MATHEMATICS GENEALOGY PROJECT

Gottfried Leibniz \rightarrow Jacob Bernoulli \rightarrow Johann Bernoulli \rightarrow
Leonhard Euler \rightarrow Joseph Lagrange
\rightarrow Jean-Baptiste Joseph Fourier, Simeon Poisson
\rightarrow Gustav Dirichlet
\rightarrow Rudolph Lipschitz \rightarrow Felix Klein
\rightarrow C. L. Ferdinand Lindemann
\rightarrow David Hilbert \rightarrow Hellmuth Kneser
\rightarrow Reinhold Baer
\rightarrow Jutta Hausen \rightarrow
Christopher P. Benton, Ph.D

THE MATHEMATICS GENEALOGY PROJECT

Gottfried Leibniz \rightarrow Jacob Bernoulli \rightarrow Johann Bernoulli \rightarrow
Leonhard Euler \rightarrow Joseph Lagrange
\rightarrow Jean-Baptiste Joseph Fourier, Simeon Poisson
\rightarrow Gustav Dirichlet
\rightarrow Rudolph Lipschitz \rightarrow Felix Klein
\rightarrow C. L. Ferdinand Lindemann
\rightarrow David Hilbert \rightarrow Hellmuth Kneser
\rightarrow Reinhold Baer
\rightarrow Jutta Hausen \rightarrow
These people are all more famous than me.
Christopher P. Benton, Ph.D

THE MATHEMATICS GENEALOGY PROJECT

Gottfried Leibniz \rightarrow Jacob Bernoulli \rightarrow Johann Bernoulli \rightarrow
Leonhard Euler \rightarrow Joseph Lagrange
\rightarrow Jean-Baptiste Joseph Fourier, Simeon Poisson
\rightarrow Gustav Dirichlet
\rightarrow Rudolph Lipschitz \rightarrow Felix Klein
\rightarrow C. L. Ferdinand Lindemann
\rightarrow David Hilbert \rightarrow Hellmuth Kneser
\rightarrow Reinhold Baer
\rightarrow Jutta Hausen \rightarrow
Christopher P. Benton, Ph.D

But my name is in
a bigger font!

Also, it was one of von Lindemann's mathematical ancestors, Leonard Euler, who came up with that most beautiful formula that von Lindemann used in his proof. This formula relates the numbers e, i, π, and -1 .

Euler

Leopold Kronecker was very critical of von Lindemann's research into pi. Kronecker was also very critical of Cantor's explorations of infinity. Overall, Kronecker is one of the biggest jerks ever in the history of mathematics. In physics, the "jerk" is known as the rate at which acceleration changes over time. Below is the mathematical symbol for the jerk.

$$
\frac{d^{3} s}{d t^{3}}
$$

Leopold Kronecker

 1823 CE - 1891 CE$$
\frac{d^{3} s}{d t^{3}} \rightarrow
$$

"What good is your investigation of π ? Why study such problems since irrational numbers do not exist?"

And now, here are some more serious estimates of pi from yesteryear to the present.

Serious Pi

$$
\frac{2}{\pi}=\sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}} \cdots
$$

Francois Vieta, 1540-1603

Serious Pi

$$
\frac{\pi}{2}=\frac{2 \times 2 \times 4 \times 4 \times 6 \times 6 \times 8 \times \ldots}{1 \times 3 \times 3 \times 5 \times 5 \times 7 \times 7 \times \ldots}
$$

John Wallis, 1616-1703

Serious Pi

$\tan ^{-1}(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots$
$\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \ldots$

| 4.000000 |
| :--- | ---: |
| 2.666667 |
| 3.466667 |
| 2.895238 |
| 3.33683 |
| 2.976046 |
| 3.283738 |
| 3.017072 |

Serious Pi

$\pi=\sqrt{6\left(1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots\right)}$
ultra cool hat \rightarrow
Leonard Euler, 1707-1783

Serious Pi

$$
\frac{1}{\pi}=\sum_{n=0}^{\infty}\binom{2 n}{n}^{3} \frac{42 n+5}{2^{12 n+4}}
$$

Ramanujan, 1887-1920

Serious Pi

$$
\pi=\sum_{n=0}^{\infty}\left(\frac{4}{8 n+1}-\frac{2}{8 n+4}-\frac{1}{8 n+5}-\frac{1}{8 n+6}\right)\left(\frac{1}{16}\right)^{n}
$$

David Bailey, 1997

3.133333333
3.141422466
3.141587390
3.141592458
3.141592645
3.141592653
3.141592654

In 1989, David and Gregory Chudnovsky built a supercomputer, "m zero," using mailorder parts, and calculated pi to 1 billion digits.
In 1996, they computed over 8 billion digits.

$$
\begin{aligned}
& \frac{1}{\pi}=12 \sum_{k=0}^{\infty} \frac{(-1)^{k}(6 k)!(13591409+545140134 k)}{(3 k)!(k!)^{3} 640320^{3 k+3 / 2}} \\
& \pi=3.1415926 \ldots 5
\end{aligned}
$$

300089027768963114810902209724520759167297007850580717186381054967973100 167870850694207092232908070383263453452038027860990556900134137182368370 991949516489600755049341267876436746384902063964019766685592335654639138
 384423772175154334260306698831768331001133108690421939031080143784334151 3709243530136776310849135161564248084 Z5004303297167469640666531527035325 467112667522460551199581831963763707617991919203579582007595605302346267
 183542511841721360557275221035268037357265279224173736057511278872181908
 56247277603789081445883785501 c 37839523245323789602984166922 巨 102179913217416305810554598801 $31592671424134210330156616535 €$ 79300806260180962381516136690 § 387064507539473952043968079067 334280753061845485903798217994 164745006820704193761584547123 107825052704875816470324581290 181192186584926770403956481278 ;51121241536374515005635070127)28655257222753049998837015348 ;10919367393835229345888322550 86548801682874343786126453815 42536344399602902510015888272 - 39550548239557137256840232268 213012476794522644820910235647752723082081063518899152692889108455571126 303965034397896278250016110153235160519655904211844949907789992007329476 905868577878720982901352956613978884860509786085957017731298155314951681 467176959760994210036183559138777817698458758104466283998806006162298486 169353373865787735983361613384133853684211978938900185295691967804554482 358483701170967212535338758621582310133103877668272115726949518179589754 393992642197915523385766231676275475703546994148929041301863861194391962

I'm going to celebrate "pi day" this year by:

1. Watching "Pi," the movie.
2. Eating "Plzza."
3. Rearranging the pieces of my pizza into a rectangle to prove that the area of a circle is πr^{2}.
4. Using the Pythagorean Theorem, integration, and parametric equations for a circle to show that the circumference of a circle is 2π r.

"Pi" the Movie

This better be "kosher" bacon and pepperoni!

This picture suggests how to turn a circle into a rectangle in order to find its area.

example: (1) 3 reset info (i)

And now we find the circumference of the

 circle.$$
\begin{aligned}
& \vec{r}(t)=r \cos (t) \hat{i}+r \sin (t) \hat{j} \\
& 0 \leq t \leq 2 \pi \\
& r=\text { radius } \\
& \vec{r}^{\prime}(t)=-r \sin (t) \hat{i}+r \cos (t) \hat{j} \\
& \text { Arc Length }=\int_{0}^{2 \pi}\left\|\vec{r}^{\prime}(t)\right\| d t=\int_{0}^{2 \pi} \sqrt{r^{2} \sin ^{2} t+r^{2} \cos ^{2} t} d t \\
& =\int_{0}^{2 \pi} \sqrt{r^{2}} d t=\int_{0}^{2 \pi} r d t=\left.r t\right|_{0} ^{2 \pi}=2 \pi r
\end{aligned}
$$

Others will celebrate by watching old episodes of "Magnum PI."

And, of course, the missus and I will give lots of treats today to "Chloe the Pi Dog."

HAPPY P PAAII

