
ORBITS, STABILIZERS, FIXERS, AND BURNSIDE’S COUNTING THEOREM 
 
 

Consider this situation.  You have just solved Rubik’s cube, but you also instinctively 
know that if you rotated the cube 90°  in any of six directions, then you would still 
consider the cube to still be in the same solved configuration.  Thus, certain movements 
of the cube don’t really result in what we consider a different configuration.  And now 
our problem is this.  Suppose we color the faces of the cube with six different colors and 
that we are also allowed to rotate the cube as described above.  Then how many truly 
different color configurations are possible when we allow for rotations of the cube?  This 
is the type of question we’ll learn to answer in this chapter with the help of what we call 
orbits, stabilizers, fixers, and Burnside’s Counting Theorem. 
 

 
 
Remember:  There are a few definitions and theorems you might want to recall before 
you wade any further into this section.  First, when we say that G is a group that acts on a 
set of objects X, that means that each element of G corresponds to a permutation of the 
elements of X.  For example, consider the equilateral triangle below with vertices labeled 
by 1, 2, or 3. 
 

 
 

We can let { }1,2,3X =  and our set G can correspond to the permutations of these 
numbers created by either rotating the above triangle clockwise through angles that are 
multiples of 120°  or by flipping the triangle about one of the indicated axes of symmetry 
or by some combination of these moves.  By doing so, we can identify six distinct 
permutations which can be represented as follows. 
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We will use this example down below, so remember it.  Also, recall that we denote the 
number of elements in a set or group by putting absolute value signs around the symbol 
for that set or group.  Hence, for the group G above, we have 6G = . 
 
And finally, recall that if H is a subgroup of a finite group G, then the left coset of H in G 
created by a G∈  is { }|aH ah h H= ∈ .  Additionally, by Lagrange’s Theorem, the number 

of left cosets of H in G is a divisor of G and is denoted by [ ]:
G

G H
H

= .  Notice that even 

though in the past we have generally examined right cosets, for the proofs that follow it 
will be easier this time to deal with left cosets. 
 
Definition:  Let G be a group that acts on a set X, and let x X∈ .  The orbit of x by G is 
the set { }( ) ( )GOrbit x g x g G= ∈ .  In other words, the orbit of x consists of all elements of 
X that x can be changed into by the various elements of G. 
 
 
Theorem:  Let G be a group that acts on a set X, and let ≡  be a relation on X defined by 
x y≡  if and only if ( )y g x=  for some g G∈ .  Then ≡  is an equivalence relation. 
 
Proof:  Recall that we need to show that this relationship is reflexive, symmetric, and 
transitive.  Let’s begin! 
 
1. (reflexive)  Let e G∈  be the identity element in G.  Then, by definition, e leaves 

every element of X fixed so that ( )e x x= .  Hence, x x≡ and ≡  is reflexive. 
 

2. (symmetric)  Suppose x y≡ .  Then there exists g G∈  such that ( )g x y= .  However, 
this implies that 1( )g y x− =  and that y x≡ .  Thus, ≡  is symmetric. 
 

3. (transitive)  Suppose there exist , ,x y z X∈  such that x y≡  and y z≡ .  Then there exist 
functions 1 2,g g G∈  such that 1( )g x y=  and 2 ( )g y z= .  Now let 3 2 1g g g G= ∈D .  Then 

3 2 1 2 1 2( ) ( )( ) ( ( )) ( )g x g g x g g x g y z= = = =D .  Therefore, x z≡  and ≡  is transitive. 
 
It now follows that ≡  is an equivalence relation on X, and, hence, it partitions X into a 
series of disjoint subsets whose union is X.  Also, it should be clear that each subset of 



this partition represents a single orbit created by the permutations in G when applied to 
the elements in the set X..   

,  
 
Corollary:  If x and y belong to the same orbit, then ( ) ( )G GOrbit x Orbit y=  and, 
consequently, ( ) ( )G GOrbit x Orbit y= .  (Recall that ( )GOrbit x  means the number of 
elements in ( )GOrbit x .) 
 
 
Definition:  Let G be a group that acts upon a set X, and let x X∈ .  Then the stabilizer of 
x by G is { }( ) ( )G xStabilizer x G g G g x x= = ∈ = . 
 
 
Theorem:  If G is a group that acts on a set X, and if x X∈ , then the stabilizer of x by G is 
a subgroup of G. 
 
Proof:  To verify that ( )G xStabilizer x G=  is a subgroup of G, we need to show that for 
every ( )G xg Stabilizer x G∈ =  we have that 1 ( )G xg Stabilizer x G− ∈ = , and that for every 

1 2, ( )G xg g Stabilizer x G∈ = , we have that 1 2 ( )G xg g Stabilizer x G∈ =D . 
 
Thus, suppose ( )G xg Stabilizer x G∈ = .  Then 1 1 1( ) ( )( ) ( ( )) ( )x e x g g x g g x g x− − −= = = =D .  
Hence, 1 ( )G xg Stabilizer x G− ∈ = . 
 
Now suppose 1 2, ( )G xg g Stabilizer x G∈ = .  Then 1 2 1 2 1( )( ) ( ( )) ( )g g x g g x g x x= = =D .  
Consequently, 1 2 ( )G xg g Stabilizer x G∈ =D . 
 
Therefore, it now follows that ( )G xStabilizer x G=  is a subgroup of G.   
         ,   
 
 
Theorem:  If G is a finite group that acts on a set X, and if x X∈ , then the number of 

elements in the orbit of x is [ ]( ) :
( )G x

x G

G G
Orbit x G G

G Stabilizer x
= = = . 

 
Proof:  Since ( )G xStabilizer x G=  is a subgroup of G, we can consider the left cosets of xG  
in G.  In particular, notice that if 1 2, ( )G xg g Stabilizer x G∈ = , then 1 2( ) ( )g x x g x= = .  Now 
consider a left coset xhG  and suppose 1 2, xh h hG∈ .  Then 1 1 2 2 & h hg h hg= =  for some 

1 1 1
1 2 1 1 2 2 1 1 2 1 1 2 1, ( ) ( )xg g G h h g h hg h g g h g g h g− − −∈ ⇒ = ⇒ = = = =  where 1

1 2 xg g g G−= ∈ .  
Hence, 2 1 1 1( ) ( )( ) ( ( )) ( )h x h g x h g x h x= = = .  Thus, all elements in the same left coset of xG  
yield the same value when applied to x. 
 



Furthermore, if xaG  and xbG  are two different left cosets of xG , then ( ) ( )a x b x≠  since, 
otherwise, if it were true that ( ) ( )a x y b x= = , then 

1 1 1 1 1 1( )( ) ( ( )) ( )  for some ( ) ( )xa b x a b x a y x a b g g G ag a a b aa b− − − − − −= = = ⇒ = ∈ ⇒ = =  
e b b= ⋅ = ⇒  a and b belong to the same left coset of xG .  But this contradicts our 

assumption that x xaG bG≠ . 
 
From the above it follows that we can find all the elements in the orbit of x by simply 
picking an arbitrary function from each left coset of xG  and applying it to x.  In particular, 
the number of elements in the orbit of x is the same as the number of left cosets of xG  in 

G.  Therefore, by Lagrange’s Theorem, [ ]( ) :
( )G x

x G

G G
Orbit x G G

G Stabilizer x
= = = .   

,  
 
 

Corollary:  We can also rewrite ( )
( )G

x G

G G
Orbit x

G Stabilizer x
= =  as 

( )
( )x G

G

G
G Stabilizer x

Orbit x
= = . 

 
 
Definition:  Let G be a group that acts upon a set X, and let x X∈ .  Then the fixer of g in 
X is { }( ) ( )XFixer g x X g x x= ∈ = . 
 
Theorem:  Let G be a group that acts on a set X and let 

{ }( , ) ( )  where  and A g x g x x g G x X= = ∈ ∈ .  Then the number of elements in A, denoted by 

A , is ( ) ( )G x X
x X x X g G

A Stabilizer x G Fixer g
∈ ∈ ∈

= = =∑ ∑ ∑ . 

 
Proof:  The statement is obvious once you realize that ( )G

x X

Stabilizer x
∈
∑  and 

( )X
g G

Fixer g
∈
∑  are just counting the same thing in two different ways.  In 

( )G
x X

Stabilizer x
∈
∑ , we’re fixing an x X∈  and then counting up all the functions g G∈  

such that ( )g x x= .  And then we go on to the next x X∈ .  On the other hand, in 
( )X

g G

Fixer g
∈
∑  we fix g G∈  and then count up the number of elements x X∈  such that 

( )g x x= .  And then we move on to another g G∈ . 
 



As an example, suppose { }1,2,3X = , { }1 2 3 4 5 6, , , , ,G g g g g g g= , (as defined at the 
beginning of this chapter), and { }1 1 1 4 5 6( ,1),( ,2),( ,3),( ,1),( ,2),( ,3)A g g g g g g= .  Then 6A = , 
and we can count this total in either of the two ways below. 
 

x |Stabilizer(x)|
1 2
2 2
3 2

Sum=6      

g |Fixer(g)|
g1 3
g2 0
g3 0
g4 1
g5 1
g6 1

Sum=6  
 

In other words, 1 is stabilized by 1 4&g g , 2 is stabilized by 1 5&g g , and 3 is stabilized 
by 1 6&g g .  On the other hand, 1g  fixes 1, 2, & 3, 2 3andg g  fix no elements in X, 4g  
fixes 1, 5g  fixes 2, and 6g  fixes 3.  Either way, the sum is the same.  Thus, 

( ) ( )G x X
x X x X g G

A Stabilizer x G Fixer g
∈ ∈ ∈

= = =∑ ∑ ∑ .   

         ,  
 
 
Burnside’s Counting Theorem:  If G is a finite group that acts on a set X, then the number 

of orbits created by G acting on X is 1 1 1( ) ( )x G X
x X x X g G

G Stabilizer x Fixer g
G G G∈ ∈ ∈

= =∑ ∑ ∑ . 

 
Proof:  At this point, we have pretty much developed all the pieces of the puzzle, and we 
just need to put them together.  Recall that our corollary above says that 

( )
( )x G

G

G
G Stabilizer x

Orbit x
= = .  Hence, 

1 1 1 1
( ) ( ) ( )x

G G Gx X x X x X x X

G G
G

G G Orbit x G Orbit x Orbit x∈ ∈ ∈ ∈

= = =∑ ∑ ∑ ∑ .  Now what is this last 

expression going to add up to?  Well, suppose, for example, that one particular orbit by a 
group G contains just three points – a, b, and c.  In this case, 

( ) ( ) ( )G G GOrbit a Orbit b Orbit c= = , and ( ) ( ) ( ) 3G G GOrbit a Orbit b Orbit c= = = .  

Consequently, 1 1 1 1 1 1 1
( ) ( ) ( ) 3 3 3G G GOrbit a Orbit b Orbit c

+ + = + + = .  Similarly, if an orbit 

produced by a group G consisted of four elements, d, e, f, and g, then we would have 
1 1 1 1 1 1 1 1 1

( ) ( ) ( ) ( ) 4 4 4 4G G G GOrbit d Orbit e Orbit f Orbit g
+ + + = + + + = .  Thus, if we arrange 

the sum 1
( )Gx X Orbit x∈

∑  in such a way that we add up all the terms corresponding to the 

elements of one orbit before going on to the next orbit, then the sum simply becomes 
1 1 1+ + +…  where the term “1” occurs as many times as there are distinct orbits in X 



produced by the action of the group G.  In other words, 
1 1 1 1

( ) ( ) ( )x
G G Gx X x X x X x X

G G
G

G G Orbit x G Orbit x Orbit x∈ ∈ ∈ ∈

= = =∑ ∑ ∑ ∑  is equal to that number of 

orbits produced on X by G.  And since one of our theorems above demonstrated that 
( ) ( )G x G

x X x X g G

Stabilizer x G Fixer g
∈ ∈ ∈

= =∑ ∑ ∑ , we can also write this result as 

1 1( ) ( )G X
x X g G

Stabilzer x Fixer g
G G∈ ∈

=∑ ∑  is equal to the number of orbits on X produced by 

G.   
         ,  
 
 
Example 1:  Let’s apply this theorem to the example at the top of this chapter where G is 
the group of six permutations we can make of the elements of { }1,2,3X = . 
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On the one hand, it should be clear that there is only one orbit consisting of { }1,2,3 .  This 
is true because we can change each of these elements into any of the others just by 
repeated applications of a clockwise rotation of our triangle. 
 



x |Stabilizer(x)|
1 2
2 2
3 2

Sum=6      

g |Fixer(g)|
g1 3
g2 0
g3 0
g4 1
g5 1
g6 1

Sum=6  
 
Additionally, by counting up for each x X∈  the number of elements in ( )Stabilizer x , and 
by counting up for each g G∈  the number of elements in ( )Fixer g , we obtain the same 
result from Burnside’s Counting Theorem, 

1 1 1( ) ( ) 6 1
6G X

x X g G

Stabilzer x Fixer g
G G∈ ∈

= = ⋅ =∑ ∑  

 
 

Example 2:  Let { }1,2,3,4X =  and let { }( ),(1,2),(3,4),(1,2)(3,4)G = , 4G = .  This group is 
called the Klein 4-group, and it is analogous to the states that can result when you have 
two lamps, one to your left and one to your right.  You can leave both lamps off (the 
identity), or you can turn on the lamp on your left, or you can turn on the lamp on your 
right, or you can turn on both lamps.  Each transposition in our group G, (1,2) and (3,4) , 
is analogous to flipping a switch on a lamp on or off. 
 
Now as for the number of orbits that X will have under the action of G, it should be clear 
that there are two.  We can change 1 to 2 and we can change 3 to 4 and that’s it.  Thus, 
we might write { }1 1,2Orbit =  and { }2 3,4Orbit = .  And if we count the orbits using 
Burnside’s Counting Theorem, then once again we get the same thing. 
 

x |Stabilizer(x)|
1 2
2 2
3 2
4 2

Sum=8     

g |Fixer(g)|
(  ) 4

(1,2) 2
(3,4) 2

(1,2)(3,4) 0
Sum=8  

 

Hence, 1 1( ) 8 2
4G

x X

Stabilzer x
G ∈

= ⋅ =∑  and 1 1( ) 8 2
4X

g G

Fixer g
G ∈

= ⋅ =∑ . 

 
 
Example 3:  Let { }1,2,3X =  and let { }( ),(1,2,3),(1,3,2)G = , 3G = .  Again, since the 
permutations in G can change 1 into 2 and 1 into 3, there should be only one orbit, 

{ }1 1,2,3Orbit = .  We can confirm this using Burnside’s Counting Theorem. 
 



x |Stabilizer(x)|
1 1
2 1
3 1

Sum=3     

g |Fixer(g)|
(  ) 3

(1,2,3) 0
(1,3,2) 0

Sum=3  
 

Thus, the number of orbits is 1 1 1( ) ( ) 3 1
3G X

x X g G

Stabilzer x Fixer g
G G∈ ∈

= = ⋅ =∑ ∑ . 

 
Notice, too, that if we label the vertices of an equilateral triangle with the number 1, 2, 
and 3, then we can interpret the permutations in G as corresponding to clockwise 
rotations of 0° , 120° , and 240° , respectively. 
 
 
Example 4:  Let X equal the set of all distinct arrangements of the numbers 1, 2, and 3 on 
the vertices of an equilateral triangle, and let { }( ),(1,2,3),(1,3,2)G = , 3G = . 
 
Notice that the permutations in our group G can once again be thought of as clockwise 
rotations of our triangle through angles that are multiples of 120° , but our set X is 
different from what it was in the previous example.  In particular, X is comprised of the 
following six arrangements: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using Burnside’s Counting Theorem, we discover that there are two orbits. 
 

1

23

1

23

3

12

3

12

2

31

2

31

1

32

1

32

2

13

2

13

3

21

3

21



x |Stabilizer(x)|
1 1
2 1
3 1
4 1
5 1
6 1

Sum=6     

g |Fixer(g)|
(  ) 6

(1,2,3) 0
(1,3,2) 0

Sum=6  
 

The number of orbits is 1 1 1( ) ( ) 6 2
3G X

x X g G

Stabilzer x Fixer g
G G∈ ∈

= = ⋅ =∑ ∑ . 

 
Notice that 1Orbit  could be the configurations of the triangles in the first row above, and 

2Orbit  corresponds to the configurations in the second row above. 
 
 
Example 5:  Suppose you have four colors, red, green, blue, and yellow, and you paint 
each edge of a square a different color, and let X be the set of all possible color 
configurations.  For example, on such configuration cold be top=red, bottom=blue, 
left=green, and right=yellow, and another possible configuration would be top=green, 
bottom=red, left=blue, and right=green.  In all, the number of possible configurations is 
4! 4 3 2 1 24= ⋅ ⋅ ⋅ = .  This is because we have four choices for the top color, then three left 
for the bottom color, two choices for the left side color, and then only one choice left for 
the right side color.   
 
For our group, we will use 4D , the symmetries of a square.  In other words, we can rotate 
our square clockwise through angles that are multiples of 90° , or we can flip our square 
about any of four axes of symmetry.   
 

 
 
 
 
 
 
 
 
The number of elements in this group is eight, 4 8D = , and if we label the vertices of our 
square 1, 2, 3, and 4, then we can represent 4D  as the following set of permutations, 

{ }4 ( ),(1,2,3,4),(1,4,3,2),(2,4),(1,3),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)D = . 
 
If two color configurations are in the same orbit, then we can change one into the other 
through some sequence of rotations and flips.  Thus, the number of truly distinct color 
configurations possible is equal to the number of orbits in X created by 4D .  Fortunately, 
this is easy to count.  All we need to realize is that the identity keeps all 24 color 

1 2

34

1 2

34



configurations fixed while every other rotation or flip keeps none of the color 
configurations fixed.   
 

g |Fixer(g)|
(  ) 24

(1,2,3,4) 0
(1,4,3,2) 0

(2,4) 0
(1,3) 0

(1,2)(3,4) 0
(1,3)(2,4) 0
(1,4)(2,3) 0

Sum=24  
 

Hence, the number of orbits is 
4

44 4

1 1 1( ) ( ) 24 3
8D X

x X g D

Stabilzer x Fixer g
D D∈ ∈

= = ⋅ =∑ ∑ . 

 
 
Example 6:  Suppose you have a pentagonal bracelet with 5 differently colored, equally 
spaced beads, and suppose that you either rotate the bracelet clockwise through multiples 
of 72° , or you can flip the bracelet about any of 5 axes of symmetry.  Then our set X will 
consist of 5! 5 4 3 2 1 120= ⋅ ⋅ ⋅ ⋅ =  color configurations, and our group is 5D , the group of 
symmetries of a regular pentagon with 5 10D = .  Again, if we label the vertices 1, 2, 3, 4, 
and 5, then we can describe 5D  in terms of the following permutations, 

5
( ),(1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2),
(2,5)(3,4),(1,2)(3,5),(1,3)(4,5),(1,4)(2,3),(1,5)(2,4)

D
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

. 

 
 
 
 
 
 
 
 
 

Now, as before, the identity fixes all 5! 5 4 3 2 1 120= ⋅ ⋅ ⋅ ⋅ =  color configurations, and the 
remaining elements of 5D  fix none of the configurations.  Hence, the number of orbits in 

X under 5D  is 
5

55 5

1 1 1( ) ( ) 120 12
10D X

x X g D

Stabilzer x Fixer g
D D∈ ∈

= = ⋅ =∑ ∑ . 

 
 
Example 7:  We’ll now give a quick answer to the problem we posed at the beginning of 
this chapter where we can paint the six faces of a cube with six colors such that each 
color is used only once.  This allows for 6! 6 5 4 3 2 1 720= ⋅ ⋅ ⋅ ⋅ ⋅ =  ways to paint the cube.  
However, we also allow rotations that are multiples of 90°  in any of six directions, and 
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this will make some of our coloring schemes equivalent to others.  In particular, two 
color schemes will be equivalent if the are in the same orbit created by our rotation group 
G, and so the number of distinct color schemes will be the same as the number of orbits 
that G creates when it acts on our colored cube.  Using the same logic as before, we can 
say that the identity of our group fixes all 720 coloring schemes, but every other element 
in G changes one color scheme into another.  Thus, the total number of coloring schemes 
fixed by G is 720.  Now, however, we need to know how many elements there are in G, 
but that’s not hard to count if we realize that our cube has four diagonal lines going 
through the center, and our rotations can create any possible permutation of these four 
diagonal lines.   
 

 
 
Hence, 4! 4 3 2 1 24G = = ⋅ ⋅ ⋅ = , and from this it follows that the number of orbits created 
by G for the coloring schemes for our cube is 

1 1 1( ) ( ) 720 30
24G X

x X g G

Stabilzer x Fixer g
G G∈ ∈

= = ⋅ =∑ ∑ .  In other words, there are 30 ways 

to color the faces of our cube that are distinct from one another when we allow for 
rotations of the cube. 
 

 


