PRELIMINARIES

Find the distance between the following points. Give both an exact answer in simplest form and a decimal approximation rounded to the nearest hundredth.

1.
$$(1,5) & (4,10)$$

2.
$$(-2,3) & (-5,-8)$$

3.
$$(-5,7) & (17,20)$$

Find the equation in standard form for the circle with the given center and radius.

4.
$$(1,5) & r = 3$$

5.
$$(-2,3) & r = 1$$

6.
$$(17,20) & r = 5$$

7.
$$(0,0) & r = 1$$

Complete the square to write the equation for the circle in standard form. Identify the center and radius.

8.
$$x^2 + y^2 + 4x + 10y + 12 = 0$$

9.
$$4x^2 + 4y^2 - 16x + 32y - 24 = 0$$

10.
$$x^2 + y^2 + 41x - 107y - 43 = 0$$

11.
$$2x^2 + 2y^2 - 15x + 97y + 13 = 0$$

Complete the following tables using exact values.

12.

degrees	0	30	45	60	90
cosine					
sine					
tangent					
cotangent					
secant					
cosecant					

13.

radians	0	π/6	π/4	π/3	π/2
cosine					
sine					
tangent					
cotangent					
secant					
cosecant					

Use the identity $\cos^2 \theta + \sin^2 \theta = 1$ & $\cos(a+b) = \cos a \cos b - \sin a \sin b$ to help you verify the following identities.

14.
$$1 + \tan^2 \theta = \sec^2 \theta$$

15.
$$\cot^2 \theta + 1 = \csc^2 \theta$$

$$16. \cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

$$17. \sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

18.
$$\sin(a+b) = \cos\left[\frac{\pi}{2} - (a+b)\right]$$

19.
$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

Give formulas for the following.

- 20. Area of a circle
- 21. Circumference of a circle
- 22. Area of a parallelogram
- 23. Area of a trapezoid
- 24. Volume of a sphere

Find equations in slope-intercept form (if possible) for the following.

- 25. The line of slope 3 that passes through the point (1,5).
- 26. The line that passes through (-2,8) and (4,-5).
- 27. The line that passes through (-2,-10) and (2,-5).
- 28. The line that passes through (-2,-10) and (-2,-5).
- 29. The line that passes through (-2,-10) and (2,-10).
- 30. The line that passes through (-2,-10) and is perpendicular to 3x + 2y = 10.

Find the following.

31.
$$\frac{d}{dx}\cos x$$

32.
$$\frac{d}{dx}\sin x$$

33.
$$\frac{d}{dx}\sec x$$

34.
$$\frac{d}{dx}\csc x$$

35.
$$\frac{d}{dx}\tan x$$

$$36. \ \frac{d}{dx}\cot x$$

37.
$$\int \cos x \, dx$$

38.
$$\int \sin x \, dx$$

39.
$$\int \sec x \, dx$$

40.
$$\int \csc x \, dx$$

41.
$$\int \tan x \, dx$$

42.
$$\int \cot x \, dx$$

Perform the indicated operations.

$$43. \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}$$

44.
$$(1 \ 2 \ 3) \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

$$45. \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$46. \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix}$$

47.
$$\begin{vmatrix} 2 & 4 & 6 \\ 3 & 0 & 1 \\ 1 & 4 & 5 \end{vmatrix}$$

48.
$$\begin{vmatrix} 2 & 4 & 6 \\ 7 & 8 & 9 \\ 9 & 8 & 8 \end{vmatrix}$$

49.
$$\begin{vmatrix} 7 & 8 & 9 \\ 2 & 4 & 6 \\ 9 & 8 & 8 \end{vmatrix}$$

50.
$$\begin{vmatrix} 2 & 4 & 6 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix}$$