WORK, COMPONENTS, AND PROJECTIONS

Suppose we have two vectors, $\vec{F} = \hat{i} + 2\hat{j}$ and $\vec{d} = 4\hat{i} + \hat{j}$.

$$\vec{F} = \hat{i} + 2\hat{j}$$

$$\vec{d} = 4\hat{i} + \hat{j}$$

Think of \vec{F} as representing a force in pounds and \vec{d} as representing a distance in feet.

$$\vec{F} = \hat{i} + 2\hat{j}$$

$$\vec{d} = 4\hat{i} + \hat{j}$$

"Work" is classically defined as force×distance.

$$\vec{F} = \hat{i} + 2\hat{j}$$
$$\vec{d} = 4\hat{i} + \hat{j}$$

$$\vec{d} = 4\hat{i} + \hat{j}$$

But what we need to know now is the component of the force \vec{F} that is acting in the direction of the distance vector \vec{d} .

$$\vec{F} = \hat{i} + 2\hat{j}$$
$$\vec{d} = 4\hat{i} + \hat{j}$$

Clearly,

$$comp_{\vec{d}}\vec{F} = \|\vec{F}\|\cos\theta = \frac{\vec{F} \cdot \vec{d}}{\|\vec{d}\|} = \frac{6}{\sqrt{17}} = \frac{6\sqrt{17}}{17}$$

$$\vec{F} = \hat{i} + 2\hat{j}$$

$$\vec{d} = 4\hat{i} + \hat{j}$$

This is a scalar quantity that we call the component of \vec{F} in the direction of \vec{d} .

$$comp_{\vec{d}}\vec{F} = \|\vec{F}\|\cos\theta = \frac{\vec{F} \cdot \vec{d}}{\|\vec{d}\|} = \frac{6}{\sqrt{17}} = \frac{6\sqrt{17}}{17}$$

$$\vec{F} = \hat{i} + 2\hat{j}$$

$$\vec{d} = 4\hat{i} + \hat{j}$$

To get the corresponding vector, multiply this component by a unit vector in the direction of \vec{d} .

$$proj_{\vec{d}}\vec{F} = \left(\left\| \vec{F} \right\| \cos \theta \right) \frac{\vec{d}}{\left\| \vec{d} \right\|} = \frac{\vec{F} \cdot \vec{d}}{\left\| \vec{d} \right\|} \cdot \frac{\vec{d}}{\left\| \vec{d} \right\|} = \left(\frac{\vec{F} \cdot \vec{d}}{\left\| \vec{d} \right\|^2} \right) \vec{d} = \left(\frac{\vec{F} \cdot \vec{d}}{\left\| \vec{d} \right\|^2} \right) \vec{d}$$

$$= \frac{24}{17}\hat{i} + \frac{6}{17}j$$

$$\vec{F} = \hat{i} + 2\hat{j}$$

$$\vec{d} = 4\hat{i} + \hat{j}$$

We call this the projection of \vec{F} onto the vector \vec{d} .

$$proj_{\vec{d}}\vec{F} = \left(\left\| \vec{F} \right\| \cos \theta \right) \frac{\vec{d}}{\left\| \vec{d} \right\|} = \frac{\vec{F} \cdot \vec{d}}{\left\| \vec{d} \right\|} \cdot \frac{\vec{d}}{\left\| \vec{d} \right\|} = \left(\frac{\vec{F} \cdot \vec{d}}{\left\| \vec{d} \right\|^2} \right) \vec{d} = \left(\frac{\vec{F} \cdot \vec{d}}{\left\| \vec{d} \cdot \vec{d} \right\|} \right) \vec{d}$$

$$= \frac{24}{17}\hat{i} + \frac{6}{17}j$$

$$\vec{F} = \hat{i} + 2\hat{j}$$

$$\vec{d} = 4\hat{i} + \hat{j}$$

Now to find the work done, take the component of \vec{F} in the direction of \vec{d} and multiply by the length of \vec{d} .

$$work = (\|\vec{F}\|\cos\theta)\|\vec{d}\| = \|\vec{F}\|\|\vec{d}\|\cos\theta = \vec{F} \cdot \vec{d} = 6 \text{ foot-pounds}$$

$$\vec{F} = \hat{i} + 2\hat{j}$$

$$\vec{d} = 4\hat{i} + \hat{j}$$