WORK, COMPONENTS, AND PROJECTIONS

Suppose we have two vectors, $\vec{F}=\hat{i}+2 \hat{j}$ and $\vec{d}=4 \hat{i}+\hat{j}$.

$$
\begin{aligned}
\vec{F} & =\hat{i}+2 \hat{j} \\
\vec{d} & =4 \hat{i}+\hat{j}
\end{aligned}
$$

Think of \vec{F} as representing a force in pounds and \vec{d} as representing a distance in feet.

$$
\begin{aligned}
\vec{F} & =\hat{i}+2 \hat{j} \\
\vec{d} & =4 \hat{i}+\hat{j}
\end{aligned}
$$

"Work" is classically defined as force \times distance.

$$
\begin{aligned}
\vec{F} & =\hat{i}+2 \hat{j} \\
\vec{d} & =4 \hat{i}+\hat{j}
\end{aligned}
$$

But what we need to know now is the component of the force \vec{F} that is acting in the direction of the distance vector \vec{d}.

$$
\begin{aligned}
\vec{F} & =\hat{i}+2 \hat{j} \\
\vec{d} & =4 \hat{i}+\hat{j}
\end{aligned}
$$

Clearly,

$$
\operatorname{comp}_{\vec{d}} \vec{F}=\|\vec{F}\| \cos \theta=\frac{\vec{F} \cdot \vec{d}}{\|\vec{d}\|}=\frac{6}{\sqrt{17}}=\frac{6 \sqrt{17}}{17}
$$

$$
\begin{aligned}
\vec{F} & =\hat{i}+2 \hat{j} \\
\vec{d} & =4 \hat{i}+\hat{j}
\end{aligned}
$$

This is a scalar quantity that we call the component of \vec{F} in the direction of \vec{d}.

$$
\operatorname{comp}_{\vec{d}} \vec{F}=\|\vec{F}\| \cos \theta=\frac{\vec{F} \cdot \vec{d}}{\|\vec{d}\|}=\frac{6}{\sqrt{17}}=\frac{6 \sqrt{17}}{17}
$$

$$
\begin{aligned}
\vec{F} & =\hat{i}+2 \hat{j} \\
\vec{d} & =4 \hat{i}+\hat{j}
\end{aligned}
$$

To get the corresponding vector, multiply this component by a unit vector in the direction of \vec{d}.

$$
\begin{aligned}
& \operatorname{proj}_{\vec{d}} \vec{F}=(\|\vec{F}\| \cos \theta) \frac{\vec{d}}{\|\vec{d}\|}=\frac{\vec{F} \cdot \vec{d}}{\|\vec{d}\|} \cdot \frac{\vec{d}}{\|\vec{d}\|}=\left(\frac{\vec{F} \cdot \vec{d}}{\|\vec{d}\|^{2}}\right) \vec{d}=\left(\frac{\vec{F} \cdot \vec{d}}{\vec{d} \cdot \vec{d}}\right) \vec{d} \\
& =\frac{24}{17} \hat{i}+\frac{6}{17} j \\
& \vec{F} \\
& \vec{F}=\hat{i}+2 \hat{j} \\
& \vec{d}=4 \hat{i}+\hat{j}
\end{aligned}
$$

We call this the projection of \vec{F} onto the vector \vec{d}.

$$
\begin{aligned}
& \operatorname{proj}_{\vec{d}} \vec{F}=(\|\vec{F}\| \cos \theta) \frac{\vec{d}}{\|\vec{d}\|} \| \frac{\vec{F} \cdot \vec{d}}{\|\vec{d}\|} \cdot \frac{\vec{d}}{\|\vec{d}\|}=\left(\frac{\vec{F} \cdot \vec{d}}{\|\vec{d}\|^{2}}\right) \vec{d}=\left(\frac{\vec{F} \cdot \vec{d}}{\vec{d} \cdot \vec{d}}\right) \vec{d} \\
& =\frac{24}{17} \hat{i}+\frac{6}{17} j \\
& \vec{\theta}{ }_{\vec{\sigma}}=\hat{i}+2 \hat{j} \\
& \vec{d}=4 \hat{i}+\hat{j}
\end{aligned}
$$

Now to find the work done, take the component of \vec{F} in the dirction of \vec{d} and multiply by the length of \vec{d}.

$$
\text { work }=(\|\vec{F}\| \cos \theta)\|\vec{d}\|=\|\vec{F}\|\|\vec{d}\| \cos \theta=\vec{F} \cdot \vec{d}=6 \text { foot-pounds }
$$

$$
\begin{aligned}
\vec{F} & =\hat{i}+2 \hat{j} \\
\vec{d} & =4 \hat{i}+\hat{j}
\end{aligned}
$$

