VECTOR FIELDS




A Is a function that assigns a vector to a point in n-dimensional
space. We'll generally restrict the number of dimensions to 2.

An easy way to get a vector field from a function of several variables is

by finding its gradient. The resulting vector field is called a gradient field,
and the multivariable function that gives rise to it is called a potential or
potential function.

Vector fields are ideal for modeling situations where forces are present at
different points in space.



EXAMPLE:
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EXAMPLE:

F(X,y)=Xi +j
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EXAMPLE: F(x,Y)
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EXAMPLE: F(X,y) =-VyI + X]
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EXAMPLE: F(x,y)=xi +0

j

XI

— > —

— >

—m

—m

W
W
W
W

— o m s m

— s

— s

W
W
W
W

[



EXAMPLE: F(X,y)=1+X]




EXAMPLE: z= f(X,y)=X*—y°
VE(x,y) = F(X,y)=2xi —2Vj
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EXAMPLE: F(X,y,2)=XI — Y] + 2




Some vector fields have a tendency to cause circulation about a point.
We can measure this through something we call the curl of the vector field.
We'll find out later why this is a meaningful way to do it.

If F =P(x,y, z)| +Q(x,Y, Z)j + R(X, Y, z)k then
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If F is a 2-dimensional vector field, F = Pi + Qj, then
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EXAMPLE: Consider F(x, y) = xi + yj. There is no tendency for the field

to cause circulation around any point. Thus, the curl is equal to O.
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EXAMPLE: Consider F(x, y) =—Vi + xj. This vector field does create
circulation about points.
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Other vector fields have a tendency to cause a flow or flux across a
circular boundary. We can measure this through something we call
the divergence of the vector field. Again, we'll find out later why
our definition is meaningful.

IfF =P(x,y,2)i +Q(x,V,2)] + R(X,y,2)k, then
divergenceof F=V.F
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If E is a 2-dimensional vector field, F = Pi +Qj, then
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EXAMPLE: Consider F (X, y) = xi + yj. There is a tendency for the field
to cause a flux across a circular boundary.
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EXAMPLE: Consider F (X, y) =—Vi + xj. There is no tendency for the field
to cause a flux across a circular boundary.
Thus, the divergence should be zero.
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