
VECTOR FIELDS



A  is a function that assigns a vector to a point in -dimensional
space.  We'll generally restrict the number of dime
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An easy way to get a vector field from a function of several variables is
by finding its gradient.  Th gradient fiele resulting vector field is called a 
and the multivariable function that gives

d,
 rise potentito it is called a  oal

potential func
r

tion.

Vector fields are ideal for modeling situations where forces are present at
different points in space.



ˆ ˆEXAMPLE: ( , )F x y i j= +
G



ˆ ˆEXAMPLE: ( , )F x y xi yj= +
G



ˆ ˆEXAMPLE: ( , )F x y xi yj= − −
G



ˆ ˆEXAMPLE: ( , )F x y yi xj= − +
G



ˆ ˆ ˆEXAMPLE: ( , ) 0F x y xi j xi= + =
G



ˆ ˆEXAMPLE: ( , )F x y i xj= +
G
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2 ˆˆ ˆEXAMPLE: ( , , )F x y z xi yj z k= − +
G



Some vector fields have a tendency to cause  about a point.
We can measure this through something we call the 
We'll find out later

circulation
curl of t

 why this is a meani
he vector 
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field.

to do it.
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ˆ ˆIf  is a 2-dimensional vector field, ,  then
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ˆ ˆEXAMPLE: Consider ( , ) .  There is no tendency for the field

to cause circulation around any point.  Thus, the curl is equal to 0.

F x y xi yj= +
G

G

ˆˆ ˆ

ˆ ˆcurl 0 0

0

i j k
y xF k k

x y z x y
x y

⎛ ⎞∂ ∂ ∂ ∂ ∂
= ∇× = = − = =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

GG



ˆ ˆEXAMPLE: Consider ( , ) .  This vector field does create
circulation about points.

F x y yi xj= − +
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Other vector fields have a tendency to cause a flow or  across a 
circular boundary.  We can measu

flux

divergence of the vector
re this through something we call 

the   Again, we'll find out  fie lald. ter why 
our definition is meaningful.
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ˆ ˆIf  is a 2-dimensional vector field, ,  thenF F Pi Qj
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ˆ ˆEXAMPLE: Consider ( , ) .  There is a tendency for the field
to cause a flux across a circular boundary.

F x y xi yj= +
G

divergence 1 1 2x yF
x y
∂ ∂

= ∇ = + = + =
∂ ∂

G
i



ˆ ˆEXAMPLE: Consider ( , ) .  There is no tendency for the field
to cause a flux across a circular boundary.  
Thus, the divergence should be zero.

F x y yi xj= − +
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