UNIT TANGENTS AND NORMALS

Suppose we have a curve defined by a vector valued function.

$$
\begin{aligned}
& \vec{r}(t)=P(t) \hat{i}+Q(t) \hat{j} \\
& a \leq t \leq b
\end{aligned}
$$

Then the derivative evaluated at a point will give us a vector tangent to the curve.

$$
\vec{r}^{\prime}(t)=P^{\prime}(t) \hat{i}+Q^{\prime}(t) \hat{j}
$$

However, this vector is not necessarily a unit vector.

$$
\vec{r}^{\prime}(t)=P^{\prime}(t) \hat{i}+Q^{\prime}(t) \hat{j}
$$

To get the unit tangent vector, divide $d r / d t$ by its length.

$$
T=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{d \vec{r}^{\prime} / d t}{\left\|d \vec{r}^{\prime} / d t\right\|}
$$

If our unit tangent vector is written in component form as,

$$
T=P \hat{i}+Q \hat{j}
$$

Then we define the unit normal by,

$$
N=Q \hat{i}-P \hat{j}
$$

This method always results in a normal vector that points to the right of the direction in which our unit tangent vector is facing.

$$
\begin{aligned}
T & =P \hat{i}+Q \hat{j} \\
N & =Q \hat{i}-P \hat{j}
\end{aligned}
$$

If we have a curve in three dimensions, then things are slightly more complicated.

$$
\begin{aligned}
& \vec{r}(t)=P(t) \hat{i}+Q(t) \hat{j}+R(t) \hat{k} \\
& a \leq t \leq b
\end{aligned}
$$

However, since we won't need that case for what we are going to do later, we'll skip it for now.

$$
\begin{aligned}
& \vec{r}(t)=P(t) \hat{i}+Q(t) \hat{j}+R(t) \hat{k} \\
& a \leq t \leq b
\end{aligned}
$$

