The Second Partials Test




Definition: Let (a,b) be a point contained in an open region R on which
a functions z = f (X, y) iIs defined. Then (a,b) is a critical point if
any of the following conditions are true:

1. z,(a,b)=0=z,(a,b)
2. z,(a,b) does not exist
3. z,(a,b) does not exist



Definition: Let (a,b) be a point contained in an open region R on which
a functions z = f (X, y) iIs defined. Then (a,b) is a critical point if
any of the following conditions are true:

1. z,(a,b)=0=z,(a,b)

2. z,(a,b) does not exist
3. z,(a,b) does not exist

Theorem: If z= f(x,y) has a local maximum or a local minimum at a
point (a,b) contained within an open region R on which z = f (X, y) Is
defined, then (a,b) is a critical point.



Second Partials Test: Suppose z = f (X, y) has continuous second partial
derivatives on an open region containing a point (a,b) such that
z,(a,b)=0=2,(a,b), and let

Zxx (a’ b) ny (a1 b)

D=D(a,b) = 2, (a,b) Zw(a1 b)| = Lyx (a, b)zyy (a,b) - Lyy (a, b)Zyx (a,b).
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Then:

1. fD>0andz,(a,b)>0, f(a,b)isalocal minimum.
2. IfD>0andz(a,b) <0, f(a,b) isa local maximum.
3. IfD<0, (a,b, f(a,b)) is asaddle point.

4. 1f D =0, the test is inconclusive.
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AX+2y+2=0 2x+y=-1 x:—l/
= =
2X+2y=0 X+y=0 y=1

D1 =|" “|=8_4=450
—1,1) = =0—4=4>
2 2 2

Zy=2 1,=2  7,(-1)=4>0

Therefore, f (—1,1) =—4 i1s a local minimum,
and (—1,1,—4) is a minimum point.



Try it now with z = f(x,y) = x> —3x+ y° — 3y!

T
L :-E?_-_'I;l-'l...'ﬂ.t‘i ol




Alsotryz=f(x,y)=x"—y*and z=f(x,y)=x"+y*.




