
TAYLOR POLYNOMIAL
APPROXIMATIONS



As you know, a function of one variable that has a 
second derivative defined at a value  can be approximated
by a second degree Taylor polynomial centered at .
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This Taylor polynomial is a good approximation for our
original function for values close to  since:
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Thus, the curvature of ( )
is similar to the curvature of

( ) at .
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We can do something similar for functions of several variables.
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We can do something similar for functions of several variables.
We can often define Taylor polynomials of two variables centered
at a point ( , ).a b
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This polynomial has the same value at ( , ) 
as the function ( , ),and it also has the 
same values at this point for the first and second
partial derivatives.
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Example:
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Another way to prove the second partials test is to verify it at
a critical point for the corresponding 2nd degree Taylor polynomial.


