TAYLOR POLYNOMIAL APPROXIMATIONS

As you know, a function of one variable that has a second derivative defined at a value a can be approximated by a second degree Taylor polynomial centered at a.

As you know, a functions of one variable that has a second derivative defined at a value a can be approximated by a second degree Taylor polynomial centered at a.

$$
\begin{aligned}
& y=f(x) \\
& P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}=\sum_{k=0}^{2} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
\end{aligned}
$$

As you know, a functions of one variable that has a second derivative defined at a value a can be approximated by a second degree Taylor polynomial centered at a.

$$
\begin{aligned}
& y=f(x) \\
& P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}=\sum_{k=0}^{2} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
\end{aligned}
$$

This Taylor polynomial is a good approximation for our original function for values close to a since:

$$
\begin{aligned}
& f(a)=P_{2}(a) \\
& f^{\prime}(a)=P_{2}^{\prime}(a) \\
& f^{\prime \prime}(a)=P_{2}^{\prime \prime}(a)
\end{aligned}
$$

As you know, a functions of one variable that has a second derivative defined at a value a can be approximated by a second degree Taylor polynomial centered at a.

$$
\begin{aligned}
& y=f(x) \\
& P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}=\sum_{k=0}^{2} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
\end{aligned}
$$

This Taylor polynomial is a good approximation for our original function for values close to a since:

$$
\begin{aligned}
& f(a)=P_{2}(a) \\
& f^{\prime}(a)=P_{2}^{\prime}(a) \\
& f^{\prime \prime}(a)=P_{2}^{\prime \prime}(a)
\end{aligned}
$$

Thus, the curvature of $f(x)$ is similar to the curvature of $P_{2}(x)$ at a.

We can do something similar for functions of several variables.

We can do something similar for functions of several variables.
We can often define Taylor polynomials of two variables centered at a point (a, b).

$$
\begin{aligned}
& z=f(x, y) \\
& P_{2}(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
\end{aligned}
$$

$$
+\frac{f_{x x}(a, b)}{2}(x-a)^{2}+f_{x y}(a, b)(x-a)(y-b)+\frac{f_{y y}(a, b)}{2}(y-b)^{2}
$$

We can do something similar for functions of several variables.

We can often define Taylor polynomials of two variables centered

 at a point (a, b).$$
\begin{aligned}
& z=f(x, y) \\
& P_{2}(x, y)= \\
& \quad f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
& \\
&
\end{aligned}
$$

This polynomial has the same value at (a, b) as the function $z=f(x, y)$, and it also has the same values at this point for the first and second partial derivatives.

Example:

$$
\begin{aligned}
& z=f(x, y) \\
& \begin{aligned}
& P_{2}(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
& \quad+\frac{f_{x x}(a, b)}{2}(x-a)^{2}+f_{x y}(a, b)(x-a)(y-b)+\frac{f_{y y}(a, b)}{2}(y-b)^{2} \\
& z=\cos (x)+\sin (y) \\
& Q=(0,0) \\
& P_{2}(x, y)=1+y-\frac{1}{2} x^{2}
\end{aligned}
\end{aligned}
$$

Another way to prove the second partials test is to verify it at a critical point for the corresponding 2nd degree Taylor polynomial.

