2N ORDER PARTIAL DERIVATIVES
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It's no accident in this example that

the mixed partials are equal, z,, = z,,.
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Theorem: Ifz,, and z,, are continuous at (a,b), and interior

point of the domain, then z, (a,b) =z, (a,b).



What do the 2nd order partials tell us?
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In this case, they tell us that for a fixed value of v,
the curve of intersection will be concave up.
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And for a fixed value of x,

the curve of intersection will be concave down.
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The mixed partials are trickier to visualize.
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In this instance, if we find the partial first with respect to y,

then the partial of this with respect to x shows how the derivative

with respect to y changes as x changes.
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Below we see tangent lines whose slopes represent
derivatives with respect to y.
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However, since z,, =0, these slopes do not change
as X changes.
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