2ND ORDER PARTIAL DERIVATIVES

The only thing more fun than differentiating once is differentiating twice!

The only thing more fun than differentiating once is differentiating twice!

$$
z=x^{2}-y^{2}
$$

The only thing more fun than differentiating once is differentiating twice!

$$
z=x^{2}-y^{2}
$$

$$
\begin{aligned}
& z_{x}=\frac{\partial z}{\partial x}=2 x \\
& z_{y}=\frac{\partial z}{\partial y}=-2 y
\end{aligned}
$$

The only thing more fun than differentiating once is differentiating twice!

$$
\begin{aligned}
z=x^{2}-y^{2} & z_{x}
\end{aligned}=\frac{\partial z}{\partial x}=2 x, ~ z_{y}=\frac{\partial z}{\partial y}=-2 y,
$$

The only thing more fun than differentiating once is differentiating twice!

$$
\begin{aligned}
& z_{x}=\frac{\partial z}{\partial x}=2 x \\
& z_{y}=\frac{\partial z}{\partial y}=-2 y \\
& z_{x x}=\left(z_{x}\right)_{x}=\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=2 \\
& z_{y y}=\left(z_{y}\right)_{y}=\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=-2
\end{aligned}
$$

The only thing more fun than differentiating once is differentiating twice!

$$
\begin{aligned}
& z=x^{2}-y^{2} \\
& z_{x}=\frac{\partial z}{\partial x}=2 x \\
& z_{y}=\frac{\partial z}{\partial y}=-2 y \\
& z_{x x}=\left(z_{x}\right)_{x}=\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=2 \\
& z_{y y}=\left(z_{y}\right)_{y}=\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=-2 \\
& z_{x y}=\left(z_{x}\right)_{y}=\frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=0
\end{aligned}
$$

The only thing more fun than differentiating once is differentiating twice!

$$
\begin{aligned}
& z=x^{2}-y^{2} \\
& z_{x x}=\left(z_{x}\right)_{x}=\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=2 \\
& z_{y y}=\left(z_{y}\right)_{y}=\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=-2 \\
& z_{x y}=\left(z_{x}\right)_{y}=\frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=0 \\
& z_{y x}=\left(z_{y}\right)_{x}=\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=0
\end{aligned}
$$

It's no accident in this example that the mixed partials are equal, $z_{x y}=z_{y x}$.

It's no accident in this example that the mixed partials are equal, $z_{x y}=z_{y x}$. This is what happens most of the time.

It's no accident in this example that the mixed partials are equal, $z_{x y}=z_{y x}$. This is what happens most of the time.

Theorem: If $z_{x y}$ and $z_{y x}$ are continuous at (a, b), and interior point of the domain, then $z_{x y}(a, b)=z_{y x}(a, b)$.

What do the 2nd order partials tell us?

$$
z=x^{2}-y^{2}
$$

$$
\begin{aligned}
& z_{x}=2 x \\
& z_{y}=-2 y
\end{aligned}
$$

$$
\begin{aligned}
& z_{x x}=2 \\
& z_{y y}=-2
\end{aligned}
$$

In this case, they tell us that for a fixed value of y, the curve of intersection will be concave up.

$$
\begin{array}{lll}
z=x^{2}-y^{2} & z_{x}=2 x & z_{x x}=2 \\
z_{y}=-2 y & z_{y y}=-2
\end{array}
$$

And for a fixed value of x, the curve of intersection will be concave down.

$$
z=x^{2}-y^{2} \quad \begin{array}{ll}
z_{x}=2 x & z_{x x}=2 \\
z_{y}=-2 y & z_{y y}=-2
\end{array}
$$

The mixed partials are trickier to visualize.

$$
z=x^{2}-y^{2}
$$

$$
\begin{aligned}
& z_{x}=2 x \\
& z_{y}=-2 y
\end{aligned}
$$

$$
z_{x y}=0
$$

$$
z_{y x}=0
$$

In this instance, if we find the partial first with respect to y, then the partial of this with respect to x shows how the derivative with respect to y changes as x changes.

$$
z=x^{2}-y^{2} \quad z_{x}=2 x \quad z_{x y}=0
$$

In this instance, if we find the partial first with respect to y, then the partial of this with respect to x shows how the derivative with respect to y changes as x changes. TRICKY!

$$
z=x^{2}-y^{2} \quad z_{x}=2 x \quad z_{x y}=0
$$

Below we see tangent lines whose slopes represent derivatives with respect to y.

$$
{ }^{2}
$$

However, since $z_{y x}=0$, these slopes do not change as x changes.

$$
\begin{array}{ll}
z_{x}=2 x & z_{x y}=0 \\
z_{y}=-2 y & z_{y x}=0
\end{array}
$$

