Properties of Derivatives of
 Vector Functions

If u and v are differentiable vector functions, k is a scalar, and f is a real-valued function, then,

$$
\begin{aligned}
& \text { 1. } \quad(\vec{u}+\vec{v})^{\prime}=\vec{u}^{\prime}+\vec{v}^{\prime} \\
& \text { 2. } \quad(k \vec{u})^{\prime}=k\left(\vec{u}^{\prime}\right) \\
& \text { 3. } \quad(f \vec{u})^{\prime}=f\left(\vec{u}^{\prime}\right)+\left(f^{\prime}\right) \vec{u} \\
& \text { 4. } \quad(\vec{u} \cdot \vec{v})^{\prime}=\vec{u} \cdot \vec{v}^{\prime}+\vec{v} \cdot \vec{u}^{\prime} \\
& \text { 5. } \quad(\vec{u} \times \vec{v})^{\prime}=\vec{u} \times \vec{v}^{\prime}+\vec{u}^{\prime} \times \vec{v} \\
& \text { 6. } \quad(\vec{u}(f))^{\prime}=f^{\prime}\left(\vec{u}^{\prime}(f)\right)
\end{aligned}
$$

