PARTIAL DERIVATIVES
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Consider the surface z=f(x,y)=x"+y”
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We can slice through this surface with the
plane y=-2.
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z=f(Xy)=x+Yy°



When we do this, the the curve of intersection iIs
desribed by the equations:

Z=X+(-2)"=x*+4, y=-2
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z=f(Xy)=x+Yy°



We can graph this equation in 2-dimensions.

Z=X°+(-2)>=x*+4
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And if we take a point such as (2,8) on the graph,
then we can use derivatives to find the tangent line.

z=X°+4

2'(X) = 2X
15+

2'(2)=4
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T=4(x-2)+8
= 4X




If we add the point and the tangent line back
to our surface plot, then it looks like this:
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Here’'s what it all means.
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We start with a surface z= f(x,y)=x*+y*
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On this surface Is a point (2,-2,8).

z=f(Xy)=x+Yy°
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If we slice through the surface with the plane
y=-2, we get a curve of intersection with our

surface. :
z=f(Xy)=x+Yy°
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The blue line is the line that is tangent to the
surface at (2,-2,8) and that lies in the plane

y=-2 z:f(x,y)=x2+y2
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We can do something similar by slicing through
with the plane x=2. 7= f(Xy)=x2+ Y




This time, the curve of intersection Is:

2=2°+y* =4+y* x=2




The slope of the tangent line at (2,-2,8) and In the
plane x=2 can be found using derivatives.

Z=4+y°

2'(y)=2y

2'(-2)=—-4




These examples illustrate several points.



These examples illustrate two key points.

1. A point on a surface can have an infinite
number of tangent lines, each one pointing
In a different direction.



These examples illustrate two key points.

1. A point on a surface can have an infinite
number of tangent lines, each one pointing
In a different direction.

2. Two of these tangent lines can be found by
fixing either the x-coordinate or the y-coordinate,
and then taking the derivative in order to find

the slope.



In practice, instead of actually fixing an x-value
or y-value, we just pretend that we have and then
differentiate with respect to the other variable.
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In practice, instead of actually fixing an x-value
or y-value, we just pretend that we have and then

differentiate with respect to the other variable.

When we do this, we call it a partial derivative.

And we use a slightly different notation.



Definition: If z=f(x,y), then the partial derivative
of z with respect to x Is:

, :@: lim f(X+AX,y)— f(X,Y)

X OX  Ax—0 AX




Definition: If z=f(x,y), then the partial derivative
of z with respect to x Is:
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In other words, just treat y as fixed, and
differentiate with respect to x.



Definition: If z=f(x,y), then the partial derivative
of z with respect to x Is:

7 :ﬁz lim f(X+AX’y)_ f(xly)

X OX  Ax—0 AX

In other words, just treat y as fixed, and
differentiate with respect to x.
Z=X"+Yy°
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Definition: If z=f(x,y), then the partial derivative
of z with respectto y Is:
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Definition: If z=f(x,y), then the partial derivative
of z with respectto y Is:

oo _ o Ty +Ay) - T(xy)

y @y Ay—0 Ay

In other words, just treat x as fixed, and
differentiate with respect to .
Z=X+Yy°
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To reiterate, the partial derivative of z with respect to
X can be used to find the slope of a tangent line to a
point on a curve of intersection obtained by fixing y.
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The partial derivative of z with respect to y can
be used to find the slope of a tangent line to a
point on a curve of intersection obtained-by fixing X.




Practice: For each of the following functions, find

g
OX oYy
1.z =x°y?
2. z:\/x2+y2
3.2 =In(xy)

4uz:ﬂn(§)
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5.z=x’



