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Definition:  A function ( , ) has a global or absolute
maximum on a region  at a point ( , ) if ( , ) ( , )
for all points ( , ) in .

z f x y
R a b f a b f x y

x y R

=
≥

Definition:  A function ( , ) has a global or absolute
minimum on a region  at a point ( , ) if ( , ) ( , )
for all points ( , ) in .
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Definition:  A point ( , ) is a boundary point of a region 
if every disk centered at ( , ) contains both points in  and 
points not in .
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Definition:  A point ( , ) is an interior point of a region 
if it is not a boundary point of .
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Definition:  The boundary of a region is the set of all 
boundary points of .
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Definition:  The interior of a region is the set of all 
interior points of .

R
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Definition:  A region  is closed if it contains all its boundary points.R

Definition:  A region  is bounded if it can be contained inside 
some circle of sufficiently large radius .
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Definition:  A region  is open if every point is an interior point.R



Theorem:  If ( , ) is a continuous function defined on a closed 
and bounded region , then ( , ) has both a global maximum 
and a global minimum value on the region .  These extreme values
will o
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ccur either at critical points or at points on the boundary of .R
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EXAMPLE 1: A company manufactures two items which are sold
in two separate markets.  The quantaties  and  demanded by 
consumers and the prices  and , in dollars, of each item are
related by,
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The companies total production cost is,

1 2 1 216 1.2 1.5 0.2C q q q q= + + +

Find the maximum profit and how much of each product
should be produced.
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Second Partials Test:
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The Real Maximum:
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EXAMPLE 2: Twenty cubic meters of gravel are to be delivered
to a landfill.  The trucker plans to purchase an open-top box and
make several trips.  The box must have height 0.5m, but the trucker 
can choose the length and width.  The cost of the box is $20 per 
square meter for the ends, and $10 per square meter for the sides and
base.  Each trip costs $2.00.  Minimize the cost.
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4 3By inspection, 2 0 when 1.y y y+ − = =

Hence, the critical point is 2 and 1.x y= =
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Let the length 2 meters and the width 1 meter.
This results in a minimum cost of 

80(2,1) 10 2 20 1 10 2 $100.00.
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EXAMPLE 3: Find the least squares regression line that best
fits the points (1,1),(2,1),and (3,3).
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EXAMPLE 3: Find the least squares regression line that best
fits the points (1,1),(2,1),and (3,3).

The line has equation .y mx b= +

Corresponding points on the line are:
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We want to minimize the squares of the vertical distances 
from the points to the line.

( , ) ( 1) (2 1) (3 3)f m b m b m b m b= + − + + − + + −
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We want to minimize the squares of the vertical distances 
from the points to the line.
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EXAMPLE 4: Find the maximum and minimum values of 

( , ) 20 on the region  that has the ellipse

1 as its boundary.
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Because our function is continuous on 
a closed and bounded region, we are
guaranteed that both a global maximum
and minimum will exist.

Furthermore, examination of the graph suggests that 
the minimum will occur at an interior point, and the
maximum will occur at the points ( 5,0) and (5,0).−



For the minimum point, use the second partials test.
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(0,0,20) is a minimum point.
Maximum points are ( 5,0,45) and (5,0,45).−


