OPTIMIZATION

Definition: A function $z=f(x, y)$ has a global or absolute maximum on a region R at a point (a, b) if $f(a, b) \geq f(x, y)$ for all points (x, y) in R.

Definition: A function $z=f(x, y)$ has a global or absolute minimum on a region R at a point (a, b) if $f(a, b) \leq f(x, y)$ for all points (x, y) in R.

Definition: A point (a, b) is a boundary point of a region R if every disk centered at (a, b) contains both points in R and points not in R.

Definition: A point (a, b) is an interior point of a region R if it is not a boundary point of R.

Definition: The boundary of a region R is the set of all boundary points of R.

Definition: The interior of a region R is the set of all interior points of R.

Definition: A region R is closed if it contains all its boundary points.

Definition: A region R is open if every point is an interior point.

Definition: A region R is bounded if it can be contained inside some circle of sufficiently large radius k.

Theorem: If $z=f(x, y)$ is a continuous function defined on a closed and bounded region R, then $z=f(x, y)$ has both a global maximum and a global minimum value on the region R. These extreme values will occur either at critical points or at points on the boundary of R.

EXAMPLE 1: A company manufactures two items which are sold in two separate markets. The quantaties q_{1} and q_{2} demanded by consumers and the prices p_{1} and p_{2}, in dollars, of each item are related by,

$$
\begin{aligned}
& p_{1}=600-0.3 q_{1} \\
& p_{2}=500-0.2 q_{2}
\end{aligned}
$$

The companies total production cost is,

$$
C=16+1.2 q_{1}+1.5 q_{2}+0.2 q_{1} q_{2}
$$

Find the maximum profit and how much of each product should be produced.

$$
\begin{aligned}
& p_{1}=600-0.3 q_{1} \\
& p_{2}=500-0.2 q_{2}
\end{aligned} \quad C=16+1.2 q_{1}+1.5 q_{2}+0.2 q_{1} q_{2}
$$

$$
\text { Revenue }=R=p_{1} q_{1}+p_{2} q_{2}=\left(600-0.3 q_{1}\right) q_{1}+\left(500-0.2 q_{2}\right) q_{2}
$$

$$
=600 q_{1}-0.3 q_{1}^{2}+500 q_{2}-0.2 q_{2}^{2}
$$

$$
\text { Profit }=P=R-C
$$

$$
=-0.3 q_{1}^{2}-0.2 q_{2}^{2}-0.2 q_{1} q_{2}+598.8 q_{1}+498.5 q_{2}-16
$$

$$
\begin{aligned}
& 0 \leq q_{1} \leq 2000 \\
& 0 \leq q_{2} \leq 2500
\end{aligned}
$$

$$
\begin{aligned}
& \text { Profit }=P=R-C \\
& =-0.3 q_{1}^{2}-0.2 q_{2}^{2}-0.2 q_{1} q_{2}+598.8 q_{1}+498.5 q_{2}-16 \\
& 0 \leq q_{1} \leq 2000 \\
& 0 \leq q_{2} \leq 2500
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial P}{\partial q_{1}}=-0.6 q_{1}-0.2 q_{2}+598.8 \\
& \frac{\partial P}{\partial q_{2}}=-0.2 q_{1}-0.4 q_{2}+498.5 \\
& \frac{\partial P}{\partial q_{1}}=0 \quad \Rightarrow \begin{array}{l}
0.6 q_{1}+0.2 q_{2}=598.8 \\
\frac{\partial P}{\partial q_{2}}=0 \quad q_{1}=q_{1}=699.1 \\
\\
\\
\frac{\partial^{2} P}{\partial q_{1}^{2}}=-0.6 \quad \frac{\partial^{2} P}{\partial q_{2} \partial q_{1}}=-0.2 \\
\frac{\partial^{2} P}{\partial q_{1} \partial q_{2}}=-0.2 \quad \frac{\partial^{2} P}{\partial q_{2}^{2}}=-0.4
\end{array}
\end{aligned}
$$

Second Partials Test:

$$
\begin{array}{ll}
\frac{\partial^{2} P}{\partial q_{1}{ }^{2}}=-0.6 & \frac{\partial^{2} P}{\partial q_{2} \partial q_{1}}=-0.2 \\
\frac{\partial^{2} P}{\partial q_{1} \partial q_{2}}=-0.2 & \frac{\partial^{2} P}{\partial q_{2}{ }^{2}}=-0.4
\end{array}
$$

$$
D=\left|\begin{array}{cc}
-0.6 & -0.2 \\
-0.2 & -0.4
\end{array}\right|=(-0.6)(-0.4)-(-0.2)(-0.2)=0.2>0
$$

$\frac{\partial^{2} P(699.1,896.7)}{\partial q_{1}{ }^{2}}=-0.6<0 \Rightarrow$ maximum
(699.1, 896.7, \$432, 797.02)

The Real Maximum:

(699,897,\$432,797) \Leftarrow Maximum (699,896,\$432,796.90)
(700,896,\$432,796.80)
(700,897,\$432,796.70)

EXAMPLE 2: Twenty cubic meters of gravel are to be delivered to a landfill. The trucker plans to purchase an open-top box and make several trips. The box must have height 0.5 m , but the trucker can choose the length and width. The cost of the box is $\$ 20$ per square meter for the ends, and $\$ 10$ per square meter for the sides and base. Each trip costs $\$ 2.00$. Minimize the cost.

$$
\begin{aligned}
& x=\text { side length } \\
& y=\text { end length } \\
& \text { Volume }=0.5 \mathrm{xy} \mathrm{~m}^{3} \\
& \text { Number of trips }=\frac{20}{0.5 x y}=\frac{40}{x y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { trip cost }=\frac{20}{0.5 x y} \cdot 2=\frac{80}{x y} \\
& \text { side cost }=2(0.5 x) \cdot 10=10 x \\
& \text { end cost }=2(0.5 y) \cdot 20=20 y \\
& \text { bottom cost }=10 x y \\
& x>0 \\
& y>0
\end{aligned}
$$

$$
\text { Total Cost }=C=\frac{80}{x y}+10 x+20 y+10 x y
$$

Total Cost $=C=\frac{80}{x y}+10 x+20 y+10 x y$

$$
\begin{aligned}
& C_{x}=\frac{-80}{x^{2} y}+10+10 y \\
& C_{y}=\frac{-80}{x y^{2}}+20+10 x
\end{aligned}
$$

$$
\begin{aligned}
& C_{x}=0 \Rightarrow \begin{array}{l}
\frac{-80}{x^{2} y}+10+10 y=0 \quad 1+y=\frac{8}{x^{2} y}
\end{array} \\
& C_{y}=0 \Rightarrow \frac{-80}{x y^{2}}+20+10 x=0 \quad 2+x=\frac{8}{x y^{2}} \\
& \frac{1+y}{2+x}=\frac{\frac{8}{x^{2} y}}{\frac{8}{x y^{2}}}=\frac{y}{x} \Rightarrow x+x y=2 y+x y \Rightarrow x=2 y \\
& \Rightarrow 1+y=\frac{8}{4 y^{3}}=\frac{2}{y^{3}} \Rightarrow y^{4}+y^{3}-2=0
\end{aligned}
$$

By inspection, $y^{4}+y^{3}-2=0$ when $y=1$.

Hence, the critical point is $x=2$ and $y=1$.

$$
\begin{array}{ll}
C_{x}=\frac{-80}{x^{2} y}+10+10 y & C_{x x}=\frac{160}{x^{3} y} \\
C_{y}=\frac{-80}{x y^{2}}+20+10 x & C_{y x}=\frac{80}{x^{2} y^{2}}+10 \\
C_{y y}=\frac{80}{x^{2} y^{2}}+10 \\
x y^{3}
\end{array}
$$

$$
D(2,1)=\frac{19,200}{2^{4}}-\frac{1600}{2^{2}}-100=700
$$

$$
C_{x x}(2,1)=\frac{160}{2^{3}}=20>0 \Rightarrow \text { minimum }
$$

Total Cost $=C=\frac{80}{x y}+10 x+20 y+10 x y$

Let the length $x=2$ meters and the width $y=1$ meter.
This results in a minimum cost of

$$
C(2,1)=\frac{80}{2}+10 \cdot 2++20 \cdot 1+10 \cdot 2=\$ 100.00 .
$$

EXAMPLE 3: Find the least squares regression line that best fits the points $(1,1),(2,1)$, and $(3,3)$.

EXAMPLE 3: Find the least squares regression line that best fits the points $(1,1),(2,1)$, and $(3,3)$.

The line has equation $y=m x+b$.

EXAMPLE 3: Find the least squares regression line that best fits the points $(1,1),(2,1)$, and $(3,3)$.

The line has equation $y=m x+b$.

Corresponding points on the line are:
(1, $m+b$)
$(2,2 m+b)$
$(3,3 m+b)$

We want to minimize the squares of the vertical distances from the points to the line.

$$
f(m, b)=(m+b-1)^{2}+(2 m+b-1)^{2}+(3 m+b-3)^{2}
$$

We want to minimize the squares of the vertical distances from the points to the line.

$$
\begin{aligned}
& f(m, b)=(m+b-1)^{2}+(2 m+b-1)^{2}+(3 m+b-3)^{2} \\
& \quad f_{m}=2(m+b-1)+2(2 m+b-1) \cdot 2+2(3 m+b-3) \cdot 3 \\
& \quad=28 m+12 b-24
\end{aligned}
$$

$$
f_{b}=2(m+b-1)+2(2 m+b-1)+2(3 m+b-3)
$$

$$
=12 m+6 b-10
$$

$$
\begin{aligned}
& f_{m}=0 \\
& f_{b}=0
\end{aligned} \Rightarrow \begin{aligned}
& 28 m+12 b-24=0 \\
& 12 m+6 b-10=0
\end{aligned} \Rightarrow \begin{gathered}
m=1 \\
b=-\frac{1}{3}
\end{gathered}
$$

$$
\begin{aligned}
& f_{m}=28 m+12 b-24 \\
& f_{b}=12 m+6 b-10
\end{aligned}
$$

$$
\text { critical point }=(1,-1 / 3)
$$

$$
\begin{array}{ll}
f_{m m}=28 & f_{m b}=12 \\
f_{b m}=12 & f_{b b}=6
\end{array}
$$

$$
D\left(1,-\frac{1}{3}\right)=\left|\begin{array}{rr}
28 & 12 \\
12 & 6
\end{array}\right|=28 \cdot 6-12 \cdot 12=24>0
$$

$$
f_{m m}\left(1,-\frac{1}{3}\right)=28>0 \Rightarrow \text { minimum }
$$

$$
\text { regression line: } y=x-\frac{1}{3}
$$

EXAMPLE 4: Find the maximum and minimum values of
$z=f(x, y)=x^{2}+y^{2}+20$ on the region R that has the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$ as its boundary.

Because our function is continuous on a closed and bounded region, we are guaranteed that both a global maximum and minimum will exist.

Furthermore, examination of the graph suggests that the minimum will occur at an interior point, and the maximum will occur at the points $(-5,0)$ and $(5,0)$.

For the minimum point, use the second partials test.

$$
\begin{aligned}
& z=x^{2}+y^{2}+20 \\
& z_{x}=2 x \quad \begin{array}{l}
z_{x x}=2 \\
z_{y x}=0
\end{array} \quad z_{x y}=0 \\
& z_{y}=2 y \quad 2 \\
& z_{x}=0 \\
& z_{y}=0 \Rightarrow \begin{array}{l}
2 x=0 \\
2 y=0
\end{array} \Rightarrow \begin{array}{r}
x=0 \\
y=0
\end{array} \\
& \quad D(0,0)=\left|\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right|=2 \cdot 2-0 \cdot 0=4>0 \\
& z_{x x}(0,0)=2>0 \Rightarrow \text { minimum }
\end{aligned}
$$

$(0,0,20)$ is a minimum point.
Maximum points are $(-5,0,45)$ and $(5,0,45)$.

