LAGRANGE MULTIPLIERS

Let's start with a simple surface, $z=f(x, y)$.

And down in the $x y$-plane, let's add a curve, $g(x, y)=c$.

We can think of this curve as a level curve for a more general surface graph, $g=g(x, y)$.

If we restrict the domain of $z=f(x, y)$ to the curve $g(x, y)=c$, then the graph that results is just a curve lying on our original surface.

In this particular case, it's easy to see that this curve

 has a minimum point.

It's also easy to see that there is a contour, $z=k$, that touches our curve at that minimum point.

If we look at the level curve for that contour, we see that it is tangent to the curve $g(x, y)=c$ in the $x y$-plane.

Hence, our level curve and $g(x, y)=c$ have a common tangent line in the $x y$-plane.

But that also means that both the gradient of z at this point and the gradient of g at this point are perpendicular to that tangent line.

Consequently, the gradient of z and the gradient of g, both evaluated at this point, are parallel.

Therefore, $\quad \nabla z=\lambda \nabla g$
$\Rightarrow\left(z_{x} \hat{i}+z_{y} \hat{j}\right)=\lambda\left(g_{x} \hat{i}+g_{y} \hat{j}\right)$
$\Rightarrow z_{x}=\lambda g_{x} \& z_{y}=\lambda g_{y}$

To find the the coordinates of the extreme point, you now just need to figure out how to solve the system of equations below.

GOOD LUCK!!!

Lagrange's Theorem: Let f and g have continuous first partial derivatives such that f has an extreme value at an interior point $\left(x_{0}, y_{0}\right)$ on a smooth constraint curve $g(x, y)=c$. If $\nabla g\left(x_{0}, y_{0}\right) \neq \overrightarrow{0}$, then there is a real number λ such that $\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)$.

Lagrange's Theorem: Let f and g have continuous first partial derivatives such that f has an extreme value at an interior point $\left(x_{0}, y_{0}\right)$ on a smooth constraint curve $g(x, y)=c$.
If $\nabla g\left(x_{0}, y_{0}\right) \neq \overrightarrow{0}$, then there is a real number λ such that $\nabla f\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)$.

PROOF: Let $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}$ be a smooth parametrization for the constraint curve, and suppose $f\left(x_{0}, y_{0}\right)=f\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$ is an extreme value. Then since f is differentiable along this curve, $\frac{d f}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}=\nabla f \cdot \frac{d \vec{r}}{d t}=0$ when these derivatives are evaluated at $t=t_{0}$. Therefore, $\nabla \mathrm{f}\left(x_{0}, y_{0}\right) \perp \vec{r}^{\prime}\left(t_{0}\right)$. But since $\vec{r}(t)$ is a level curve for $w=g(x, y), \nabla \mathrm{g}\left(x_{0}, y_{0}\right)$ is also perpendicular to $\vec{r}^{\prime}\left(t_{0}\right)$.
Therefore, $\nabla \mathrm{f}\left(x_{0}, y_{0}\right) \| \nabla g\left(x_{0}, y_{0}\right) \Rightarrow \nabla \mathrm{f}\left(x_{0}, y_{0}\right)=\lambda \nabla g\left(x_{0}, y_{0}\right)$.

