LAGRANGE MULTIPLIERS
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Let’s start with a simple surface, z=f(x,y).
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And down in the xy-plane, let's add a curve,
g(x,y)=c.
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We can think of this curve as a level curve for a
more general surface graph, g=g(x.,y).
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If we restrict the domain of z=f(x,y) to the curve
g(X,y)=c, then the graph that results is just a curve
lying on our original surface.
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In this particular case, it's easy to see that this curve
has a minimum point.
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It's also easy to see that there Is a contour, z=k, that
touches our curve at that minimum point.
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If we look at the level curve for that contour, we see
that it is tangent to the curve g(x,y)=c in the xy-plane.
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Hence, our level curve and g(x,y)=c have a common
tangent line in the xy-plane.
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But that also means that both the gradient of z at
this point and the gradient of g at this point are
perpendicular to that tangent line.
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Consequently, the gradient of z and the gradient of
g, both evaluated at this point, are parallel.
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Therefore, Vi=A4V(g
:>(zxf+ zy]):/l(gxf+ gy])
=27, =40, & z,=40,
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To find the the coordinates of the extreme point, you
now just need to figure out how to solve the system
of equations below.
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GOOD LUCK!!
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Lagrange's Theorem: Let f and g have continuous first
partial derivatives such that f has an extreme value at an
Interior point (X,, Y,) on a smooth constraint curve g(x, y) =c.

1T Vg(Xy, Yy) # 0, then there is a real number A such that
VI (X1 ¥o) =AVA(X,. Yo).



Lagrange's Theorem: Letf and g have continuous first
partial derivatives such that f has an extreme value at an
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PROOF: Let F(t) = x(t)i + y(t) ] be a smooth parametrization for the
constraint curve, and suppose f (X,, Y,) = f (X(t,), y(t;)) Is an extreme
value. Then since f Is differentiable along this curve,

df  of dx+af dy _ vt dr

dt oxdt oydt  dt
att =t,. Therefore, V(X,,Y,) LT'(t,). Butsince r(t) is a level curve
forw=g(x,y), Vg (X,, Y,)1s also perpendicular to r'(t,).

Therefore, VI (X, Yo) [l VI(Xg, Yo) = VI(X,, Yo) = AVA(X,, Vo)

=0 when these derivatives are evaluated




