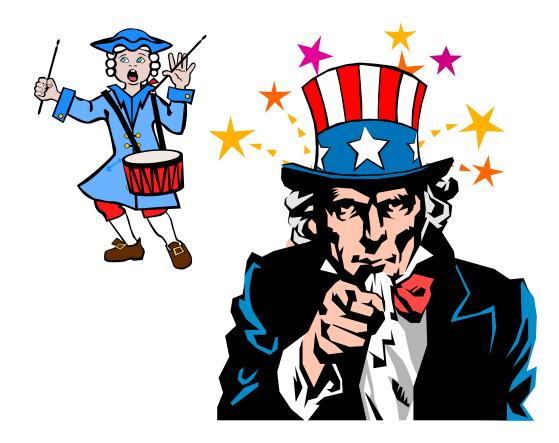
Independence of Path



DEFINITION: A vector field $\vec{F} = P\hat{i} + Q\hat{j}$ is conservative if $\vec{F} = \nabla f$ for some function z = f(x, y). In this case, f is called the potential function for \vec{F} .

DEFINITION: The line integral $\int_C \vec{F} \cdot d\vec{r}$ is independent of path if $\int_{C_1} \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r}$ for any two paths C_1 and C_2 that have the same initial and terminal points.

THEOREM: The line integral $\int_C \vec{F} \cdot d\vec{r}$ is independent of path in *D* if and only if $\int_C \vec{F} \cdot d\vec{r} = 0$ for every closed path *C* in *D*.

The Fundamental Theorem of Lines Integrals: Let *C* be a smooth curve with a smooth parametrization $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$ for $a \le t \le b$, and let z = f(x, y) be a function whose gradient ∇f is continuous on *C*. Then $\int_C \nabla f \cdot d\vec{r} = f(x(b), y(b)) - f(x(a), y(a))$.

PROOF:
$$\int_{C} \nabla f \cdot d\vec{r} = \int_{a}^{b} \left(\frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} \right) \cdot \frac{d\vec{r}}{dt} dt$$
$$= \int_{a}^{b} \left(\frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} \right) \cdot \left(\frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} \right) dt = \int_{a}^{b} \left(\frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \right) dt$$
$$= \int_{a}^{b} \frac{df}{dt} dt = f\left(x(b), y(b) \right) - f\left(x(a), y(a) \right).$$

DEFINITION: A region *R* is connected if any two points in *R* can be joined by a path *C* that lies in *R*. A connected region *R* is simply connected if it contains no holes.

THEOREM: Let $\vec{F} = P\hat{i} + Q\hat{j}$ be a vector field defined on an open simply connected region *R*, let *C* be a smooth curve in *R*, and suppose *P* and *Q* have continuous first order derivatives in *R*. Then the following are equivalent.

1.
$$\vec{F} = P\hat{i} + Q\hat{j}$$
 is conservative.
2. $\vec{F} = \nabla f$ for some function $z = fx, y$).
3. $\int_C \vec{F} \cdot d\vec{r}$ is independent of path.
4. $\int_C \vec{F} \cdot d\vec{r} = 0$ for every closed curve *C* in *R*.
5. $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.
6. $curl \vec{F} = \nabla \times \vec{F} = \vec{0}$

Example 1: $\vec{F} = 2x\hat{i} + 2y\hat{j}$ and *C* is any path from (1,1) to (2,2). Find $\int_C \vec{F} \cdot d\vec{r}$.

In this case, if $f(x, y) = x^2 + y^2$, then $\nabla f = \vec{F}$. Thus, the integral is independent of path and $\int_C \vec{F} \cdot d\vec{r} = f(2,2) - f(1,1) = 8 - 2 = 6$.

Example 2: If
$$\vec{F} = (3 + 2xy)\hat{i} + (x^2 - 3y^2)\hat{j}$$
, show that $\int_C \vec{F} \cdot d\vec{r}$ is independent of path.

Let
$$P = 3 + 2xy$$
 and $Q = x^2 - 3y^2$. Then $\frac{\partial P}{\partial y} = 2x = \frac{\partial Q}{\partial x}$.
Therefore, $F = \nabla f$ for some function $z = f(x, y)$, and
 $\int_C \vec{F} \cdot d\vec{r}$ is independent of path.

Example 3: If $\vec{F} = (3+2xy)\hat{i} + (x^2 - 3y^2)\hat{j}$, find a potential function z = f(x, y).

Let P = 3 + 2xy and $Q = x^2 - 3y^2$. Then $\int P dx = 3x + x^2y + g(y)$. Differentiate this result with respect to y and you get $x^2 + g'(y)$. Comparing this result with $Q = x^2 - 3y^2$, we see that we want $g'(y) = -3y^2$. An antiderivative of this with respect to y is $-y^3$. Hence, it suffices to let $f(x, y) = 3x + x^2y - y^3$. Example 4: If $\vec{F} = (3+2xy)\hat{i} + (x^2 - 3y^2)\hat{j}$, find $\int_C \vec{F} \cdot d\vec{r}$ where the curve *C* is defined by $\vec{r}(t) = e^t \sin(t)\hat{i} + e^t \cos(t)\hat{j}$ where $0 \le t \le \pi$,

On this curve, $x = e^t \sin(t)$ and $y = e^t \cos(t)$. Also, the integral is independent of path, and a potential function for \vec{F} is $f(x, y) = 3x + x^2 y - y^3$. Hence, $\int_C \vec{F} \cdot d\vec{r} = f(x(\pi), y(\pi)) - f(x(0), y(0))$ $= f(e^{\pi} \sin \pi, e^{\pi} \cos \pi) - f(e^0 \sin(0), e^0 \cos(0))$ $= f(0, -e^{\pi}) - f(0, 1)$ $= (3 \cdot 0 + 0^2(-e^{\pi}) - (-e^{\pi})^3) - (3 \cdot 0 + 0^2(1) - 1^3)$ $= e^{3\pi} + 1$.