STOKES' THEOREM IN
HIGHER DIMENSIONS




If we apply Stokes’ Theorem to a vector field
F=<P,Q> and a plane curve Cg that is oriented
counterclockwise and that bounds a region R, then
we get the following formula (the same as Green’s Theorem):
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Notice in this formula that we are integrating the
dot product of the curl of F with an upward pointing
unit normal vector k.
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Thus, it should come as no surprise that if we
Integrate around a counterclockwise oriented
curve C that bounds a surface S, then our formula
will involve both an upward pointing unit normal
and a surface integral.




Let’s suppose that our surface is the graph of
z=f(x,y). Then consider this as a level surface

for the function g(x,y,z)=z-f(x,y), and define an
upward pointing unit normal as follows:
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Notice that our unit normal will point upward
because the k component Is positive.
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We can now write out the higher dimensional
version of Stokes’ Theorem.
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Now let's do a problem!

S:z=—x"-y*

Fedr=|| (VxF)VgdA
R:0<x<10<y<1 .[c ' IR( <F)-Vg

F:zf+x]+yﬁ
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First, find the gradient of g and the curl of F.
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And now, integrate!
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