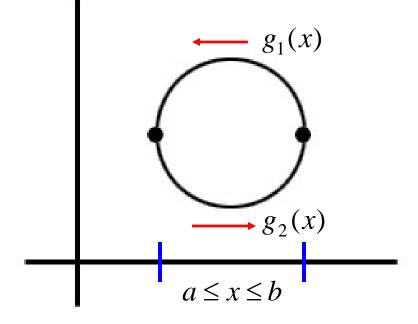
GREEN'S THEOREM

Theorem: Let *C* be a smooth, simple closed curve in the plane that is oriented counter-clockwise, and let *R* be the region bounded by *C*. If *P* and *Q* have continuous partial derivatives on an open region that contains *R*, then,

$$\int_{C} P \, dx + Q \, dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

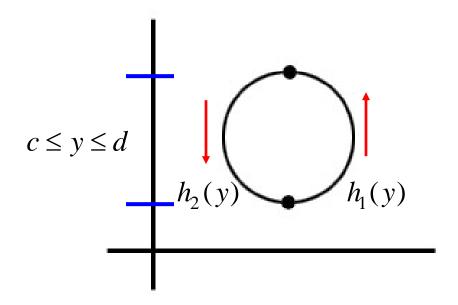
Proof: We'll do just a special case. Thus, suppose our curve C and region R look something like the

following:



In this case, we can break the curve into a top part and a bottom part over an interval on the x-axis from *a* to *b*.

Or, we could just as easily portray x as varying from h2 to h1 as y varies from c to d.



Now let's begin. Suppose the curve below is oriented in the counterclockwise direction and is parametrized

by x. Then,

$$g_{1}(x)$$

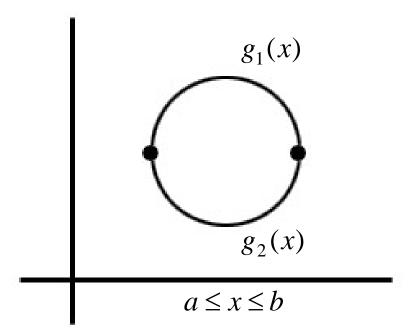
$$g_{2}(x)$$

$$a \leq x \leq b$$

$$\int_{C} P dx = \int_{a}^{b} P(x, g_{2}(x)) dx + \int_{b}^{a} P(x, g_{1}(x)) dx$$

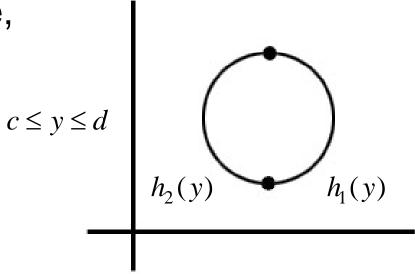
$$= \int_{a}^{b} P(x, g_{2}(x)) dx - \int_{a}^{b} P(x, g_{1}(x)) dx = \int_{a}^{b} \left[P(x, g_{2}(x)) - P(x, g_{1}(x)) \right] dx$$

Similarly,



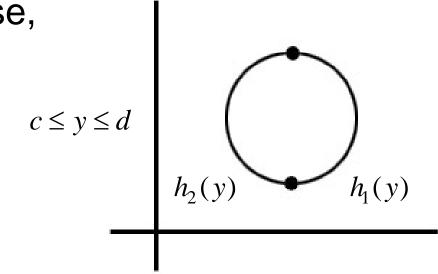
$$-\iint_{R} \frac{\partial P}{\partial y} dA = -\iint_{a}^{b} \int_{g_{2}(x)}^{g_{1}(x)} \frac{\partial P}{\partial y} dy dx = -\iint_{a}^{b} \left[P(x, g_{1}(x)) - P(x, g_{2}(x)) \right] dx$$
$$= \iint_{a}^{b} \left[P(x, g_{2}(x)) - P(x, g_{1}(x)) \right] dx = \int_{C} P dx$$

Likewise,



$$\iint_{R} \frac{\partial Q}{\partial x} dA = \int_{c}^{d} \int_{h_{2}(y)}^{h_{1}(y)} \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} \left[Q(h_{1}(y), y) - Q(h_{2}(y), y) \right] dy$$
$$= \int_{c}^{d} Q(h_{1}(y), y) dy + \int_{d}^{c} Q(h_{2}(y), y) dy = \int_{C} Q dy$$

Likewise,



$$\iint_{R} \frac{\partial Q}{\partial x} dA = \int_{c}^{d} \int_{h_{2}(y)}^{h_{1}(y)} \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} \left[Q(h_{1}(y), y) - Q(h_{2}(y), y) \right] dy$$
$$= \int_{c}^{d} Q(h_{1}(y), y) dy + \int_{d}^{c} Q(h_{2}(y), y) dy = \int_{C} Q dy$$

Therefore,
$$\int_C P \, dx + Q \, dy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Evaluate $\int_C x^4 dx + xy dy$ where C is the triangle defined by the line segments connecting (0,0) to (1,0), (1,0) to (0,1), and (0,1) to (0,0).

Evaluate $\int_C x^4 dx + xy dy$ where C is the triangle defined by the line segments connecting (0,0) to (1,0), (1,0) to (0,1), and (0,1) to (0,0).

$$\int_{C} x^{4} dx + xy dy = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_{0}^{1} \int_{0}^{1-x} (y - 0) dy dx$$

$$= \int_{0}^{1} \frac{y^{2}}{2} \Big|_{0}^{1-x} dx = \int_{0}^{1} \frac{(1-x)^{2}}{2} dx = \frac{-(1-x)^{3}}{2 \cdot 3} \Big|_{0}^{1} = \frac{1}{6}$$

Evaluate
$$\int_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$$
 where C is the circle $x^2 + y^2 = 9$.

Evaluate
$$\int_C (3y - e^{\sin x}) dx + (7x + \sqrt{y^4 + 1}) dy$$
 where C is the circle $x^2 + y^2 = 9$.

$$\int_{C} (3y - e^{\sin x}) dx + (7x + \sqrt{y^{4} + 1}) dy$$

$$= \iint_{R} \left[\frac{\partial (7x + \sqrt{y^{4} + 1})}{\partial x} - \frac{\partial (3y - e^{\sin x})}{\partial y} \right] dA$$

$$= \iint_{R} (7 - 3) dA = \int_{0}^{2\pi} \int_{0}^{3} 4r \, dr d\theta = \int_{0}^{2\pi} 2r^{2} \Big|_{0}^{3} d\theta$$

$$= \int_{0}^{2\pi} 18 \, d\theta = 18\theta \Big|_{0}^{2\pi} = 36\pi$$