GREEN'S THEOREM




Theorem: Let C be a smooth, simple closed
curve In the plane that is oriented counter-clockwise,
and let R be the region bounded by C. If P and Q
have continuous partial derivatives on an open
region that contains R, then,
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Proof. We’'ll do just a special case. Thus, suppose
our curve C and region R look something like the
following:

— 0,(x)

In this case, we can break the curve into a top part
and a bottom part over an interval on the x-axis
from a to b.



Or, we could just as easily portray x as varying
from h2 to hl as y varies from c to d.
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Now let’s begin. Suppose the curve below is oriented
In the counterclockwise direction and is parametrized

by x. Then, 0, (X)
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Similarly,
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Likewise,
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Likewise,
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EXAMPLE:

Evaluate L x* dx + xy dy where C is the triangle defined by the line
segments connecting (0,0) to (1,0), (1,0) to (0,1), and (0,1) to (0,0).



EXAMPLE:

Evaluate L x* dx + xy dy where C is the triangle defined by the line
segments connecting (0,0) to (1,0), (1,0) to (0,1), and (0,1) to (0,0).
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EXAMPLE:

Evaluate jc (3y —e™)dx + (7x ++/y”* +1)dy where C is the circle

X° +y°=0.



EXAMPLE:

Evaluate jc (3y —e™)dx + (7x ++/y”* +1)dy where C is the circle

X° +y°=0.
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