
EXTRA STOKES



One can never do too much work! 
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We could find the work done by the vector field by 
evaluating it along each path. 
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We could find the work done by the vector field by 
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We could find the work done by the vector field by 
evaluating it along each path. 
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We could also evaluate the work done by the vector field by 
evaluating it along each path. 
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We could also find the work done by using our more
familiar version of Stokes’ Theorem. 
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