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Suppose z=f(x,y) is a differentiable at the point
(a,b,c).

Let u be a unit vector pointing in the direction
in which we want to find the derivative.
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Now apply what we've done to the picture below.

The gradient tells you what direction to move in 
in the -plane in order to make your output increase as 
quickly as possible.  This direction maximizes the directional
derivative.
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If you move in the direction of the gradient vector in 3-dimensional
space, then your values for ( , , ) will increase at their most
rapid rate.
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