CURVATURE




We define curvature as the magnitude of the
rate of change of the unit tangent vector with
respect to arc length.
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Why does this definition make sense?
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Simply because the length of the unit tangent isn’t
going to change. The only way you’ll get a lot of
change is if the direction of the vector changes

uickly.
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In other words, If there Is a lot of curvature.
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In evaluating curvature, though, there’s just one
big problem.
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We don’t always have our curve parametrized
by arc length.
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Here's where the chain rule comes to our rescue.
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Therefore,
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Example: Below is a parametrization for a circle
of radius r and center at the origin.

F(t) =rcos(t)i +rsin(t)
O<t<2rx




Example: First, find the unit tangent vector, T.

F(t) =rcos(t)i +rsin(t)
O<t<2rx

F'(t) _ —rsin(t)i +rcos(t)] _ sin(t)f + cos(t)
F'(t) r




Example: Now find some derivatives.

T = —sin(t)f +cos(t) § F(t) = rcos(t)i +rsin(t)
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Example: Thus,
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Example: In other words, we can think of a circle
of radius r as having curvature 1/r at every point.
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Example: Apply this to the earth and explain why
this makes good sense.
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