
CURVATURE



We define curvature as the magnitude of the
rate of change of the unit tangent vector with
respect to arc length.
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Why does this definition make sense?
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Simply because the length of the unit tangent isn’t
going to change.  The only way you’ll get a lot of
change is if the direction of the vector changes
quickly.
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In other words, if there is a lot of curvature.
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In evaluating curvature, though, there’s just one
big problem.
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We don’t always have our curve parametrized
by arc length.
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Here’s where the chain rule comes to our rescue.
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By the chain rule,
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By the chain rule,
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Hence,
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Example: Below is a parametrization for a circle
of radius r and center at the origin.
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Example: First, find the unit tangent vector, T.
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Example: Now find some derivatives.

ˆ ˆsin( ) cos( )T t i t j= − +

ˆ ˆcos( ) sin( )dT t i t j
dt

= − −

( ) 1dT dt T t′= =

( )dr dt r t r′= =

ˆ ˆ( ) cos( ) sin( )r t r t i r t j= +

ˆ ˆ( ) sin( ) cos( )r t r t i r t j′ = − +



Example: Thus,
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Example: In other words, we can think of a circle
of radius r as having curvature 1/r at every point.
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Example: Apply this to the earth and explain why
this makes good sense.
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