CURVATURE

We define curvature as the magnitude of the rate of change of the unit tangent vector with respect to arc length.

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

Why does this definition make sense?

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

Simply because the length of the unit tangent isn't going to change. The only way you'll get a lot of change is if the direction of the vector changes quickly.

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

In other words, if there is a lot of curvature.

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

In evaluating curvature, though, there's just one big problem.

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

We don't always have our curve parametrized by arc length.

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

Here's where the chain rule comes to our rescue.

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

By the chain rule, $\frac{d T}{d t}=\frac{d T}{d s} \cdot \frac{d s}{d t}$

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

By the chain rule, $\frac{d T}{d t}=\frac{d T}{d s} \cdot \frac{d s}{d t}$
Recall, $\frac{d s}{d t}=\|\vec{v}(t)\|=\left\|\vec{r}^{\prime}(t)\right\|=\left\|\frac{d \vec{r}}{d t}\right\|$

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

Hence, $\frac{d T}{d t}=\frac{d T}{d s} \cdot \frac{d s}{d t}=\frac{d T}{d s} \cdot\left\|\frac{d \vec{r}}{d t}\right\| \Rightarrow \frac{d T}{d s}=\frac{d T / d t}{\|d \vec{r} / d t\|}$

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|
$$

Therefore,

$$
\text { curvature }=\kappa=\left\|\frac{d T}{d s}\right\|=\left\|\frac{d T / d t}{\|d \vec{r} / d t\|}\right\|=\frac{\|d T / d t\|}{\|d \vec{r} / d t\|}=\frac{\left\|T^{\prime}(t)\right\|}{\left\|r^{\prime}(t)\right\|}
$$

Example: Below is a parametrization for a circle of radius r and center at the origin.

$$
\begin{aligned}
& \vec{r}(t)=r \cos (t) \hat{i}+r \sin (t) \hat{j} \\
& 0 \leq t<2 \pi
\end{aligned}
$$

Example: First, find the unit tangent vector, T.

$$
\begin{aligned}
& \vec{r}(t)=r \cos (t) \hat{i}+r \sin (t) \hat{j} \\
& 0 \leq t<2 \pi \\
& T=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{-r \sin (t) \hat{i}+r \cos (t) \hat{j}}{r}=-\sin (t) \hat{i}+\cos (t) \hat{j}
\end{aligned}
$$

Example: Now find some derivatives.

$$
\begin{array}{ll}
T=-\sin (t) \hat{i}+\cos (t) \hat{j} & \vec{r}(t)=r \cos (t) \hat{i}+r \sin (t) \hat{j} \\
\frac{d T}{d t}=-\cos (t) \hat{i}-\sin (t) \hat{j} & \vec{r}^{\prime}(t)=-r \sin (t) \hat{i}+r \cos (t) \hat{j} \\
\|d T / d t\|=\left\|T^{\prime}(t)\right\|=1 & \\
\|d \vec{r} / d t\|=\left\|\vec{r}^{\prime}(t)\right\|=r &
\end{array}
$$

Example: Thus,

$$
\text { curvature }=\kappa=\frac{\left\|T^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{1}{r}
$$

Example: In other words, we can think of a circle of radius r as having curvature $1 / r$ at every point.

$$
\text { curvature }=\kappa=\frac{\left\|T^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{1}{r}
$$

Example: Apply this to the earth and explain why this makes good sense.

$$
\text { curvature }=\kappa=\frac{\left\|T^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{1}{r}
$$

