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Suppose z=f(x,y) and x=x(t) and y=y(t).



Then the total differential tells us the following:
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Divide by the change in t to get this.
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And now, take the limit as t goes to zero.
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And you get the Chain Rule!
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Chain Rule Examples
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Chain Rule Examples

z="1(X,V)
X = X(S,1)

y=Yy(s,t)
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Chain Rule Examples

w=f(X,Y,2)
X = X(t)

y =y(t) dx
z=12(1)
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