The Chain Rule

The Chain Rule

The Chain Rule has more versions in higher dimensions, because there are more ways to form a composition of functions.

The Chain Rule

The Chain Rule has more versions in higher dimensions, because there are more ways to form a composition of functions.

Suppose z=f(x,y) and x=x(t) and y=y(t).

Then the total differential tells us the following:

Divide by the change in t to get this.

And now, take the limit as t goes to zero.

$$\lim_{\Delta t \to 0} \frac{\Delta z}{\Delta t} = \lim_{\Delta t \to 0} \left(\frac{\partial z}{\partial x} \frac{\Delta x}{\Delta t} + \frac{\partial z}{\partial y} \frac{\Delta y}{\Delta t} \right)$$

And you get the Chain Rule!

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Chain Rule Examples

$$z = f(x, y)$$

$$x = x(t)$$

$$y = y(t)$$

$$\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

Chain Rule Examples

$$z = f(x, y)$$

$$x = x(s,t)$$

$$y = y(s,t)$$

$$\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$

Chain Rule Examples

$$w = f(x, y, z)$$

$$x = x(t)$$

$$y = y(t)$$

$$z = z(t)$$

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}$$