
GREEN’S THEOREM, 
STOKES’ THEOREM,

AND
GAUSS’ THEOREM



Recall Green’s Theorem:
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Theorem: Let C be a smooth, simple closed 
curve in the plane that is oriented counter-clockwise,
and let R be the region bounded by C.  If P and Q
have continuous partial derivatives on an open
region that contains R, then,
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ˆ ˆ ˆ ˆIf  and ( ) ( ) ( )  is a smooth parametrization
for , then we can rewrite our equation as follows.
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However, work is also a measure of circulation around
a curve, and thus,
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This result is known as the 2-dimensional version of
Stokes' Theorem.



If we now go back to our parametrization for ,  
ˆ ˆ( ) ( ) ( )  with , then the unit

( ) ( ) ( )ˆ ˆtangent is ( ) ,  and the
( ) ( ) ( )

( ) ( )ˆ ˆunit normal is ( )
( ) ( )

C

r t x t i y t j a t b
r t x t y tT t i j
r t r t r t

y t x tN t i j
r t r t

= + ≤ ≤
′ ′ ′

= = +
′ ′ ′

′ ′
= −

′ ′
.



Recall that the flux across the curve  produced by the

force  is ,  and hence,
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This result is known as the 2-dimension version of the
Divergence Theorem or Gauss' Theorem.
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ˆ ˆTo summarize, if ,   is a closed, counterclockwise oriented
ˆ ˆ path paramtrized by ( ) ( ) ( ) ,  is the unit tangent vector, and

 is the unit normal vector, then:
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In higher dimensions, Stokes' Theorem and 
Gauss' Theorem (the Divergence Theorem) look like this:

 Let  be an oriented piecewise-smooth surface
that is bounded by a simple, closed, piecewise-smooth boundary curve 

with positive orientation.  Let  be a vector fi
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have continuous partial derivatives on an open region in  that contains

.  Then .
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 Let  be a simple solid region whose boundary surface 

 has positive (outward) orientation.  Let  be a vector field whose 
component functions have continuous partial derivatives on a
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