POLAR INTEGRALS

Do the following by changing to polar coordinates.

1. Find the area of one petal of the rose $r=\cos 2 \theta$.
2. Prove that the area of a circle is πr^{2} by evaluating $\iint_{R} d A$ where R is the disk $x^{2}+y^{2} \leq r^{2}$.
3. Evaluate $\iint_{R} \sqrt{x^{2}+y^{2}} d A$ where R is the disk $x^{2}+y^{2} \leq 1$.
4. Find the volume of the solid bounded above by $z=x^{2}+y^{2}+1$ and below by the disk $x^{2}+y^{2} \leq 1$.
5. Find the surface area of the portion of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane.
