JOINT DENSITY FUNCTIONS

(1-3) Let $p(x, y)=\left\{\begin{array}{ll}\frac{3}{2} x+3 y & \text { if } 0 \leq x \leq 1 \text { and } 0 \leq y \leq x \\ 0 & \text { elsewhere }\end{array}\right.$ be a joint density function.

1. Find the probability that $\frac{1}{2} \leq x \leq 1$ and $0 \leq y \leq \frac{1}{2}$.
2. Find the probability that $\frac{1}{2} \leq x \leq 1$ and $0 \leq y \leq x$.
3. Find the probability that $0 \leq y \leq \frac{1}{2}$ and $y \leq x \leq \frac{1}{2}$.
4. If $p(x)$ is a normal distribution with $\mu=0$ and $\sigma=1$ and if $q(y)$ is another normal distribution with $\mu=0$ and $\sigma=1$, then find the probability that $-1 \leq x \leq 1$ and $-1 \leq y \leq 1$. Set up a double integral and use fnInt on your TI-83/84 calculator to approximate numerically rounding to the nearest hundredth.
5. If the weights of adult men are normally distributed with a mean of 200 pounds and a standard deviation of 10 pounds, and if IQ is normally distributed with a mean of 100 and a standard deviation of 15 points, then what is the probability that an adult male has a weight between 200 and 210 pounds and an IQ between 100 and 120? Let x equal weight and y equal IQ, set up a double integral, and use fnInt on your TI-83/84 calculator to approximate numerically rounding to the nearest hundredth.
