(1-3) Let \(p(x,y) = \begin{cases}
\frac{3}{2} x + 3y & \text{if } 0 \leq x \leq 1 \text{ and } 0 \leq y \leq x \\
0 & \text{elsewhere}
\end{cases} \) be a joint density function.

1. Find the probability that \(\frac{1}{2} \leq x \leq 1 \text{ and } 0 \leq y \leq \frac{1}{2} \).

2. Find the probability that \(\frac{1}{2} \leq x \leq 1 \text{ and } 0 \leq y \leq x \).

3. Find the probability that \(0 \leq y \leq \frac{1}{2} \text{ and } y \leq x \leq \frac{1}{2} \).

4. If \(p(x) \) is a normal distribution with \(\mu = 0 \) and \(\sigma = 1 \) and if \(q(y) \) is another normal distribution with \(\mu = 0 \) and \(\sigma = 1 \), then find the probability that \(-1 \leq x \leq 1 \text{ and } -1 \leq y \leq 1 \). Set up a double integral and use \texttt{fnInt} on your TI-83/84 calculator to approximate numerically rounding to the nearest hundredth.

5. If the weights of adult men are normally distributed with a mean of 200 pounds and a standard deviation of 10 pounds, and if IQ is normally distributed with a mean of 100 and a standard deviation of 15 points, then what is the probability that an adult male has a weight between 200 and 210 pounds and an IQ between 100 and 120? Let \(x \) equal weight and \(y \) equal IQ, set up a double integral, and use \texttt{fnInt} on your TI-83/84 calculator to approximate numerically rounding to the nearest hundredth.