CONSTRUCTIONS

1. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the cross-section of this surface with the plane $x=1$.
2. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the tangent line at the point $P=(1,2,5)$ that lies in the plane $x=1$.
3. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the cross-section of this surface with the plane $y=2$.
4. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the tangent line at the point $P=(1,2,5)$ that lies in the plane $y=2$.
5. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the tangent plane to this surface at the point $P=(1,2,5)$.
6. Let $z=f(x, y)=x^{2}+y^{2}$. Find an equation for the tangent plane to this surface at the point $P=(1,2,5)$. Write your answer in the form $z=A x+B y+C$.
