CONSTRUCTIONS - ANSWERS

- 1. Let $z = f(x, y) = x^2 + y^2$. Find parametric equations for the cross-section of this surface with the plane x = 1.
 - x = 1 y = t $z = 1 + t^{2}$ $-\infty < t < \infty$
- 2. Let $z = f(x, y) = x^2 + y^2$. Find parametric equations for the tangent line at the point P = (1, 2, 5) that lies in the plane x = 1.
 - $z_y = 2y$ $z_y(2) = 4$ x = 1 y = 2 + t z = 5 + 4t $-\infty < t < \infty$
- 3. Let $z = f(x, y) = x^2 + y^2$. Find parametric equations for the cross-section of this surface with the plane y = 2.
 - x = t y = 2 $z = t^{2} + 4$ $-\infty < t < \infty$
- 4. Let $z = f(x, y) = x^2 + y^2$. Find parametric equations for the tangent line at the point P = (1, 2, 5) that lies in the plane y = 2.
 - $z_x = 2x$ $z_x(1) = 2$ x = 1 + t y = 2 z = 5 + 2t $-\infty < t < \infty$

5. Let $z = f(x, y) = x^2 + y^2$. Find parametric equations for the tangent plane to this surface at the point P = (1, 2, 5).

The parametric equations found in the previous problems for the tangent lines can be used to help us find two non-parallel vectors that lie in the tangent plane. In particular, let,

 $\vec{r} = \hat{i} + 2\hat{j} + 5\hat{k}$ $s \cdot \vec{u} = s\hat{j} + 4s\hat{k}$ $t \cdot \vec{v} = t\hat{i} + 2t\hat{k}$

Then,

Tangent Plane $= \vec{r} + s\vec{u} + t\vec{v}$

And this implies,

x = 1 + t y = 2 + s z = 5 + 4s + 2t $-\infty < s < \infty$ $-\infty < t < \infty$

6. Let $z = f(x, y) = x^2 + y^2$. Find an equation for the tangent plane to this surface at the point P = (1, 2, 5). Write your answer in the form z = Ax + By + C.

If we rewrite our function as $0 = x^2 + y^2 - z$, then we can think of this as a level surface for the function $w = x^2 + y^2 - z$ If we evaluate the gradient of w at P = (1,2,5), we get $\nabla w = 2x\hat{i} + 2y\hat{j} - \hat{k} \Rightarrow \nabla w(1,2,5) = 2\hat{i} + 4\hat{j} - \hat{k}$. This vector is perpendicular to the tangent plane of $z = f(x, y) = x^2 + y^2$ at the point P = (1,2,5). If Q = (x, y, z) is another point in the tangent plane, then the displacement vector from P to Q is $\overline{PQ} = (x-1)\hat{i} + (y-2)\hat{j} + (z-5)\hat{k}$. Hence, $\nabla w(1,2,5) \cdot \overline{PQ} = 0$ implies that $2 \cdot (x-1) + 4 \cdot (y-2) + (-1) \cdot (z-5) = 0 \Rightarrow 2x + 4y - z - 5 = 0 \Rightarrow z = 2x + 4y - 5$.