## CONSTRUCTIONS - ANSWERS

1. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the cross-section of this surface with the plane $x=1$.
$x=1$
$y=t$
$z=1+t^{2}$
$-\infty<t<\infty$
2. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the tangent line at the point $P=(1,2,5)$ that lies in the plane $x=1$.
$z_{y}=2 y$
$z_{y}(2)=4$
$x=1$
$y=2+t$
$z=5+4 t$
$-\infty<t<\infty$
3. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the cross-section of this surface with the plane $y=2$.

$$
\begin{aligned}
& x=t \\
& y=2 \\
& z=t^{2}+4 \\
& -\infty<t<\infty
\end{aligned}
$$

4. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the tangent line at the point $P=(1,2,5)$ that lies in the plane $y=2$.
$z_{x}=2 x$
$z_{x}(1)=2$
$x=1+t$
$y=2$
$z=5+2 t$
$-\infty<t<\infty$
5. Let $z=f(x, y)=x^{2}+y^{2}$. Find parametric equations for the tangent plane to this surface at the point $P=(1,2,5)$.

The parametric equations found in the previous problems for the tangent lines can be used to help us find two non-parallel vectors that lie in the tangent plane. In particular, let,
$\vec{r}=\hat{i}+2 \hat{j}+5 \hat{k}$
$s \cdot \vec{u}=s \hat{j}+4 s \hat{k}$
$t \cdot \vec{v}=t \hat{i}+2 t \hat{k}$
Then,
Tangent Plane $=\vec{r}+s \vec{u}+t \vec{v}$

And this implies,
$x=1+t$
$y=2+s$
$z=5+4 s+2 t$
$-\infty<s<\infty$
$-\infty<t<\infty$
6. Let $z=f(x, y)=x^{2}+y^{2}$. Find an equation for the tangent plane to this surface at the point $P=(1,2,5)$. Write your answer in the form $z=A x+B y+C$.

If we rewrite our function as $0=x^{2}+y^{2}-z$, then we can think of this as a level surface for the function $w=x^{2}+y^{2}-z$ If we evaluate the gradient of $w$ at $P=(1,2,5)$, we get $\nabla w=2 x \hat{i}+2 y \hat{j}-\hat{k} \Rightarrow \nabla w(1,2,5)=2 \hat{i}+4 \hat{j}-\hat{k}$. This vector is perpendicular to the tangent plane of $z=f(x, y)=x^{2}+y^{2}$ at the point $P=(1,2,5)$. If $Q=(x, y, z)$ is another point in the tangent plane, then the displacement vector from $P$ to $Q$ is $\overrightarrow{P Q}=(x-1) \hat{i}+(y-2) \hat{j}+(z-5) \hat{k}$. Hence, $\nabla w(1,2,5) \cdot \overrightarrow{P Q}=0$ implies that $2 \cdot(x-1)+4 \cdot(y-2)+(-1) \cdot(z-5)=0 \Rightarrow 2 x+4 y-z-5=0 \Rightarrow z=2 x+4 y-5$.

