CHANGE OF VARIABLES - ANSWERS

1. Find the Jacobian of the following transformation.
$x=2 u-3 v$
$y=u+2 v$
$\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{rr}2 & -3 \\ 1 & 2\end{array}\right|=(2)(2)-(1)(-3)=4+3=7$
2. Find the Jacobian of the following transformation.
$x=u v$
$y=4 u^{2}+2 v^{2}$
$\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{rr}v & u \\ 8 u & 4 v\end{array}\right|=4 v^{2}-8 u^{2}$
3. Find the Jacobian of the following transformation.
$x=2 u+v-w$
$y=3 u+2 v+2 w$
$z=u+v+w$
$\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{rrr}2 & 1 & -1 \\ 3 & 2 & 2 \\ 1 & 1 & 1\end{array}\right|=2\left|\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right|-1\left|\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right|+(-1)\left|\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right|$
$=2(2 \cdot 1-1 \cdot 2)-1(3 \cdot 1-1 \cdot 2)-1(3 \cdot 1-1 \cdot 2)=0-1-1=-2$
4. Find the area of the ellipse by using a change of variables to transform the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ into a circle.

$$
\left.\begin{array}{l}
x=2 u \\
y=3 v
\end{array} \Rightarrow \frac{4 u^{2}}{4}+\frac{9 v^{2}}{9}=u^{2}+v^{2}=1 \& \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right|=6 \Rightarrow\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=|6|=6\right\}
$$

5. Find the area of the parallelogram with vertices $(0,0),(1,0),(1,1), \&(2,1)$ by using a change of variables to transform the parallelogram into a rectangle.

To transform our parallelogram into a rectangle, we will need the following correspondence between vertices in $x y$ and vertices in $u v$.
$(0,0)_{x y} \leftrightarrow(0,0)_{u v}$
$(1,0)_{x y} \leftrightarrow(1,0)_{u v}$
$(1,1)_{x y} \leftrightarrow(0,1)_{u v}$
$(2,1)_{x y} \leftrightarrow(1,1)_{u v}$
We'll now pull a linear algebra rabbit out of our hat and just assume that what we need to find are equations that express x and y as linear combinations of u and v. We know this will work because linear algebra (which you may not have taken yet) tells us that such linear combinations will transform a straight line in the $u v$-plane into straight lines in the $x y$-plane and vice-versa. Thus, if we want $a u+b v=x$, then using the last two pairs of coordinates above we get the following equations.

$$
\begin{aligned}
& a \cdot 0+b \cdot 1=1 \\
& a \cdot 1+b \cdot 1=2
\end{aligned} \Rightarrow \begin{aligned}
& a=1 \\
& b=1
\end{aligned} \Rightarrow x=u+v
$$

Similarly, if we want $c u+d v=y$, then

$$
\begin{gathered}
c \cdot 0+d \cdot 1=1 \\
c \cdot 1+d \cdot 1=1
\end{gathered} \Rightarrow \begin{aligned}
& c=0 \\
& d=1
\end{aligned} \Rightarrow y=v
$$

Hence,

$$
\iint_{R} d A=\iint_{T}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d v d u=\iint_{T} d v d u=1
$$

