DIVERGENCE THEOREM IN THREE DIMENSIONS - ANSWERS

In each problem below you are given a volume V bounded by a surface S along with a vector field F. If N is an outward pointing unit normal vector, then the outward flux across the surface created by the vector field F is, by the Divergence (Gauss') Theorem, equal to $\iint_{S} \vec{F} \cdot N d S=\iiint_{V} \operatorname{div} \vec{F} d V=\iiint_{V} \nabla \cdot F d V$. Evaluate this integral for each problem below

1. $\quad V$ is the solid ball with surface S defned by $x^{2}+y^{2}+z^{2}=1$
$F=x \hat{i}+y \hat{j}+z \hat{k}$
$\iint_{S} \vec{F} \cdot N d S=\iiint_{V} \nabla \cdot F d V=\iiint_{V}(1+1+1) d V=3 \iiint_{V} d V=3 \cdot \frac{4 \pi}{3}=4 \pi$
2. V is the cube defned by $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$, and S is the surface of the cube

$$
F=x^{2} \hat{i}+y \hat{j}+z \hat{k}
$$

$$
\iint_{S} \vec{F} \cdot N d S=\iiint_{V} \nabla \cdot F d V=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(2 x+2) d x d y d z=\int_{0}^{1} \int_{0}^{1} x^{2}+\left.2 x\right|_{0} ^{1} d y d z
$$

$=\int_{0}^{1} \int_{0}^{1} 3 d y d x=\left.\int_{0}^{1} 3 y\right|_{0} ^{1} d z=\int_{0}^{1} 3 d z=\left.3 z\right|_{0} ^{1}=3$
V is the cylinder defned by $-1 \leq x \leq 1,-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}, 0 \leq z \leq 4$,
3. and S is the surface of the cylinder

$$
\begin{aligned}
& F=y \hat{i}-x \hat{j} \\
& \iint_{S} \vec{F} \cdot N d S=\iiint_{V} \nabla \cdot F d V=\iiint_{V} 0 d V=0
\end{aligned}
$$

