
MATHEMATICAL INDUCTION – PRACTICE  

 
Mathematical induction is a standard proof technique for showing that some proposition 
P about natural numbers holds true for all n∈`  where { }1,2,3,=` … . 

 
Mathematical Induction:  If P is a proposition about natural numbers n∈` , then P is true 
for all n∈`  if, 

1. P is true for 1n = , and 
2. P true for n∈ ⇒`  P is true for 1n + ∈` . 

 
There are several variations we could do of this basic principle.  For example, if we 
began by showing that P is true for 0n = , then we could possibly prove that P is true for 
all whole numbers.  Similarly, if we started our argument by showing that P is true for 

10n = , then a successful induction argument could show that P is true for all natural 
numbers greater than or equal to 10.  Another variant form of mathematical induction is 
shown below. 
 
The Second Principle of Mathematical Induction:  If P is a proposition about natural 
numbers n∈` , then P is true for all n∈`  if, 

3. P is true for 1n = , and 
4. P true for all natural numbers less than n∈ ⇒`  P is true for n∈` . 

 

1. Use mathematical induction to prove that 
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2. Use mathematical induction to prove that 2
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3. Find the flaw in the following inductive argument that all horses are the same color. 

 
By way of induction, suppose that you have a set containing 1n =  horses.  Then 
clearly all the horses in that set are the same color.  Now assume that it is true that in 
any set of n horses, all the horses have the same color (our induction hypothesis).  At 
this point we want to argue that it is also true that any set of 1n + horses  will also all 
be the same color.  Thus, suppose we are given a set containing 1n +  horses.  If we 
remove one horse, then by our inductive hypothesis the remaining n horses will all be 
the same color.  Now return the horse we originally removed and remove a different 
horse.  Then once again our inductive hypothesis states that the resulting set of n 
horses all have the same color.  From this it follows that the two horses we 
successively removed have the same color, and therefore, all of the horses in our set 
of 1n +  horses have the same color.  It now follows by mathematical induction that 
for any set of n horses, n∈` , all the horses have the same color. 
 



4. If A is a set, then the set of all subsets of A, denoted by ( )P A , is called the power set 
of A.  For example, if A =∅ , then ( ) { }P A = ∅ .  If { }A a= , then ( ) { ,{ }}P A a= ∅ .  And 
if { , }A a b= , then ( ) { ,{ },{ },{ , }}P A a b a b= ∅ .  Use mathematical induction to show that 
if A n= ∈` , then ( ) 2 2 AnP A = = . 
 

5. The result from the previous problem not only shows why we call ( )P A  the power set 
of A, but also that for any finite set A, ( )P A A> .  This last result can be extended to 
infinite sets as well, and this provides a technique for constructing an infinite number 
of infinite sets of different sizes.  In other words, for any infinite set, the cardinality of 
its power set will be greater than the cardinality of the original set.  The smallest 
infinite set is represented by the set of counting or natural numbers, and we denote the 
size of this set by 0ℵ  (aleph null).  Any set of size 0ℵ  is called countable or 
countably infinite.  Larger infinite cardinal numbers are denoted by 1 2 3, ,ℵ ℵ ℵ … and 
so on.  Below is a sloppy proof of mine that for any set A, there is no bijection from A 
to ( )P A .  This shows that the two sets have different cardinalities.  However, since 
we can easily find an injective function from A to ( )P A , (for instance, if a A∈ , then 
pair a with { } ( )a P A∈ ), it immediately follows that ( )P A A>  for any set A.  Clean 
up this proof. 
 
 
Theorem:  Let A be a set and let ( )P A  be the set of all subsets of A.  Then there is no 
bijective function from A to ( )P A , and hence, ( )P A A> . 
 
Sloppy Proof:  Let A be a set and let ( )P A  be the set of all subsets of A. Since the 
result is obvious when A is empty, assume A is non-empty.  Now assume that f is a 
bijection from A to ( )P A , and let T be the set of all elements x in A such that x is not 
an element of f(x).  Since f is a bijection, there exists an element t in A such that 

( )f t T= .  Now ponder the question is t an element of T?  Bummer.  Therefore, no 
bijection exists from A to ( )P A , and thus, ( )P A A> .  ,  
 

6. Georg Cantor contemplated the set of all sets, but his discovery of the theorem 
presented in exercise 5 led to a contradiction known as Cantor’s Paradox.  Give an 
informal discussion of why if U is the set of all sets, then we can reach both the 
conclusion that ( )P U U>  and ( )P U U≤ . 
 
 

 


