
RUBIK’S CUBE SUBGROUPS



The tools we have developed can now give us more information about the kinds of 

subgroups that exist within all the permutations that may be reached on Rubik’s cube.  

For example, we previously showed that the total number of attainable permutations is 

43,252,003,274,489,856,000 .  This rather large number factors into 

27 14 3 243,252,003,274,489,856,000 2 3 5 7 11= ⋅ ⋅ ⋅ ⋅ .  This immediately tells us several things.  

For instance, there will be Sylow p-subgroups with orders of 272 , 143 , 35 , 27 , and 11 .  In 

fact, here is a generator for one of the Sylow 11-subgroups.  Interesting, isn’t it! 

1 1 1 1 1 1 1 1 1U FBU F DBUDB U RRD LLU LLD LLU R− − − − − − − − −



There will be additional subgroups of orders 2, 3, 5, and 7 raised to all the various powers 

between 1 and the power of the corresponding Sylow p-subgroup.  And then there will 

undoubtedly be a whole lot of other subgroups whose orders are not simply a prime 

raised to a power.  However, we know immediately that there is no subgroup of order 13.  

And how do we know this?  Simple!  It’s because 13 doesn’t divide the order of the group

27 14 3 243,252,003,274,489,856,000 2 3 5 7 11= ⋅ ⋅ ⋅ ⋅



The cube group itself is generated by the operations of R, L, U, D, F, and B being applied 

to the cube, and each individual operation generates a cyclic group of order 4.  For 

example, { }2 3, , ,R e R R R=  is the subgroup that we generate by rotating the right face of 

the cube a quarter turn each time, and this subgroup is isomorphic to 4 .  Likewise, L , 

U , D , F , and B  are all isomorphic to 4 .  

Rotating the right face a quarter-turn four times 



If we look at the subgroup that is generated by both R and L, i.e. by twisting the right and 

left faces separately, then since these operations commute with one another we get 

4 4,R L ≅ ⊕ .  In other words, we can think of the group that is generated by R and L 

as simply consisting of ordered pairs where the elements of R might occupy the first 

coordinate, and then the elements of L can occupy the second coordinate.  It’s a nice, 

simple, abelian group.  However, if we perform the move RU on the cube, then we are 

working with cycles that overlap, and the result is far from abelian, or, to put it another 

way, RU UR≠ .  Furthermore, if we keep repeating this move RU, then we eventually 

generate a cyclic group of order 105! 



RU UR≠



Things work out a little differently, though, if we repeatedly do the operation 2 2R U .  For 

one thing, if we look at the cycle structure of just the permuted cublets and ignore any 

rotations or flips that might occur along the way, then we can describe it by  

 

( )( )( )( )( )UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF . 

 

 

2 2R U  



Notice that we have two cycles of length 2 and three cycles of length 3.  This means that 

if we do this operation twice, ( )22 2R U , then we will undo the 2-cycles and just be left 

with some 3-cycles.  In fact, the resulting permutation is 

( )( )( )DR UR UL DBR UFR UBL DRF URB ULF



To see this algebraically, let’s just raise our first permutation to the second power.  If we 

do, then we’ll get 

( )( )( )( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( )( )( )

2

2 2 2 2 2

2 2 2

.

UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UL UR DR UBL UFR DBR ULF URB DRF

DR UR UL DBR UFR UBL DRF URB ULF

⎡ ⎤⎣ ⎦

=

=

=

2 2 2( )R U



If we cube 2 2R U , however, then we’ll get rid of the 3-cycles and we’ll be left with only a 

couple of 2-cycles.  Algebraically, the result is  

( ) ( )( )( )( )( )

( ) ( ) ( ) ( ) ( )
( )( )

3 32 2

3 3 3 3 3

.

R U UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UB UF BR FR

⎡ ⎤= ⎣ ⎦

=

=

2 2 3( )R U



This final result looks particularly useful because essentially we are just swapping two 

back cubelets for two front cublelets, and if you try this move, then you’ll you get a very 

nice and elegant pattern.  And lastly, since 2 2R U  results in a combination of 2-cycles and 

3-cycles, it follows that if we perform this operation six times, then all the cubelets will 

be restored to their original positions.  When we try it, that is indeed what happens, and 

fortunately the orientations of the cubelets are also restored.  Thus, the order of the cyclic 

group generated by 2 2R U  is six.  In symbols, we write 2 2 6R U = .  One of the very 

important lessons from this example, however, is that looking at the cycle structure of a 

permutation can help us determine not only the order of the corresponding cyclic group, 

but also what powers of this permutation might result in moving only a minimum number 

of cubelets in our Rubik’s cube. 



And finally, if we look at not only the cyclic group generated by 2 2R U , but also the group 

generated by 2R  and 2U  (denoted by 2 2,R U ) acting either together or independently, 

then it turns out that this group is isomorphic to 6D , the symmetries of a regular hexagon. 

This is also an example of what on the cube we call a two-squares group. 



Another subgroup of the cube group that is both simple and interesting is called the slice 

group.  This subgroup is generated by rotating only the center slices, and as such, it will 

leave the corners of the cube untouched.  Consequently, this group can be used to create 

some pretty patterns.  Also, since it is not always easy to rotate a middle slice, we can 

accomplish the same effect by  performing 1RL− , 1FB− , and 1UD− .  Thus, the slice group 

is generated by these elements, 1 1 1, ,RL FB UD− − − . 

1 1 1, ,RL FB UD− − −



Also interesting and mathematically simpler is the slice-squared group, 

1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2( ) , ( ) ,( ) , , , ,RL FB UD R L F B U D R L F B U D− − − − − −= =

2 2 2 2 2 2, ,R L F B U D



This group consists of eight elements, and it’s abelian.  And that means, by the

Fundamental Theorem of Finite Abelian Groups, there are only three possibilities for the

structure of the slice-squared group.  It has to be isomorphic to either 8 , 4 2× , or 

2 2 2× × .  See if you can figure out what the correct answer is! 



And finally, I want to talk about just one more group that I can associate with Rubik’s 

cube.  This is going to be the group generated by rotating the whole cube clockwise with 

respect to either the up face, the right face, or the front face.  I’ll represent quarter turns in 

each of these directions by U, R, and F.  Since these moves create a permutation of the 

six faces of the cube, the group generated has to be some subgroup of 6S  which has order 

6 5 4 3 2 1 720⋅ ⋅ ⋅ ⋅ ⋅ = .  However, we won’t get 6S  in its entirety.  In fact, I claim that our 

subgroup will only have order 24.  To see this, notice that we have six choices we could 

make regarding which colored face to have at the top of our cube.  However, once we 

have picked a top color, then we have four choices for the front color, and once we have 

made these two choices, then we’re done.  Those two choices will establish a particular 

arrangement for the six faces of the cube.  Thus, the total number of arrangements we can 

have is 6 4 24⋅ = .  



Another way to look at this is to construct the four possible diagonals that can go from a 

bottom corner of the cube to a top corner of the cube, and let’s suppose we give each 

diagonal a different color, such as red, blue, orange, or magenta.  



Then every turn of the cube by U, R, or F will produce some permutation of these four 

diagonals, and the total number of permutations possible is 4! 4 3 2 1 24= ⋅ ⋅ ⋅ = .  

Furthermore, notice that U-1RU is equivalent to F.  Thus, we could generate this group 

using only U and R, but it’s conceptually easier to think of it as being generated by U, R, 

and F.  Also, no one has named this particular group, and so I recommend calling it 

Benton’s Group.  (Hey!  I need the fame!)  And lastly, since 4 24S = , it turns out that 

Benton’s Group is isomorphic to 4S .  Sweet! 



Benton’s Group 4S≅  

4 24S =  

(Make me famous!) 


