GREATEST COMMON DIVISORS

Below is a nice result on common divisors that is useful in future proofs while, at the same time, has never seemed that obvious to me.

Theorem: Let $a, b \in \mathbb{Z}$ with $a, b \neq 0$. Then there exist unique elements r and s such that the greatest common divisor of a and b can be written as,

$$
\operatorname{gcd}(a, b)=a r+b s
$$

Proof: Let $S=\{a m+b n \mid m, n \in \mathbb{Z}$ and $a m+b n>0\}$. Clearly, $S \neq \varnothing$ since if $a, b>0$, then $a \cdot 1+b \cdot 1>0$ and $a \cdot 1+b \cdot 1 \in S$. On the other hand, if one or both of a and b is negative, say for example that $a<0$ and $b>0, a \cdot(-1)+b \cdot 1>0$ and $a \cdot(-1)+b \cdot 1 \in S$. The other possible combinations of one or both of a and b being negative can be handled similarly.

Since S is a subset of the positive integers, there is going to be a smallest element in S which we can represent as $d=a r+b s$ for some $r, s \in \mathbb{Z}$. Our claim now is that $d=\operatorname{gcd}(a, b)$, the greatest common divisor of a and b. First, we will show that d divides both a and b. Now, we know that in general, if we divide d into a, then we will get a result that looks like $a=d \cdot q+t$ where $0 \leq t<d$. If $t>0$, then $a=d \cdot q+t \Rightarrow t=a-d \cdot q \Rightarrow t=a-(a r+b s) q=a-a r q-b s q=a(1-r q)+b(-s q) \in S$. However, since $t<d$, this contradicts our choice of d as the smallest element in S. Hence, we must have $t=0$ and d divides a. An identical argument can now be used to show that d divides b.

To show that d is the greatest common divisor of a and b, suppose that there exists $f \in \mathbb{Z}$ such that f divides both a and b, and $f>d$. Since f divides a, there is an integer q such that $a=f q$, and since f divides b, there is an integer z such that $b=f z$. Hence, $d=a r+b s=(f q) r+(f z) s=f(q r+z s)$. From this last expression it follows that f divides d. But this is a contradiction since $f>d$. Therefore, $d=a r+b s=\operatorname{gcd}(a, b)$.

Corollary: If $f>0$ is a common divisor of a and b, and if we can write $f=a m+b n$ for some $m, n \in \mathbb{Z}$, then $f=\operatorname{gcd}(a, b)$.

Proof: Let $d=\operatorname{gcd}(a, b)$. Then by our theorem above, d is the smallest positive element in $S=\{a m+b n \mid m, n \in \mathbb{Z}$ and $a m+b n>0\}$. If $f>0$ is also a common divisor of a and b, then clearly $f \leq d=\operatorname{gcd}(a, b)$. But on the other hand, if we can write f in the form $f=a m+b n$ for some $m, n \in \mathbb{Z}$, then $\cup S=\{a m+b n \mid m, n \in \mathbb{Z}$ and $a m+b n>0\}$, and, hence, $f \geq d$. It now easily follows that $f=d$.

We'll now illustrate a procedure called the Euclidean Algorithm for finding the greatest common divisor of two positive integers. In particular, let's find gcd $(945,2415)$. We'll start by writing 2415 in the form (dividend) = (divisor)(quotient) + (remainder) where the dividend is 2415 and the divisor is 945 . This gives us,

$$
2415=945 \cdot 2+525
$$

We now repeat the process by, this time, using 945 as our dividend and 525 as the divisor.

$$
945=525 \cdot 1+420
$$

An if we continue this same pattern, then eventually we will arrive at a remainder of 0 .

$$
\begin{gathered}
525=420 \cdot 1+105 \\
420=105 \cdot 4+0
\end{gathered}
$$

The claim now is that $105=\operatorname{gcd}(945,2415)$. To verify this, we can start by working backwards from our last equation.

$$
\begin{gathered}
420=105 \cdot 4+0 \\
525=(105 \cdot 4) \cdot 1+105 \\
945=[(105 \cdot 4) \cdot 1+105] \cdot 1+(105 \cdot 4) \\
2415=([(105 \cdot 4) \cdot 1+105] \cdot 1+(105 \cdot 4)) \cdot 2+[(105 \cdot 4) \cdot 1+105]
\end{gathered}
$$

Since we can rewrite this last equation as ,

$$
2415=105([(1 \cdot 4) \cdot 1+1] \cdot 1+(1 \cdot 4)) \cdot 2+[(1 \cdot 4) \cdot 1+1]=105 \cdot 23
$$

And since we can rewrite the next to last equation as,

$$
945=105 \cdot[(1 \cdot 4) \cdot 1+11] \cdot 1+(1 \cdot 4)=105 \cdot 9,
$$

It is clear that 105 is a divisor of both 2145 and 945 . But on the other hand, we can also work backwards to obtain,

$$
\begin{gathered}
105=525+(-1) \cdot 420 \\
105=525+(-1) \cdot[945+(-1) \cdot 525]=2 \cdot 525+(-1) \cdot 945 \\
105=2 \cdot[2415+(-2) \cdot 945]+(-1) \cdot 945=2 \cdot 2415+(-5) \cdot 945>0
\end{gathered}
$$

Thus, since 105 is a common divisor of 2145 and 945 and since $105=2 \cdot 2415+(-5) \cdot 945$, it follows from our corollary above that $105=\operatorname{gcd}(945,2415)$.

