POC BENTON’'S JOURNAL

(a work in progress)



Theorem: If G is a group and if H and N are subgroups of G with N normal in G,

then HN is a subgroup of G.

Proof: To show that HN is a subgroup of G, we need to verify closure and

existence of inverses. Thus, let h,h,e H and let n,n,e N. Then hn,h,n,e HN.

Now consider hn,-h,n, =h(nh,)n,. Since N <G, there exists n,e N such that
mh, =hyn,. Hence, hn,-hyn, = h(nh,)n, = h (pngn, =hh, -nyn, € HN, and thus,

closure is satisfied.

Now let he H and let ne N. Then (hn)™*=n"h" . However, again, since N <G,

there exists n,e N such that n""h™ =h™n,e HN, and thus, inverses exist.

Therefore, HN <G.



Theorem: If G is a group and if H and N are both normal subgroups of G, then
HN is a normal subgroup of G.

Proof: By the previous proof, we know that HN is a subgroup of G. Now let
ge G, and consider g-HN-g™. Clearly,

g-HN-g*=g-H-e-N-g'=g-H-g"g-N-g*=(g-H-g™")(g-N-g*)=HN since both
H and N are normal in G. Therefore, HN «G.



Theorem: If G is a group and if H and N are both normal subgroups of G, then

H N K is a normal subgroup of G.

Proof: Let ge G and let xe HNK , and consider gxg™. Since xe H and H <G,

it follows that gxg™*e H. But on the other hand, since xe K and K <G, it follows

that gxge K. Therefore, gxg'e HNK,and HNK <G.



Theorem: Let G be a group with subgroups H and K that are not necessarily

_{HK
et

H
normal subgroups. Then
group HAK

Proof: Since H,K <G it follows from previous proofs that H (K <G,and hence,
we can consider the left cosets of HNK in G, and since clearly HNK c H , wee
can also consider the left cosets of HNK in H. Furthermore, the number of such

H
HNK

is a subgroup of G (since we don’t know if H or K is normal in G), it is still obvious

cosets is represented by ‘ ‘ Additionally, even though we don’t know if HK

that K c HK , and hence, we can denote the number of left cosets of K in HK by

HK
i)

A that

HNK K

To show that

H = HK , it will suffice to find a function f:
HNOK K

, then let f(h(HﬂK))the%. We

is a bijection. Hence, if h(HNK)e m : "
now need to show that f is one-to-one and onto. To show that it is onto, let
hke HK where he H and ke K. Then hk(K)=hK = f (h(H NK)), and hence, fis
onto.

To show that f is one-to-one, let h(H NK),h,(HNK)e such that

HNK
f(h(HNK))=f(h,(HNK)). Then hK=h,K = h =hk for some ke K. Hence,

h,"h=k=h,"heH & h,"he K=h,"he HNK . But his also implies that
h,"h(H NK)=HNK which, in turn, implies that h(H NK)=h,(HNK).

Consequently, f is also one-to-one, and therefore f is a bijection, and thus,

H | |HK
HNK K



: H
Corollary: If Gis agroup and H,K <G, then |HK|= L

Proof: Our theorem shows us that : ‘ ‘HKK and Lagrange’s Theorem tells
us that| - | | and ‘—K‘ u From this it easily follows that
IHNK| [HNK] K| K|

=|HK].



Theorem (The Firth Isomorphism Theorem): If AB<G and f:G—G/B is the

natural homomorphism, then Ez%.
AB ™~ (A

Proof: This really follows from the 2" and 3" Isomorphism Theorems. In

particular, notice that as sets % and A

are each composed of a set which

is factored out (which for convenience we will refer to as the identity element in
each respective quotient) and the same elements of A that don’t get mapped to
the identity in each respective quotient structure. More specifically, as groups we

A AB

have by the 2" Isomorphism Theorem that ANE z? and, furthermore,

f(A) =%. Thus, by the 3™ Isomorphism Theorem, we have that

GB_ GB _G

f(A) (AB)/B_ AB’

NOTE: The essence of this result is that we can think of arriving at % by first

factoring out B and then factoring of what left of the elements of A in %.

Additionally, we can weaken the conditions by requiring only that B and AB be

normal subgroups of G.



Theorem (Zassenhaus Butterfly Lemma): Let H and K be subgroups of a group

G, and suppose H* and K* are subgroups of G such that H" <H and K" <K..
Then,

1. HHHNK)<H (HNK),
2. K'(H'NK)<K'(HNK), and

H'(HNK) _ K'(HNK) _ HNK
H'(HNK) K'(H'NK) (HNK)HNK)

Proof: This theorem is often called the Butterfly Lemma because of a diagram
we’ll construct for a lattice of subgroups that is reminiscent of a butterfly. Thus,
let’s begin by identifying some subgroups to include in our diagram. First, we

have that since H and K are subgroups of G, so is their intersection HNK also a

subgroup of G. Note, too, that HNK <H and HNK <K . Also, the product
H™(H NK) is a subgroup of H since it is the product of a normal subgroup of H

with a subgroup of H, and likewise, K" (HNK)<K since it is the product of a

normal subgroup of K with a subgroup of K. These relationships are shown

visually by the diagram below.

H K
N\ * yd
H (HNK) K (HNK)

\\HDK///



Next, since H" is a normal subgroup of H and K" is a normal subgroup of K,
we’ll add these subgroups to our diagram, and since they are normal subgroups,

we’ll denote relationship this in the lattice by red lines.

H K

\ * d
H™(H NK) K (HNK)

\\HﬂK///

*
*

H K

Next, we have that H'(HNK)<H (HNK) and K'(H'NK)<K (HNK).. Here's
how we can start to verify this. We will begin by showing that HNK  <HNK .
Thus, suppose xe HNK" and geHNK . Then xeK" and ge K, and since
K" <K, it follows that gxg'e K. But on the other hand, it also follows from
xe HNK" and geHNK that xeH and geH , and thus, gxg'e H as well.
Hence, we can now conclude that gxg™e HNK" and therefore, HNK  <HNK .
From this it follows that at the very least, we have that HNK <H (HNK),
Furthermore, since every element of H (H NK) is also an element of H and since
H <H, it follows that H" <H (HNK). Also, using similar arguments we can
conclude that HHNK<HNK and HNK<H (HNK) and K <K (HNK). And

now using the result of our recent theorem that the product of a normal

subgroups and a subgroup is a subgroup, we can conclude that



H'(HNK)<H (HNK). It will actually turn out that H'(HNK") is a normal
subgroup of H'(HNK) and K" (H NK) is a normal subgroup of K'(HNK), but
we will prove that later by showing that H (HNK") and K'(H" NK) are the
Kernels of homomorphisms. Next, we have that (H" NK)(HNK") is a product of
two normal subgroups of HN K , and therefore it follows from one of our previous

theorems that (H'NK)HNK)<HNK . Below we illustrate all of these

relationships by adding on a bit to our previous diagram.

H K
N * yd
H (HNK) K (HNK)

‘ \\HﬂK ‘
H'(HNK") ‘ K'(H NK)
(H" NK)(HNK*)

And finally, it should be fairly obvious that we have the following subgroup
relationships - H <H (HNK") , K" <K' (H'NK), (HHNK)<SH", (HNK)<K",
H NKYHNK)<H (HNK") : (H NKYHNK) <K (H NK)

(H'NK)S(H NK)YHNKY), and (HNK)<(H NK)HNK"). These relationships

are illustrated below in our final butterfly diagram.



H K
AN yd

H(HNK) K*(HNK)
| S|
H (HNK") ‘ K*(H NK)

/ HNKHNK \
\ TN o

(H" NK) (HNK*)

Of all these relationships, however, there are only going to be three that are
important to us. In particular, H'(HNK)<H (HNK), K'(H'NK)<K (HNK),

and (H'NK)HNK")<(HNK). This is illustrated by the diagram below.

H (HNK) K" (HNK)
‘ \\HﬂK ‘
H'(HNK") ‘ K*(H NK)
~ P

(H" N K)(HNK*)



The Zassenhaus Butterfly Lemma now claims that the following three quotient

H'(HNK) _ K'(HNK) _ HNK

* = =— — . Notice,
HHNK) KH NK) (HNK)HNK)

groups are isomorphic -

H (HNK) _ K'(HNK)
H'(HNK") " K'(H'NK)

however, that due to symmetry we already have that

All one needs to do is to re-label H as K and K as H in order to obtain this result.

Thus, the «crux of the proof is going to be to show that

H (HNK) _ HNK
H'(HNK) (H' NK)HNK")’

route than most proofs. Specifically, we're going to be factoring out one normal

And to do this, we're going to take a different

subgroup at a time in order to show:

1 H(HNK)_HNK

H* “H'NK'
(H*mK)(HﬂK*)4 HNK

H NK H'NK'
(H*ﬂK*)(HﬂK*)EH*(H[WK*)qH*(H*ﬂK)’and

H NK H H
H (HNK) HNOK

H _ H NK :>H*(HﬂK)~ HNK

H'HNK)  (HNKYHNK)  HHNK) (HNKHNK)'
H H NK




Theorem (Zassenhaus Butterfly Lemma): Let H and K be subgroups of a group

G, and suppose H* and K* are subgroups of G such that H" <H and K" <K
Then,

1. HHHNK)<H (HNK),
2. K'(H'NK)<K'(HNK), and

H'(HNK) _ K'(HNK) _ HNK
H'(HNK) K'(H'NK) (HNK)HNK)

Proof: To prove this lemma, we’ll make use of both the Second Isomorphism
Theorem and what I've called the Fifth Isomorphism Theorem. Thus, recall that
the Second Isomorphism Theorem tell us, given appropriate normality of the

ABE%, and likewise the Fifth Isomorphism Theorem

groups involved, that

tells us that Ez%z% where f :G—>E is the natural homomorphism and
AB~ f(A)  AB/B B

we again assume normality where appropriate. Thus, let's begin by looking more

closely at H'(HNK") . We have that H" <H (HNK), and by the Second

H'(HNK) _  HNK _HNK

Isomorphism Theorem, it follows that =— =—
H'N(HNK) H NK

guotient group of HNK .

Now let's examine HNK in more detail. First, we know that HNK <HNK .

H*ﬂK using the natural
H NK

Now think about what happens if we map HNK" into

homomorphism which I'll denote by f:HNK — ﬂ%i . Basically, everything in

HNOK
and the rest gets mapped to
H* (K g pp

H N(HNK") gets mapped to the identity in

non-identity elements. Also, by the Second Isomorphism Theorem we have that

HNK _(H'NK)HNK)
(H'NK)NHNK) H NK '

This latter quotient shows us the



subgroup of :%i that corresponds to HNK <HNK . In other words,

«_ (H NK)HNK) A (HAKYHAKYD) ) e ‘
f(HNK") = K and f { K j—(H NK)(HNK)
(H'NK)(HNK) HNOK

H' NK H'NK '

Furthermore, (H' NK)YHNK)<HNK =

HNK _H (HNK)
H'NK  H

Notice also that since , there is a normal subgroup N of

(H'NK)HNK)
H NK '

%*HK) that corresponds to We can discover the structure

of this normal subgroup by again applying the Second Isomorphism Theorem. In

particular,
N:(H*ﬂK)(HmK*): HNK _ HNK ___HNK
B H NK THNKNMHNKY) HNONMHNK NK) H NHNK)
_H(HNK') _H(HNK)
= H* H* .
H'(HNK) HNK HNK
Hence H” _HNK _ H NK :H*(HHK): HNK '
"H'HNK) T N T (HNK)HNK) THHNK) (HNK)HNK)
H H NK

This essentially proves (1) and the first part of (3) above, and to prove (2) and the
rest of (3), we can essentially just repeat the same proof with the roles of H and

K reversed. In other words, we just take advantage of the symmetry that exists

between the formulas H'(HNK)<H (HNK) and K'(H NK)<K (HNK).

[}



NATIVE AMERICAN DESIGN-1

Below is a fairly common Native American design, and our task will be to analyze
the symmetry found within it.




One thing that might assist us in associating a mathematical group to this design

would be to first label each corner with a number.

If we look closely at the design, we might notice that there are mirror lines
present. In particular, we can do a reflection across a vertical line through the
center, and we can also do a reflection about a horizontal line through the center.
Additionally, we can also rotate our design 180 degrees either clockwise or
counterclockwise about the center. And lastly, each reflection or rotation will
cause a permutation of the numbers that we have used to label the corners of

our design.



If we flip our design about the vertical axis of reflection, then 1 & 4 will switch
places as will 2 & 3. We can represent this change as the product of the
following two cycles, (1, 4)(2, 3).




Similarly, if we flip our design about the horizontal axis of reflection, then 1 & 2
and 3 & 4 will change places. That change can be represented by this product of
two cycles, (1, 2)(3, 4).




And finally, if we rotate our design 180 degrees clockwise about the center, then

that will correspond to this permutation of the numbered corners, (1, 3)(2, 4).

180° m




For our next step, we can enter the above permutations into our GAP program

(Groups, Programming, and Algorithms) and see what group they generate.

gap> a:=(1,4)(2,3);
(1,4 (,3)

gap> b:=(1,2)(3,4);
(1,2)(3,4)

gap> c:=(1,3)(2,4);
1.3)2.%

gap> g:=Group(a,b,c);

Group([ (1,4)(2,3), (1,2)(3,4), (1.3)(2.9 D
%ap> Size(Q9):

gap> IsCyclic(Q);
false

gap>

From the output above we see that our cycles create a group of order 4 and that
it is not a cyclic group. Since there are only two groups of order 4, the cyclic
group of order 4 and the Klein 4-group, it follows that this group is the Klein 4-

group. This is the same group that corresponds to the symmetry of a rectangle.

4 1

3 2

Additionally, notice that (1, 4)(2, 3)*(1, 2)(3, 4) = (1, 3)(2, 4). In other words, the
rotation can be generated by a vertical axis flip followed by a horizontal axis flip
(multiplying cycles from left to right), and thus, the enter group is generated just

by the reflections.



NATIVE AMERICAN DESIGN-2

Below is another very common Native American design, and as before, we'll

assign numbers to some of the points in order to help us analyze the symmetry.

e
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In examining the design, we can see both rotational symmetry of order 2 (through
an angle of 180 degrees) as well as reflections about both a vertical axis and a

horizontal axis.




If we do a reflection about the vertical axis, then that will correspond to the cycle
(2, 4). The number 2 will move to where 4 currently is, and the number 4 will

move to where 2 currently is. Everything else will stay the same.
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If we do a reflection about the horizontal axis, then that will correspond to the
cycle (1, 3). The number 1 will move to where 3 currently is, and the number 3

will move to where 1 currently is. Everything else will stay the same.

-*

b1




And finally, if we do a rotation clockwise through 180 degrees, then that will move

1 to 3 and 2 to 4, or in other words, create the cycle product (1, 3)(2, 4).

180°




If we enter these cycles into GAP and examine the group that they generate,

then we get back the following.

gap> a:=(2,4);
2,4
gap> b:=(1,3);
(1.,3)

gap> c:=(1,3)(2,4);
a.3)(2.4)

gap> g:=Group(a,b,c);
Group([ (2,4), (1.3), (1.3)2.9) D

gap> Size(9):
a

gap> IsCyclic(Q);

false

And now, as we can see, we have once again created a group of order 4 that is
not cyclic, and hence, we are looking at another representation of the Klein 4-
group. Hence, in these first two examples we have two different patterns, but
they correspond to the same symmetry group which can be generated by two

reflections, one vertical and the other horizontal.




NATIVE AMERICAN DESIGN-3

Below are two circular design by artists in the Pacific Northwest, and the most
interesting thing about them may be their lack of symmetry. Furthermore, little or
no symmetry seems to be common to many Native designs from this part of the
country. In this design there is neither rotational symmetry nor mirror lines that
the image can be reflected across. Instead, we essentially have a circle with a
variety of images contained inside. By itself a circle has an infinite amount of
symmetry. For example, a circle may be rotated through an infinite number of
angles or reflected across an infinite number of lines that pass through its center.
However, none of the images inside our circle take advantage of any of these
opportunities for a more symmetrical design. Nonetheless, there is a definite
style to this type of artwork that involves broad strokes of black lines and other
colors, and this repetition of style within each design is itself a type of symmetry.
Still, there is no definitive symmetry group that can be associated with these

designs.




NATIVE AMERICAN DESIGN-4

Here is an image of a totem pole such as is found among certain tribes in the
American Northwest. In these totem pole images we generally find bilateral

symmetry such as in the image below. However, that is generally about all that

we find.




NATIVE AMERICAN DESIGN-5

Below is a Navajo sandpainting, and at first glance it appears to have both
rotational and mirror symmetry and a symmetry group corresponding the dihedral

group D,, or at least the cyclic group C,. However, from a strict mathematical

point of view the image below, surprisingly, has no symmetry! This is because

there are items that break the apparent symmetry in the image.




For example, mirror symmetry is broken by the fact that the figure circled in the
sandpainting below sticks out to the right and not to the left. This results in any

vertical, horizontal, or diagonal reflections looking different from the original

image.




Similarly, rotational symmetry is broken by the lone presence of corn stalk in the
upper right corner. Since this image appears only in this one place, any rotation

of the sandpainting would be immediately apparent.
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However, in spite of those elements which ruin our perfect symmetry, the image
still has what | might call a suggested, intended, or apparent symmetry — namely,
D,, or at the very least, C,. Additionally, it is interesting how quick our brains are
to pick out patterns or symmetries within experiences. | personally suspect that
when a brain can identify a pattern that it results in an experience that is easier

both to comprehend and remember. It's much easier to conceive of one image

and then repeat instead of trying to process a thousand different images at once!




A good example of the brains desire for symmetry is illustrated by the two figures
that are circled below. They are obviously not 100% identical to one another, but
they do have certain features, such as the arms and feat, that look identical, and

these are the features that our brains like to latch onto in order to perceive the

apparent symmetry, regardless of how imperfect it may be.




Also, notice in the elements circled below the bilateral symmetry of the corn stalk
and the repetition of eagle feathers. It is common in many designs such as this
to have symmetries embedded within the symmetries of larger images, and this

added complexity enriches our appreciation of such images.




And finally, if we look at the image at the very center of our sandpainting, then we
can see that this image does perfectly possess the symmetry that corresponds to

D,, the dihedral group of degree 4 that contains 8 elements including 4 rotations

and 4 reflections.




NATIVE AMERICAN MEDALLIONS-1

Below is a fairly common Native American medallion. It has both rotational
symmetry and mirror lines. In particular, the rotational symmetry defines a cyclic
group of order 8, and then there are also 8 axis of reflection. Consequently, the

symmetry group corresponding to this design is Dg, the dihedral group of order

16.




NATIVE AMERICAN MEDALLIONS-2

The medallion below also has both rotational symmetry and mirror lines just like
the previous one, but this time the cyclic group corresponding to the rotations has
order 12 and there are 12 mirror lines. Consequently, the corresponding

symmetry group is D,,, a dihedral group that has 24 elements.




NATIVE AMERICAN MEDALLIONS-4

If you look closely at this next medallion, it has rotational symmetry, but no mirror

lines. Thus, its symmetry group is just C,,, the cyclic group of order 12.




NATIVE AMERICAN MEDALLIONS-5

Most Native American medallions that | come across have patterns of symmetry
that correspond to either a cyclic group or a dihedral group. That makes this next
pattern all the more interesting because it exhibits rotational symmetry of degree
2 as well as a vertical axis of reflection and a horizontal axis of reflection.

Consequently, its symmetry corresponds to the Klein 4-group.




