Lesson 5 ## DIRECT PRODUCTS - PRACTICE 1. Below is a multiplication table for D_3 where R represents a rotation and F represents a flip of an equilateral triangle. | | e | R | R^2 | F | FR | FR^2 | |--------|--------|--------|-----------------------------------|--------|--------|---------------------------| | e | e | R | R^{2} e R FR^{2} F FR | F | FR | FR^2 | | R | R | R^2 | e | FR^2 | F | FR | | R^2 | R^2 | e | R | FR | FR^2 | $\boldsymbol{\mathit{F}}$ | | F | F | FR | FR^2 | e | R | R^2 | | FR | FR | FR^2 | F | R^2 | e | R | | FR^2 | FR^2 | F | FR | R | R^2 | e | - a. How many elements are in $\mathbb{Z}_2 \times D_3$? - b. List in coordinate form the elements in $\mathbb{Z}_2 \times D_3$. - c. Is $\mathbb{Z}_2 \times D_3$ abelian? If not, then give two elements that do not commute with one another along with their products. - 2. What two cyclic groups can we write \mathbb{Z}_{10} as a product of? - 3. With \mathbb{Z}_{10} expressed as a product of two cyclic groups, list the elements in \mathbb{Z}_{10} in coordinate form. - 4. Using your answer to the previous problem, find an element that generates \mathbb{Z}_{10} . - 5. What is the order of $\mathbb{Z}_3 \times \mathbb{Z}_3$? - 6. What is the order of every non-identity element in $\mathbb{Z}_3 \times \mathbb{Z}_3$? Conclude that $\mathbb{Z}_3 \times \mathbb{Z}_3$ is not isomorphic to \mathbb{Z}_9 since it has no element of order nine.