
ASTROLOGY AND COMPLEX NUMBERS 

 

A rather surprising development is the realization that complex numbers can be used to model certain 
aspects of harmonic charts in astrology. For example, recall that the 4th harmonic angles in a horoscope 

are those that are integer multiples of 90° 𝑚𝑜𝑑𝑢𝑙𝑜 360° since °
= 90°. Hence, the distinct 4th 

harmonic angles are 0°, 90°, 180°, and 270°, and these angles are equally spaced around the zodiacal 
circle. A similar situation occurs in the realm of complex numbers where the number 1 always has n 
distinct complex roots that all lie on a circle of radius 1 with center at the origin (called the unit circle) and 
like the 4th harmonic angles they are equally spaced at 0°, 90°, 180°, and 270°. More generally, if n is a 

natural number, then the 𝑛  harmonic angles 𝜃 such that 0° ≤ 𝜃 < 360° are 𝑘
°  where 𝑘 =

0,1,2, … , 𝑛 − 1, and these are the exact same angles that are used in complex numbers to represent the 
𝑛  roots of unity! For example, below are diagrams of the zodiac and the unit circle showing the 
placements of the 4th harmonic angles in each. Except for the arbitrary placement of 0° as a starting point, 
the diagrams are the same. 

   

 

A complex number has two basic forms. First, there is its rectangular form which looks like 𝑧 = 𝑎 + 𝑏𝑖, 
and second, there is its polar form which appears as 𝑧 = 𝑟𝑒  where i is the square root of -1, r is the 
number’s distance from the origin in the complex plane, and 𝜃 is the angle that is made with the positive 
real number axis. Additionally, these two forms are related by the formula 𝑟𝑒 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃). This 
latter expression in parentheses is often abbreviated by mathematicians as 𝑐𝑖𝑠(𝜃). Furthermore, the polar 
form will make it easy to prove various properties of complex numbers that also apply to harmonic charts 
in astrology. We begin with the following. 

Definition: If 𝑛 is a natural number, then the angle ° will be referred to as the 𝑛  harmonic or the 

fundamental or root 𝑛  harmonic angle. Furthermore, for any fundamental or root 𝑛  harmonic angle, 

by the family of all distinct 𝑛  harmonic angles we will mean the set 𝑘
°

 𝑚𝑜𝑑𝑢𝑙𝑜 360°  𝑘 ∈ ℤ , 



and the number 𝑛 that we divide 360° by will also frequently be referred to as the 𝑛  harmonic just as is 

the corresponding angle °. Also, note that if 𝑛 = 4 and 𝑘 = 2, then the  harmonic angle is (360°) =

180°, and this is exactly the same as the  harmonic angle since (360°) = 180°. Thus, even though 180° 

is both a  and a  harmonic angle, most of the time we will reduce a fraction to its lowest terms when 

talking about what kind of harmonic angle it is. Additionally, even though an angle like 180° is both a 2nd 
harmonic angle and a 4th harmonic angle (among others), we will usually identify this and other angles 
with the smallest natural number harmonic that applies. 

Example: If, for instance, we want to examine or discuss the 4  harmonic, then the fundamental or root 

4  harmonic angle is °
= 90° and the family or set of distinct 4  harmonic angles is 

{0°, 90°, 180°, 270°}. However, of these angles, , , , and  𝑡𝑖𝑚𝑒𝑠 360°, we usually reduce ones like  

to  and refer to it primarily as a  harmonic angle or a 2nd harmonic. 

 

Comment: There are two ways to find the position of an 𝑛  harmonic. We can find, for example, the 

value of 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 
° and then multiply this result by 𝑛, or we can multiply 𝜃 by 𝑛 and then express the 

result 𝑚𝑜𝑑𝑢𝑙𝑜 360°. Recall that one way to find a value of an angle 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 𝛼 is to subtract a multiple 
of 𝛼 from 𝜃 that yields a result that is less than 𝛼 but greater than or equal to zero (0 ≤ 𝜃 − 𝑘 ⋅ 𝛼 < 𝛼). 

However, we can easily see from the math that 𝑛 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜  
°

= 𝑛 𝜃 − 𝑘 ⋅
°

= 𝑛𝜃 − 𝑘 ⋅

360° = 𝑛𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°, and this means that the we can compute our final value using either the first 

formula, 𝑛 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜  
° , or the last formula, 𝑛𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°. In practice, most people usually find 

the second formula easier since all one has to do is to first multiply 𝜃 by the appropriate harmonic and 
then express the result 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

 

Summary: Before we proceed to the proofs, below is a listing of some of our main results. Many of these 
are probably known either consciously or through some other level of experience by those astrologers 
who specialize in harmonics, but the point is that we are providing more rigorous proofs of these things 
and by fleshing out the underlying mathematical theory, other things that are currently not so evident will 
gradually become clear. So with that said, here are some of our results. 

1. If 𝑗 = 𝑚𝑛, then the 𝑗  harmonic is equal to the 𝑚  harmonic of the 𝑛  harmonic. 

2. If 𝜃 is an 𝑛  harmonic angle equal to 𝑘
°°  for a natural number 𝑛 where 𝑘 = 0,1,2, … , 𝑛 − 1, 

then any integer multiple of 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360° is also an 𝑛  harmonic angle. 
3. If 𝜃  and 𝜃  are angles such that 𝜃 − 𝜃  is an 𝑛  harmonic angle and if 𝑘 is a natural number, 

then the difference between the corresponding angles in the 𝑘  harmonic is also an 𝑛  
harmonic angle. 

4. If 𝜃 is an 𝑛  harmonic angle for some natural number 𝑛, then 𝑛𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. In other 
words, 𝜃 is equivalent to 0° in an 𝑛  harmonic chart. 

5. If 𝜃 is equivalent to 0° in an 𝑛  harmonic chart, then 𝜃 is an 𝑛  harmonic angle. 
6. The angle 0° is equivalent to 0° in all 𝑛  harmonic charts. 



7. If 𝑛 and 𝑚 are natural numbers and if 𝑛 is a factor of 𝑚, then each of the 𝑛  harmonic angles is 
equivalent to 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° in the 𝑚  harmonic chart. 

8. If 𝑚 is equal to a natural number power of 𝑛 + 1, then each of the 𝑛  harmonic angles is an 
unchanged fixed point when the original chart is transformed into the 𝑚  harmonic. 

9. If 𝜃 is a fixed point in an (𝑛 + 1)  harmonic chart, then 𝜃 is an 𝑛  harmonic angle. 
10. If 𝑛 and 𝑚 are natural numbers and if 𝑛 is a factor of 𝑚, then each of the 𝑛  harmonic angles is 

equivalent to 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° in the 𝑚  harmonic chart. 
11. If 𝑚 is not a power of 𝑛 + 1 and if 𝑛 is not a factor of 𝑚, then the 𝑚  harmonic will produce a 

permutation of the 𝑛  harmonic angles. 
12. If 𝜃 is a root 𝑚  harmonic angle for some natural number 𝑚 and a natural number 𝑛 divides 𝑚, 

then the root 𝑛  harmonic angle is a natural number multiple of the root 𝑚  harmonic angle. 
13. If an angle 𝜃 can be written as 𝜃 = 𝜃 + 𝜃  where 𝜃 , 𝜃  are 𝑛  and 𝑚  harmonic angles for 

natural numbers 𝑛 and 𝑚, respectively, and if 𝑘 is an integer, then 𝑘𝜃 can also be written as the 
sum of 𝑛  and 𝑚  harmonic angles. 

14. If 𝑧 = 𝑟𝑒  and 𝜃 = 𝜃 + 𝜃  where 𝜃 , 𝜃  are 𝑛  and 𝑚  harmonic angles for natural numbers 
𝑛 and 𝑚, and if 𝑘 is an integer, then 𝑧  can be written as a product of complex numbers with 
angles that are 𝑛  and 𝑚  harmonic angles. 

15. If 𝜃 = 𝜃 + 𝜃  where 𝜃 , 𝜃  are 𝑛  and 𝑚  harmonic angles for natural numbers 𝑛 and 𝑚 and if 
𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚) is the least common multiple of 𝑚 and 𝑛, then 𝜃 is a 𝑞 harmonic angle. 

16. If an angle is the sum of 𝑛  and 𝑚  harmonic angles for some natural numbers 𝑛 and 𝑚 with 𝜃  
and 𝜃  being the respective 𝑛  and 𝑚  root harmonic angles and if 𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚) is the least 
common multiple of 𝑚 and 𝑛, then 𝜃 =

°, the root 𝑞  harmonic angle, is the greatest common 

divisor of 𝜃  and 𝜃 . In symbols, 𝜃 = 𝑔𝑐𝑑(𝜃 , 𝜃 ).  
17. If an angle is the sum of two angles 𝜃  and 𝜃  where 𝜃 , 𝜃  are 𝑛  and 𝑚  harmonic angles, 

respectively, for natural numbers 𝑛 and 𝑚 and if 𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚) and 𝜃 = 𝑔𝑐𝑑(𝜃 , 𝜃 ), then °
=

𝜃 = 𝜃 + 𝜃  and 𝑛𝜃 is an 𝑚  harmonic angle. 
18. If 𝑚 and 𝑛 are natural numbers with no common divisor other than 1 and if 𝑞 = 𝑙𝑐𝑚(𝑚, 𝑛) = 𝑚𝑛 

and 𝜃 =
°, then 𝑛𝜃 is an 𝑚  harmonic angle and 𝑚𝜃 is an 𝑛  harmonic angle. 

19. If 𝑚 and 𝑛 are natural numbers with no common divisor other than 1 and if 𝑞 = 𝑙𝑐𝑚(𝑚, 𝑛) = 𝑚𝑛 
and 𝑗, 𝑘 are natural numbers such that 𝑗 = 𝑘𝑞 = 𝑘𝑚𝑛 and if 𝜃 =

°, then 𝑘𝑛𝜃 is an 𝑚  

harmonic angle and 𝑘𝑚𝜃 is an 𝑛  harmonic angle. 
20. If an angle 𝜃 as measured in degrees is a rational fraction of 360° of the form °

=
( °) where 

𝑓, 𝑔 ∈ ℕ, then 𝑓𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° and (𝑓 + 1)𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 
21. If 𝜃 =

° where 𝑓 is irrational, then 𝜃 is irrational, and there is no natural number 𝑔 such that 

𝑔𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

22. If 𝜃 =
° where 𝑓 is irrational, then there is no natural number 𝑔 > 1 such that 𝑔𝜃 =

𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

23. Let 𝜃 = 𝑘
°  be a nonzero 𝑛  harmonic angle, and let 𝑚 be a natural number. If 𝜃 = 𝑘

°  

is fixed in the 𝑚  harmonic, then all 𝑛  harmonic angles are fixed in the 𝑚  harmonic. 



24. The 𝑛  roots of unity form a finite cyclic group of order 𝑛 under addition that is isomorphic to 
ℤ . 

 

And now, let’s do some proofs! 

 

Theorem: If 𝑗 = 𝑚𝑛, then the 𝑗  harmonic is equal to the 𝑚  harmonic of the 𝑛  harmonic. 

Proof: If 𝜃 is an angle, then 𝑗𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360° is the 𝑗  harmonic of that angle. But since 𝑗𝜃 =

𝑚(𝑛𝜃) 𝑚𝑜𝑑𝑢𝑙𝑜 360°, it follows immediately that the 𝑗  harmonic is equal to the 𝑚  harmonic of the 
𝑛  harmonic. 

□ 

 

Comment: This theorem greatly simplifies our understanding of things by assuring us that if we start, for 
example, with a 3  harmonic chart and then take the 2  harmonic of that chart, then the end result is 
the same as taking the 6  harmonic of the original chart. Thus, if you are looking at a 3  harmonic chart 
and notice an opposition that you want to convert to a conjunction by computing the 2  harmonic of 
the 3  harmonic, then this gives the same result as taking the 6  harmonic of your original chart! 

 

Theorem: If 𝑧 , 𝑧  are complex numbers, then the magnitude of their product is equal to the product of 
their magnitudes, and the angle of their product is equal to the sum of their angles 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

Proof: This is a well-known result that we are presenting for the sake of completeness. Thus, if our complex 
numbers have the polar forms 𝑧 = 𝑟 𝑒  and 𝑧 = 𝑟 𝑒  where 𝑟  and 𝑟  are their respective 
magnitudes and 𝜃 and 𝜃  are their respective angles, then their product is 𝑧 𝑧 = 𝑟 𝑒 𝑟 𝑒 =

𝑟 𝑟 𝑒 = 𝑟 𝑟 𝑒 ( ), and this last expression implies that the magnitude of the product is 𝑟 𝑟  
and the angle of the product is 𝜃 + 𝜃  𝑚𝑜𝑑𝑢𝑙𝑜 360°. Hence, the theorem is verified.   
           □  
 

Comment: We express our final angles 𝑚𝑜𝑑𝑢𝑙𝑜 360° only for convenience, and the above theorem is true 
even without this reduction. Additionally, notice that since every complex number on the unit circle has 
magnitude equal to 1, it follows that the product of any two complex numbers on the unit circle will be 
another complex number on the unit circle whose angle will be the sum of the two angles of the two 
numbers that we will normally express 𝑚𝑜𝑑𝑢𝑙𝑜 360°. Furthermore, when convenient, we can also 
express angles by their corresponding complex numbers on the unit circle, and keep in mind that the 𝑛  
harmonic angles of astrology are exactly the same as the 𝑛  roots of unity angles used in complex 
analysis. Additionally, recall that in each case we will refer to the smallest such angle 𝜃 with 0° ≤ 𝜃 <

360° as the fundamental or root harmonic for that given value of n. Now let’s look at some more 
theorems! 

 



Theorem: If 𝜃 is an 𝑛  harmonic angle equal to 𝑘
°°  for a natural number 𝑛 where 𝑘 = 0,1,2, … , 𝑛 −

1, then any integer multiple of 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360° is also an 𝑛  harmonic angle. 

Proof: This follows immediately from the definition of a 𝑛  harmonic angle. 

□ 

 

Corollary: If 𝜃  and 𝜃  are angles such that 𝜃 − 𝜃  is an 𝑛  harmonic angle and if 𝑘 is a natural number, 

then the difference between the corresponding angles in the 𝑘  harmonic is also an 𝑛  harmonic angle. 

Proof: Since natural number (or even integer) multiples of an 𝑛  harmonic angle result in an 𝑛  harmonic 

angle, it follows that 𝑘𝜃 − 𝑘𝜃  𝑚𝑜𝑑𝑢𝑙𝑜 360° = 𝑘(𝜃 − 𝜃 ) 𝑚𝑜𝑑𝑢𝑙𝑜 360°  is an 𝑛  harmonic angle. 

           □ 

 

Comment: One of the things the above result shows us is that planets do not wind up just anywhere in an 

𝑛  harmonic chart. Some structure of the original birth chart is always preserved. Thus, if two planets 

are 90° apart in a birth chart, then in any 𝑛  harmonic chart for either an integer or a natural number 𝑛, 

the difference between the transformed angles will always be an 𝑛  harmonic angle. That is, either 

0°, 90°, 180°, or 270°. Hence, if we think of the 4th harmonic in astrology as involving tension, then some 

form of this tension will persist in each of the various natural number harmonic charts. Below, for 

example, are the values in various 𝑛  harmonics for the 4th harmonic angle 90°. 

 

HARMONIC NTH HARMONIC MODULO  360
1 90
2 180
3 270
4 0
5 90
6 180
7 270
8 0  

 

Theorem: If 𝜃 is an 𝑛  harmonic angle for some natural number 𝑛, then 𝑛𝜃 = 0° (𝑚𝑜𝑑𝑢𝑙𝑜 360°). In 
other words, 𝜃 is equivalent to 0° in an 𝑛  harmonic chart. 

Proof: If 𝜃 is an 𝑛  harmonic angle for a natural number 𝑛, then 𝜃 = 𝑘
°°  where k is an integer. Thus, 

𝑛𝜃 = 𝑛 ×  𝑘
°°

= 𝑘(360°) which implies that 𝑛𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° and that 𝜃 is equivalent to 0° 

in an 𝑛  harmonic chart.        □ 



Comment: This is a simple, but very useful result as it lets us know all 𝑛  harmonic that all 𝑛  harmonic 
angles will be equivalent to 0° in an 𝑛  harmonic chart. 

 

Theorem: If 𝜃 is equivalent to 0° in an 𝑛  harmonic chart, then 𝜃 is an 𝑛  harmonic angle. 

Proof: The angle that 𝜃 gets mapped to in the 𝑛  harmonic chart is 𝑛𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°, and 𝑛𝜃 =

0 𝑚𝑜𝑑𝑢𝑙𝑜 360° if and only if 𝑛𝜃 = 𝑘(360°) for some integer 𝑘. But this means that 𝜃 = 𝑘
° , and, 

hence, 𝜃 is an 𝑛  harmonic angle. 

           □ 

 

Comment: Again, it is very useful to know that the only angles that will be equivalent to 0° in an 𝑛  
harmonic chart are precisely those that are 𝑛  harmonic angles. 

              

Theorem: The angle 0° is equivalent to 0° in all 𝑛  harmonic charts. 

Proof: This is obvious since 𝑛(0°) = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

□ 

 

Theorem: If 𝜃 is an 𝑛  harmonic angle, then (𝑛 + 1)𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°, or, in other words, 𝜃 is a fixed 
point in an (𝑛 + 1)  harmonic chart. 

Proof: If 𝜃 is an 𝑛  harmonic angle, then 𝜃 = 𝑘
°°  where 𝑘 = 0,1,2, … , 𝑛 − 1. Thus, (𝑛 + 1)𝜃 =

(𝑛 + 1)𝑘
°°

= 𝑘(360°) + 𝑘
°°

= 𝑘
°°

 𝑚𝑜𝑑𝑢𝑙𝑜 360° = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

             
           □ 

 

Comment: In mathematics, points that remain fixed under a given transformation are always of interest, 
and once again this shows us that harmonic charts preserve more of the structure of the original chart 
than first realized. 

 

Theorem: If 𝜃 is a fixed point in an (𝑛 + 1)  harmonic chart, then 𝜃 is an 𝑛  harmonic angle.  

Proof: If 𝜃 is a fixed point in an (𝑛 + 1)  harmonic chart, then (𝑛 + 1)𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360° implies that 
𝑛𝜃 + 𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360° which implies that 𝑛𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. But this, in turn, means that 𝑛𝜃 =

𝑘(360°) for some integer 𝑘, and, hence, 𝜃 = 𝑘
° , and, therefore, 𝜃 is an 𝑛  harmonic angle. 

□ 



Comment: Just as we showed that the only angles that go to 0° in an 𝑛  harmonic chart, so is it the case 
that the only angles that are fixed when we transform to an (𝑛 + 1)  harmonic chart are precisely those 
angles in the original chart that are 𝑛  harmonic angles. 

 

Theorem: If 𝑛 and 𝑚 are natural numbers and if 𝑛 is a factor of 𝑚, then each of the 𝑛  harmonic angles 
is equivalent to 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° in the 𝑚  harmonic chart. 

Proof: Suppose that 𝜃 = 𝑘
°  is an 𝑛  harmonic angle and that 𝑚 = 𝑞𝑛 where 𝑞, 𝑛 ∈ ℕ. Then the 

𝑚  harmonic of 𝜃 is 𝑚𝜃 = 𝑞𝑛𝜃 = 𝑞𝑛𝑘
°

= 𝑞𝑘(360°) = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. Therefore, each of the 

𝑛  harmonic angles is equivalent to 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° in the 𝑚  harmonic chart. 

□ 

 

Comment: Again, this is a useful result that can allow you to arrive at some results automatically. 

 

Theorem: If 𝑚 is equal to a natural number power of 𝑛 + 1, then each of the 𝑛  harmonic angles is an 
unchanged fixed point when the original chart is transformed into the 𝑚  harmonic. 

PROOF: If 𝜃 is an 𝑛  harmonic angle, then 𝜃 = 𝑘
°°  where k is an integer. Thus, 𝑚𝜃 = (𝑛 + 1) 𝜃 =

(𝑛 + 1)(𝑛 + 1) … (𝑛 + 1)𝑘
°°  for some natural number 𝑗. Since by previous proof we know that 

(𝑛 + 1)𝜃 = (𝑛 + 1)𝑘
°°

= 𝑛𝑘
°°

+ 𝑘
°°

= 𝑛𝑘
°°

+ 𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°, it follows 

that every time we multiply 𝑘
°°  by another factor of (𝑛 + 1), the result is always equivalent to 

𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°. Hence, it follows that (𝑛 + 1) 𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°, and, thus, 𝜃 is a fixed point in the 
𝑚  harmonic chart.  

□ 

 

Comment: Thus, not only are 𝑛  harmonic angles fixed in the 𝑛 + 1 harmonic chart, they’re also fixed in 
any (𝑛 + 1)  harmonic chart where 𝑗 is a natural number. 

 

Theorem: If 𝑚 is not a power of 𝑛 + 1 and if 𝑛 is not a factor of 𝑚, then the 𝑚  harmonic will produce a 
permutation of the 𝑛  harmonic angles. 

Proof: Suppose that 𝜃 = 𝑘
° , for some natural number 𝑘 with 0 ≤ 𝑘 < 𝑛, is an 𝑛  harmonic angle 

and that 𝑚 is not a power of 𝑛 + 1 and 𝑛 is not a factor of 𝑚. Then 𝑚𝜃 = 𝑚𝑘
°

 𝑚𝑜𝑑𝑢𝑙𝑜 360° is also 

an 𝑛  harmonic angle since 𝑚 is not divisible by 𝑛. Now suppose that there exist integers 𝑘 , 𝑘  such that 

𝑘 ≠ 𝑘 , 𝑘 &𝑘 ∈ {0,1, … , 𝑛 − 1}, and 𝑚𝑘
°

= 𝑚𝑘
°

 𝑚𝑜𝑑𝑢𝑙𝑜 360°. Then 𝑚(𝑘 −



𝑘 )
°

= 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° which implies that 𝑛 divides 𝑘 − 𝑘 . However since 𝑘 − 𝑘 ≤ 𝑛 − 1, this 

is not possible. Therefore, the 𝑚  harmonic produces a permutation of the 𝑛  harmonic angles. 

□ 

 

Comment: Once more we see that harmonic charts possess incredible structure and that 𝑛  harmonic 
angles remain 𝑛  harmonic angles in higher, natural number harmonic charts. 

 

Theorem: If 𝜃 is a root 𝑚  harmonic angle for some natural number 𝑚 and a natural number 𝑛 divides 
𝑚, then the root 𝑛  harmonic angle is a natural number multiple of the root 𝑚  harmonic angle. 

Proof: If 𝜃 is an 𝑚  harmonic angle, then the root angle is °. But if 𝑚 = 𝑓𝑛 for some 𝑓 ∈ ℕ, then °
=

°
=

° . Hence, the 𝑛  harmonic root angle is °
= 𝑓

°
= 𝑓

°
= 𝑓𝜃. Therefore, the 

root 𝑛  harmonic angle is a natural number multiple of the root 𝑚  harmonic angle. 

           □ 

 

Comment: Again, this is another potentially useful result that is good to know as we continue to complete 
the mathematical theory of harmonic charts.  

 

Theorem: If an angle 𝜃 can be written as 𝜃 = 𝜃 + 𝜃  where 𝜃 , 𝜃  are 𝑛  and 𝑚  harmonic angles for 
natural numbers 𝑛 and 𝑚, respectively, and if 𝑘 is an integer, then 𝑘𝜃 can also be written as the sum of 
𝑛  and 𝑚  harmonic angles. 

Proof: This follows immediately from the fact that 𝑘𝜃 = 𝑘(𝜃 + 𝜃 ) = 𝑘𝜃 + 𝑘𝜃 , and by our previous 
results the latter is sum of 𝑛  and 𝑚  harmonic angles. 

□ 

 

Comment: This is a very interesting result, so let’s consider the ramifications by taking a simple example. 
Hence, consider 210° = 120° + 90°, the sum of a 3rd harmonic angle with a 4th harmonic angle. If we now 
look at various natural number harmonics (as indicated in the table below), then we can experience for 
ourselves that the harmonic of a 3rd harmonic angle is another 3rd harmonic angle, the harmonic of a 4th 
harmonic angle is another 4th harmonic angle, and the sum of these new harmonic angles is equivalent 
𝑚𝑜𝑑𝑢𝑙𝑜 360° to the new harmonic of 210°. 



HARMONIC NTH HARMONIC MODULO  360 THETA1 THETA2 THETA1 + THETA 2 MODULO  360
1 210 120 90 210
2 60 240 180 60
3 270 0 270 270
4 120 120 0 120
5 330 240 90 330
6 180 0 180 180  

 

Theorem: If 𝑧 = 𝑟𝑒  and 𝜃 = 𝜃 + 𝜃  where 𝜃 , 𝜃  are 𝑛  and 𝑚  harmonic angles for natural numbers 
𝑛 and 𝑚, and if 𝑘 is an integer, then 𝑧  can be written as a product of complex numbers with angles that 
are 𝑛  and 𝑚  harmonic angles. 

Proof: We prove the result for 𝑧 = 𝑟𝑒 , but it applies in particular to complex numbers on the unit circle 
which always have the form 𝑧 = 𝑒 . Thus, if 𝑧 = 𝑟𝑒  and 𝜃 = 𝜃 + 𝜃  where 𝜃 , 𝜃  are 𝑛  and 𝑚  

harmonic angles and if 𝑘 is an integer, then 𝑧 = 𝑟𝑒 = 𝑟 𝑒 = 𝑟 𝑒 ( ) = 𝑟 𝑒 𝑒 , 
and by our previous results, 𝑘𝜃  and 𝑘𝜃  are 𝑛  and 𝑚  harmonic angles, respectively. 

           □ 

 

Comment: Once more we see that a lot of our original structure is preserved in harmonic charts. 

 

Theorem: If 𝜃 = 𝜃 + 𝜃  where 𝜃 , 𝜃  are 𝑛  and 𝑚  harmonic angles for natural numbers 𝑛 and 𝑚 and 
if 𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚) is the least common multiple of 𝑚 and 𝑛, then 𝜃 is a 𝑞 harmonic angle. 

Proof: Since 𝜃  is an 𝑛  harmonic angle and since 𝑞 is a multiple of 𝑛, it follows that 𝑞𝜃 =

0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. And similarly, that 𝑞𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. Hence, 𝑞𝜃 = 𝑞𝜃 + 𝑞𝜃 =

0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°, and, thus, 𝜃 is a 𝑞 harmonic angle. Furthermore, since 𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚), it is the smallest 
such natural number. 

           □ 

 

Commentary: I find this result both quite interesting and quite useful as it tells us, for example, that the 
sum of a 2  harmonic angle and a 3  harmonic angle will always be a 6  harmonic angle. Thus, for 

instance, 180° + 120° = 300° is a 6  harmonic angle since 300° = 5 ⋅ 60° = 5 ⋅
°. 

 

Corollary: If an angle is the sum of 𝑛  and 𝑚  harmonic angles for some natural numbers 𝑛 and 𝑚 with 
𝜃  and 𝜃  being the respective 𝑛  and 𝑚  root harmonic angles and if 𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚) is the least 

common multiple of 𝑚 and 𝑛, then 𝜃 =
°, the root 𝑞  harmonic angle, is the greatest common divisor 

of 𝜃  and 𝜃 . In symbols, 𝜃 = 𝑔𝑐𝑑(𝜃 , 𝜃 ).  



Proof: Suppose 𝜃 , 𝜃  are the respective 𝑛  and 𝑚  root harmonic angles for some natural numbers 𝑛 

and 𝑚, and suppose also that 𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚) and 𝜃 =
°. Then 𝜃 =

° and 𝜃 =
°, and 𝜃 =

° is 

a root 𝑞  harmonic angle. Since 𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚), we can write 𝑞 = 𝑛𝑞 = 𝑚𝑞 . Thus, 𝜃 =
°

=
°

=

°
= ⇒ 𝜃 = 𝑞 ⋅ 𝜃 and 𝜃 =

°
=

°
=

°
= ⇒ 𝜃 = 𝑞 ⋅ 𝜃. Hence, 𝜃  and 𝜃  are both 

natural number multiples of 𝜃, and, thus, 𝜃 is a common divisor of 𝜃  and 𝜃 . Our claim now is that 𝜃’is 
the greatest common divisor of 𝜃  and 𝜃 , and to show this let’s assume that there exists another common 
divisor 𝜃′ such that 𝜃′ > 𝜃. Then since 𝜃′ is a divisor of 𝜃  and 𝜃 , there exist 𝑞 ′  and 𝑞 ′  such that 𝜃 =

𝑞 ′ 𝜃′  and 𝜃 = 𝑞 ′𝜃. Hence, 𝜃 = =
°

=
° and 𝜃 = =

°
=

° . From this it follows 

that 𝑛𝑞 ′ = 𝑚𝑞 ′, and if we set 𝑞′ = 𝑛𝑞 ′ = 𝑚𝑞 ′, then 𝜃 =
°. From this we can conclude that 𝑞′ is a 

common multiple of 𝑛 and 𝑚 and that 𝑞 =
°.  However, since we assumed that 𝜃′ > 𝜃, it follows that 

𝑞 =
°

<
°

= 𝑞. But since 𝑞′ is a common multiple of 𝑛 and 𝑚, this contradicts our assertion that 

𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚), and the assumption that led to this contradiction was that 𝜃 was not the greatest 
common divisor of 𝜃  and 𝜃 . Therefore, 𝜃 = 𝑔𝑐𝑑(𝜃 , 𝜃 ). 

           □ 

 

Comment: The angle 210° is equal to 90° + 120°, a 4th harmonic angle plus a 3rd harmonic angle. By our 

theorem, it should follow that 210° is a 12th harmonic angle and that °
= 30° is the greatest common 

divisor for 90° and 120°, and that is indeed the case. 

 

Theorem: If an angle is the sum of two angles 𝜃  and 𝜃  where 𝜃 , 𝜃  are 𝑛  and 𝑚  harmonic angles, 

respectively, for natural numbers 𝑛 and 𝑚 and if 𝑞 = 𝑙𝑐𝑚(𝑛, 𝑚) and 𝜃 = 𝑔𝑐𝑑(𝜃 , 𝜃 ), then °
= 𝜃 =

𝜃 + 𝜃  and 𝑛𝜃 is an 𝑚  harmonic angle. 

Proof: It follows from previous proofs that °
= 𝜃 = 𝜃 + 𝜃 , and since where 𝜃 , 𝜃  are 𝑛  and 𝑚  

harmonic angles, respectively, for natural numbers 𝑛 and 𝑚, we have that 𝑛𝜃 = 𝑛𝜃 + 𝑛𝜃 = 0° +

𝑛𝜃  𝑚𝑜𝑑𝑢𝑙𝑜 360° = 𝑛𝜃  𝑚𝑜𝑑𝑢𝑙𝑜 360°, and since 𝜃  is an 𝑚  harmonic angle, it follows that 𝑛𝜃  is also 
an 𝑚  harmonic angle. 

           □ 

 

Comment: Nice! 

 

Theorem: If 𝑚 and 𝑛 are natural numbers with no common divisor other than 1 and if 𝑞 = 𝑙𝑐𝑚(𝑚, 𝑛) =

𝑚𝑛 and 𝜃 =
°, then 𝑛𝜃 is an 𝑚  harmonic angle and 𝑚𝜃 is an 𝑛  harmonic angle. 



Proof: Since 𝜃 is a 𝑞 harmonic angle, it follows from previous proof that 𝑞𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. However, 
since 𝑞 = 𝑚𝑛, it follows that 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° = 𝑞𝜃 = 𝑚(𝑛𝜃) = 𝑛(𝑚𝜃). These last two inequalities 
imply that 𝑛𝜃 is an 𝑚  harmonic angle and 𝑚𝜃 is an 𝑛  harmonic angle. 

           □ 

Corollary: If 𝑚 and 𝑛 are natural numbers with no common divisor other than 1 and if 𝑞 = 𝑙𝑐𝑚(𝑚, 𝑛) =

𝑚𝑛 and 𝑗, 𝑘 are natural numbers such that 𝑗 = 𝑘𝑞 = 𝑘𝑚𝑛 and if 𝜃 =
°, then 𝑘𝑛𝜃 is an 𝑚  harmonic 

angle and 𝑘𝑚𝜃 is an 𝑛  harmonic angle. 

Proof: Since 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° = 𝑗𝜃 = 𝑘𝑞𝜃 = 𝑚(𝑘𝑛𝜃) = 𝑛(𝑘𝑚𝜃), it follows that 𝑘𝑛𝜃 is an 𝑚  harmonic 
angle and 𝑘𝑚𝜃 is an 𝑛  harmonic angle.  

□ 

 

Comment: The better you know and understand these theorems, the more you will be able to play 
harmonic charts like a violin, and these theorems are also stepping stones to new theorems yet to come! 

 

Theorem: If an angle 𝜃 as measured in degrees is a rational fraction of 360° of the form °
=

( °), 

where 𝑓, 𝑔 ∈ ℕ, then 𝑓𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° and (𝑓 + 1)𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

Proof: Clearly, 𝑓𝜃 = 𝑓
( °)

= 𝑔(360°) = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°, and (𝑓 + 1)𝜃 = (𝑓 + 1)
( °)

=

𝑔(360°) +
( °)

= 0° + 𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

           □ 

 

Comment: This theorem helps to extend out results from natural number harmonics to rational number 
harmonics. 

 

Theorem: If 𝜃 =
° where 𝑓 is irrational, then 𝜃 is irrational, and there is no natural number 𝑔 such that 

𝑔𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

Proof: If 𝜃 is rational and 𝑓 is irrational, then that would mean that 𝑓𝜃 = 360° is irrational. Clearly not 
true. Therefore, 𝜃 is irrational. Thus, it also follows that 𝑔𝜃 is irrational and never equal to a natural 
number multiple of 360°. Hence, there is no natural number 𝑔 such that 𝑔𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 

           □ 

Corollary: If 𝜃 =
° where 𝑓 is irrational, then there is no natural number 𝑔 > 1 such that 𝑔𝜃 =

𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°. 



Proof: If there were a natural number 𝑔 > 1 such that 𝑔𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°, then we would have 
(𝑔 − 1)𝜃 = 𝑔𝜃 − 𝜃 = 𝜃 − 𝜃 = 0° 𝑚𝑜𝑑𝑢𝑙𝑜 360° in contradiction to our theorem. 

           □ 

 

Commentary: As noted in our chapter on Astrology and Fractals, irrational number harmonics could lead 
to strange attractors. However, we also note that every irrational number can be approximated by a 
rational number. Thus, the rational numbers may be sufficient for all practical applications. 

 

Theorem: Let 𝜃 = 𝑘
°  be a nonzero 𝑛  harmonic angle, and let 𝑚 be a natural number. If 𝜃 =

𝑘
°  is fixed in the 𝑚  harmonic, then all 𝑛  harmonic angles are fixed in the 𝑚  harmonic. 

Proof: Let 𝜃 = 𝑘
°  be a nonzero 𝑛  harmonic angle for some natural number 𝑘, and suppose 𝑚 is a 

natural number such that 𝑚𝜃 = 𝜃 𝑚𝑜𝑑𝑢𝑙𝑜 360°. Then 𝑚𝑘
°

= 𝑘
°

 𝑚𝑜𝑑𝑢𝑙𝑜 360°, and this 

implies via division by 𝑘 that 𝑚 °
=

°
 𝑚𝑜𝑑𝑢𝑙𝑜 360°. Hence, it now follows that for any natural 

number 𝑓 that 𝑚𝑓
°

=  𝑓𝑚
°

=  𝑓
°

 𝑚𝑜𝑑𝑢𝑙𝑜 360°. Therefore, if one nonzero 𝑛  

harmonic angle is fixed in the 𝑚  harmonic, then all 𝑛  harmonic angles are fixed in the 𝑚  harmonic. 

           □ 

 

Comment: This strengthens one of our earlier results. 

 

Theorem: The 𝑛  roots of unity form a finite cyclic group of order 𝑛 under addition that is isomorphic to 
ℤ . 

Proof-1: Obvious. 

Proof-2: Easy. 

Proof-3: Clear. 

Proof-4: Why do you want more proofs?  I’ve already given you three!!  ѮѯѰѱ 

□ 

 

Comment: If you want something done right, do it yourself! 

 


