ASTROLOGY AND COMPLEX NUMBERS

A rather surprising development is the realization that complex numbers can be used to model certain aspects of harmonic charts in astrology. For example, recall that the $4^{\text {th }}$ harmonic angles in a horoscope are those that are integer multiples of 90° modulo 360° since $\frac{360^{\circ}}{4}=90^{\circ}$. Hence, the distinct $4^{\text {th }}$ harmonic angles are $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°, and these angles are equally spaced around the zodiacal circle. A similar situation occurs in the realm of complex numbers where the number 1 always has n distinct complex roots that all lie on a circle of radius 1 with center at the origin (called the unit circle) and like the $4^{\text {th }}$ harmonic angles they are equally spaced at $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°. More generally, if n is a natural number, then the $n^{t h}$ harmonic angles θ such that $0^{\circ} \leq \theta<360^{\circ}$ are $k\left(\frac{360^{\circ}}{n}\right)$ where $k=$ $0,1,2, \ldots, n-1$, and these are the exact same angles that are used in complex numbers to represent the $n^{\text {th }}$ roots of unity! For example, below are diagrams of the zodiac and the unit circle showing the placements of the $4^{\text {th }}$ harmonic angles in each. Except for the arbitrary placement of 0° as a starting point, the diagrams are the same.

A complex number has two basic forms. First, there is its rectangular form which looks like $z=a+b i$, and second, there is its polar form which appears as $z=r e^{i \theta}$ where i is the square root of $-1, r$ is the number's distance from the origin in the complex plane, and θ is the angle that is made with the positive real number axis. Additionally, these two forms are related by the formula $r e^{i \theta}=r(\cos \theta+i \sin \theta)$. This latter expression in parentheses is often abbreviated by mathematicians as cis($\theta)$. Furthermore, the polar form will make it easy to prove various properties of complex numbers that also apply to harmonic charts in astrology. We begin with the following.

Definition: If n is a natural number, then the angle $\frac{360^{\circ}}{n}$ will be referred to as the $n^{\text {th }}$ harmonic or the fundamental or root $n^{\text {th }}$ harmonic angle. Furthermore, for any fundamental or root $n^{\text {th }}$ harmonic angle, by the family of all distinct $n^{\text {th }}$ harmonic angles we will mean the set $\left\{k\left(\frac{360^{\circ}}{n}\right)\right.$ modulo $\left.360^{\circ} \mid k \in \mathbb{Z}\right\}$,
and the number n that we divide 360° by will also frequently be referred to as the $n^{\text {th }}$ harmonic just as is the corresponding angle $\frac{360^{\circ}}{n}$. Also, note that if $n=4$ and $k=2$, then the $\frac{2}{4}$ harmonic angle is $\frac{2}{4}\left(360^{\circ}\right)=$ 180°, and this is exactly the same as the $\frac{1}{2}$ harmonic angle since $\frac{1}{2}\left(360^{\circ}\right)=180^{\circ}$. Thus, even though 180° is both $\mathrm{a} \frac{1}{2}$ and $\mathrm{a} \frac{2}{4}$ harmonic angle, most of the time we will reduce a fraction to its lowest terms when talking about what kind of harmonic angle it is. Additionally, even though an angle like 180° is both a $2^{\text {nd }}$ harmonic angle and a $4^{\text {th }}$ harmonic angle (among others), we will usually identify this and other angles with the smallest natural number harmonic that applies.

Example: If, for instance, we want to examine or discuss the $4^{\text {th }}$ harmonic, then the fundamental or root $4^{\text {th }}$ harmonic angle is $\frac{360^{\circ}}{4}=90^{\circ}$ and the family or set of distinct $4^{t h}$ harmonic angles is $\left\{0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}\right\}$. However, of these angles, $\frac{0}{4}, \frac{1}{4}, \frac{2}{4}$, and $\frac{3}{4}$ times 360°, we usually reduce ones like $\frac{2}{4}$ to $\frac{1}{2}$ and refer to it primarily as a $\frac{1}{2}$ harmonic angle or a $2^{\text {nd }}$ harmonic.

Comment: There are two ways to find the position of an $n^{\text {th }}$ harmonic. We can find, for example, the value of θ modulo $\frac{360^{\circ}}{n}$ and then multiply this result by n, or we can multiply θ by n and then express the result modulo 360°. Recall that one way to find a value of an angle θ modulo α is to subtract a multiple of α from θ that yields a result that is less than α but greater than or equal to zero ($0 \leq \theta-k \cdot \alpha<\alpha$). However, we can easily see from the math that $n\left(\theta\right.$ modulo $\left.\frac{360^{\circ}}{n}\right)=n\left(\theta-k \cdot \frac{360^{\circ}}{n}\right)=n \theta-k$. $360^{\circ}=n \theta$ modulo 360°, and this means that the we can compute our final value using either the first formula, $n\left(\theta\right.$ modulo $\frac{360^{\circ}}{n}$), or the last formula, $n \theta$ modulo 360°. In practice, most people usually find the second formula easier since all one has to do is to first multiply θ by the appropriate harmonic and then express the result modulo 360°.

Summary: Before we proceed to the proofs, below is a listing of some of our main results. Many of these are probably known either consciously or through some other level of experience by those astrologers who specialize in harmonics, but the point is that we are providing more rigorous proofs of these things and by fleshing out the underlying mathematical theory, other things that are currently not so evident will gradually become clear. So with that said, here are some of our results.

1. If $j=m n$, then the $j^{t h}$ harmonic is equal to the $m^{t h}$ harmonic of the $n^{t h}$ harmonic.
2. If θ is an $n^{\text {th }}$ harmonic angle equal to $k\left(\frac{360^{\circ \circ}}{n}\right)$ for a natural number n where $k=0,1,2, \ldots, n-1$, then any integer multiple of θ modulo 360° is also an $n^{\text {th }}$ harmonic angle.
3. If θ_{1} and θ_{2} are angles such that $\theta_{2}-\theta_{1}$ is an $n^{\text {th }}$ harmonic angle and if k is a natural number, then the difference between the corresponding angles in the $k^{t h}$ harmonic is also an $n^{t h}$ harmonic angle.
4. If θ is an $n^{\text {th }}$ harmonic angle for some natural number n, then $n \theta=0^{\circ}$ modulo 360°. In other words, θ is equivalent to 0° in an $n^{\text {th }}$ harmonic chart.
5. If θ is equivalent to 0° in an $n^{\text {th }}$ harmonic chart, then θ is an $n^{\text {th }}$ harmonic angle.
6. The angle 0° is equivalent to 0° in all $n^{\text {th }}$ harmonic charts.
7. If n and m are natural numbers and if n is a factor of m, then each of the $n^{t h}$ harmonic angles is equivalent to 0° modulo 360° in the $m^{\text {th }}$ harmonic chart.
8. If m is equal to a natural number power of $n+1$, then each of the $n^{t h}$ harmonic angles is an unchanged fixed point when the original chart is transformed into the $m^{\text {th }}$ harmonic.
9. If θ is a fixed point in an $(n+1)^{\text {th }}$ harmonic chart, then θ is an $n^{t h}$ harmonic angle.
10. If n and m are natural numbers and if n is a factor of m, then each of the $n^{\text {th }}$ harmonic angles is equivalent to 0° modulo 360° in the $m^{\text {th }}$ harmonic chart.
11. If m is not a power of $n+1$ and if n is not a factor of m, then the $m^{\text {th }}$ harmonic will produce a permutation of the $n^{\text {th }}$ harmonic angles.
12. If θ is a root $m^{\text {th }}$ harmonic angle for some natural number m and a natural number n divides m, then the root $n^{\text {th }}$ harmonic angle is a natural number multiple of the root $m^{\text {th }}$ harmonic angle.
13. If an angle θ can be written as $\theta=\theta_{1}+\theta_{2}$ where θ_{1}, θ_{2} are $n^{\text {th }}$ and $m^{t h}$ harmonic angles for natural numbers n and m, respectively, and if k is an integer, then $k \theta$ can also be written as the sum of $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles.
14. If $z=r e^{i \theta}$ and $\theta=\theta_{1}+\theta_{2}$ where θ_{1}, θ_{2} are $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles for natural numbers n and m, and if k is an integer, then z^{k} can be written as a product of complex numbers with angles that are $n^{t h}$ and $m^{t h}$ harmonic angles.
15. If $\theta=\theta_{1}+\theta_{2}$ where θ_{1}, θ_{2} are $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles for natural numbers n and m and if $q=\operatorname{lcm}(n, m)$ is the least common multiple of m and n, then θ is a q harmonic angle.
16. If an angle is the sum of $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles for some natural numbers n and m with θ_{1} and θ_{2} being the respective $n^{t h}$ and $m^{t h}$ root harmonic angles and if $q=l c m(n, m)$ is the least common multiple of m and n, then $\theta=\frac{360^{\circ}}{q}$, the root $q^{\text {th }}$ harmonic angle, is the greatest common divisor of θ_{1} and θ_{2}. In symbols, $\theta=\operatorname{gcd}\left(\theta_{1}, \theta_{2}\right)$.
17. If an angle is the sum of two angles θ_{1} and θ_{2} where θ_{1}, θ_{2} are $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles, respectively, for natural numbers n and m and if $q=\operatorname{lcm}(n, m)$ and $\theta=\operatorname{gcd}\left(\theta_{1}, \theta_{2}\right)$, then $\frac{360^{\circ}}{q}=$ $\theta=\theta_{1}+\theta_{2}$ and $n \theta$ is an $m^{t h}$ harmonic angle.
18. If m and n are natural numbers with no common divisor other than 1 and if $q=\operatorname{lcm}(m, n)=m n$ and $\theta=\frac{360^{\circ}}{q}$, then $n \theta$ is an $m^{t h}$ harmonic angle and $m \theta$ is an $n^{t h}$ harmonic angle.
19. If m and n are natural numbers with no common divisor other than 1 and if $q=\operatorname{lcm}(m, n)=m n$ and j, k are natural numbers such that $j=k q=k m n$ and if $\theta=\frac{360^{\circ}}{j}$, then $k n \theta$ is an $m^{t h}$ harmonic angle and $k m \theta$ is an $n^{t h}$ harmonic angle.
20. If an angle θ as measured in degrees is a rational fraction of 360° of the form $\frac{360^{\circ}}{f / g}=\frac{g\left(360^{\circ}\right)}{f}$ where $f, g \in \mathbb{N}$, then $f \theta=0^{\circ}$ modulo 360° and $(f+1) \theta=\theta$ modulo 360°.
21. If $\theta=\frac{360^{\circ}}{f}$ where f is irrational, then θ is irrational, and there is no natural number g such that $g \theta=0^{\circ}$ modulo 360°.
22. If $\theta=\frac{360^{\circ}}{f}$ where f is irrational, then there is no natural number $g>1$ such that $g \theta=$ θ modulo 360°.
23. Let $\theta=k\left(\frac{360^{\circ}}{n}\right)$ be a nonzero $n^{\text {th }}$ harmonic angle, and let m be a natural number. If $\theta=k\left(\frac{360^{\circ}}{n}\right)$ is fixed in the $m^{t h}$ harmonic, then all $n^{t h}$ harmonic angles are fixed in the $m^{t h}$ harmonic.
24. The $n^{\text {th }}$ roots of unity form a finite cyclic group of order n under addition that is isomorphic to \mathbb{Z}_{n}.

And now, let's do some proofs!

Theorem: If $j=m n$, then the $j^{t h}$ harmonic is equal to the $m^{t h}$ harmonic of the $n^{t h}$ harmonic.
Proof: If θ is an angle, then $j \theta$ modulo 360° is the $j^{\text {th }}$ harmonic of that angle. But since $j \theta=$ $m(n \theta)$ modulo 360°, it follows immediately that the $j^{\text {th }}$ harmonic is equal to the $m^{t h}$ harmonic of the $n^{\text {th }}$ harmonic.

Comment: This theorem greatly simplifies our understanding of things by assuring us that if we start, for example, with a $3^{r d}$ harmonic chart and then take the $2^{n d}$ harmonic of that chart, then the end result is the same as taking the $6^{t h}$ harmonic of the original chart. Thus, if you are looking at a $3^{r d}$ harmonic chart and notice an opposition that you want to convert to a conjunction by computing the $2^{\text {nd }}$ harmonic of the $3^{r d}$ harmonic, then this gives the same result as taking the $6^{\text {th }}$ harmonic of your original chart!

Theorem: If z_{1}, z_{2} are complex numbers, then the magnitude of their product is equal to the product of their magnitudes, and the angle of their product is equal to the sum of their angles modulo 360°.

Proof: This is a well-known result that we are presenting for the sake of completeness. Thus, if our complex numbers have the polar forms $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$ where r_{1} and r_{2} are their respective magnitudes and θ_{1} and θ_{2} are their respective angles, then their product is $z_{1} z_{2}=r_{1} e^{i \theta_{1}} r_{2} e^{i \theta_{2}}=$ $r_{1} r_{2} e^{i \theta_{1}+i \theta_{2}}=r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)}$, and this last expression implies that the magnitude of the product is $r_{1} r_{2}$ and the angle of the product is $\theta_{1}+\theta_{2}$ modulo 360°. Hence, the theorem is verified.

Comment: We express our final angles modulo 360° only for convenience, and the above theorem is true even without this reduction. Additionally, notice that since every complex number on the unit circle has magnitude equal to 1 , it follows that the product of any two complex numbers on the unit circle will be another complex number on the unit circle whose angle will be the sum of the two angles of the two numbers that we will normally express modulo 360°. Furthermore, when convenient, we can also express angles by their corresponding complex numbers on the unit circle, and keep in mind that the $n^{\text {th }}$ harmonic angles of astrology are exactly the same as the $n^{\text {th }}$ roots of unity angles used in complex analysis. Additionally, recall that in each case we will refer to the smallest such angle θ with $0^{\circ} \leq \theta<$ 360° as the fundamental or root harmonic for that given value of n. Now let's look at some more theorems!

Theorem: If θ is an $n^{\text {th }}$ harmonic angle equal to $k\left(\frac{360^{\circ \circ}}{n}\right)$ for a natural number n where $k=0,1,2, \ldots, n-$ 1 , then any integer multiple of θ modulo 360° is also an $n^{\text {th }}$ harmonic angle.

Proof: This follows immediately from the definition of a $n^{\text {th }}$ harmonic angle.

Corollary: If θ_{1} and θ_{2} are angles such that $\theta_{2}-\theta_{1}$ is an $n^{\text {th }}$ harmonic angle and if k is a natural number, then the difference between the corresponding angles in the $k^{\text {th }}$ harmonic is also an $n^{\text {th }}$ harmonic angle. Proof: Since natural number (or even integer) multiples of an $n^{\text {th }}$ harmonic angle result in an $n^{\text {th }}$ harmonic angle, it follows that $k \theta_{2}-k \theta_{1}$ modulo $360^{\circ}=k\left(\theta_{2}-\theta_{1}\right)$ modulo 360° is an $n^{\text {th }}$ harmonic angle.

Comment: One of the things the above result shows us is that planets do not wind up just anywhere in an $n^{\text {th }}$ harmonic chart. Some structure of the original birth chart is always preserved. Thus, if two planets are 90° apart in a birth chart, then in any $n^{\text {th }}$ harmonic chart for either an integer or a natural number n, the difference between the transformed angles will always be an $n^{\text {th }}$ harmonic angle. That is, either $0^{\circ}, 90^{\circ}, 180^{\circ}$, or 270°. Hence, if we think of the $4^{\text {th }}$ harmonic in astrology as involving tension, then some form of this tension will persist in each of the various natural number harmonic charts. Below, for example, are the values in various $n^{\text {th }}$ harmonics for the $4^{\text {th }}$ harmonic angle 90°.

HARMONIC	NTH HARMONIC MODULO $\mathbf{3 6 0}$
1	90
2	180
3	270
4	0
5	90
6	180
7	270
8	0

Theorem: If θ is an $n^{\text {th }}$ harmonic angle for some natural number n, then $n \theta=0^{\circ}\left(\right.$ modulo $\left.360^{\circ}\right)$. In other words, θ is equivalent to 0° in an $n^{\text {th }}$ harmonic chart.

Proof: If θ is an $n^{\text {th }}$ harmonic angle for a natural number n, then $\theta=k\left(\frac{360^{\circ 0}}{n}\right)$ where k is an integer. Thus, $n \theta=n \times k\left(\frac{360^{\circ}}{n}\right)=k\left(360^{\circ}\right)$ which implies that $n \theta=0^{\circ} \operatorname{modulo} 360^{\circ}$ and that θ is equivalent to 0° in an $n^{\text {th }}$ harmonic chart.

Comment: This is a simple, but very useful result as it lets us know all $n^{\text {th }}$ harmonic that all $n^{\text {th }}$ harmonic angles will be equivalent to 0° in an $n^{\text {th }}$ harmonic chart.

Theorem: If θ is equivalent to 0° in an $n^{t h}$ harmonic chart, then θ is an $n^{t h}$ harmonic angle.
Proof: The angle that θ gets mapped to in the $n^{t h}$ harmonic chart is $n \theta$ modulo 360°, and $n \theta=$ 0 modulo 360° if and only if $n \theta=k\left(360^{\circ}\right)$ for some integer k. But this means that $\theta=k\left(\frac{360^{\circ}}{n}\right)$, and, hence, θ is an $n^{t h}$ harmonic angle.

Comment: Again, it is very useful to know that the only angles that will be equivalent to 0° in an $n^{\text {th }}$ harmonic chart are precisely those that are $n^{\text {th }}$ harmonic angles.

Theorem: The angle 0° is equivalent to 0° in all $n^{\text {th }}$ harmonic charts.
Proof: This is obvious since $n\left(0^{\circ}\right)=0^{\circ}$ modulo 360°.

Theorem: If θ is an $n^{t h}$ harmonic angle, then $(n+1) \theta=\theta$ modulo 360°, or, in other words, θ is a fixed point in an $(n+1)^{\text {th }}$ harmonic chart.

Proof: If θ is an $n^{\text {th }}$ harmonic angle, then $\theta=k\left(\frac{360^{\circ 0}}{n}\right)$ where $k=0,1,2, \ldots, n-1$. Thus, $(n+1) \theta=$ $(n+1) k\left(\frac{360^{\circ \circ}}{n}\right)=k\left(360^{\circ}\right)+k\left(\frac{360^{\circ \circ}}{n}\right)=k\left(\frac{360^{\circ \circ}}{n}\right) \operatorname{modulo} 360^{\circ}=\theta$ modulo 360°.

Comment: In mathematics, points that remain fixed under a given transformation are always of interest, and once again this shows us that harmonic charts preserve more of the structure of the original chart than first realized.

Theorem: If θ is a fixed point in an $(n+1)^{t h}$ harmonic chart, then θ is an $n^{t h}$ harmonic angle.
Proof: If θ is a fixed point in an $(n+1)^{\text {th }}$ harmonic chart, then $(n+1) \theta=\theta$ modulo 360° implies that $n \theta+\theta=\theta$ modulo 360° which implies that $n \theta=0^{\circ}$ modulo 360°. But this, in turn, means that $n \theta=$ $k\left(360^{\circ}\right)$ for some integer k, and, hence, $\theta=k\left(\frac{360^{\circ}}{n}\right)$, and, therefore, θ is an $n^{t h}$ harmonic angle.

Comment: Just as we showed that the only angles that go to 0° in an $n^{t h}$ harmonic chart, so is it the case that the only angles that are fixed when we transform to an $(n+1)^{t h}$ harmonic chart are precisely those angles in the original chart that are $n^{\text {th }}$ harmonic angles.

Theorem: If n and m are natural numbers and if n is a factor of m, then each of the $n^{\text {th }}$ harmonic angles is equivalent to 0° modulo 360° in the $m^{\text {th }}$ harmonic chart.

Proof: Suppose that $\theta=k\left(\frac{360^{\circ}}{n}\right)$ is an $n^{\text {th }}$ harmonic angle and that $m=q n$ where $q, n \in \mathbb{N}$. Then the $m^{\text {th }}$ harmonic of θ is $m \theta=q n \theta=q n k\left(\frac{360^{\circ}}{n}\right)=q k\left(360^{\circ}\right)=0^{\circ}$ modulo 360°. Therefore, each of the $n^{\text {th }}$ harmonic angles is equivalent to 0° modulo 360° in the $m^{\text {th }}$ harmonic chart.

Comment: Again, this is a useful result that can allow you to arrive at some results automatically.

Theorem: If m is equal to a natural number power of $n+1$, then each of the $n^{\text {th }}$ harmonic angles is an unchanged fixed point when the original chart is transformed into the $m^{\text {th }}$ harmonic.

PROOF: If θ is an $n^{\text {th }}$ harmonic angle, then $\theta=k\left(\frac{360^{\circ 0}}{n}\right)$ where k is an integer. Thus, $m \theta=(n+1)^{j} \theta=$ $(n+1)(n+1) \ldots(n+1) k\left(\frac{360^{\circ}}{n}\right)$ for some natural number j. Since by previous proof we know that $(n+1) \theta=(n+1) k\left(\frac{360^{\circ \circ}}{n}\right)=n k\left(\frac{360^{\circ \circ}}{n}\right)+k\left(\frac{360^{\circ \circ}}{n}\right)=n k\left(\frac{360^{\circ}}{n}\right)+\theta=\theta$ modulo 360°, it follows that every time we multiply $k\left(\frac{360^{\circ 0}}{n}\right)$ by another factor of $(n+1)$, the result is always equivalent to θ modulo 360°. Hence, it follows that $(n+1)^{j} \theta=\theta$ modulo 360°, and, thus, θ is a fixed point in the $m^{\text {th }}$ harmonic chart.

Comment: Thus, not only are $n^{\text {th }}$ harmonic angles fixed in the $n+1$ harmonic chart, they're also fixed in any $(n+1)^{j}$ harmonic chart where j is a natural number.

Theorem: If m is not a power of $n+1$ and if n is not a factor of m, then the $m^{t h}$ harmonic will produce a permutation of the $n^{\text {th }}$ harmonic angles.

Proof: Suppose that $\theta=k\left(\frac{360^{\circ}}{n}\right)$, for some natural number k with $0 \leq k<n$, is an $n^{t h}$ harmonic angle and that m is not a power of $n+1$ and n is not a factor of m. Then $m \theta=m k\left(\frac{360^{\circ}}{n}\right) \operatorname{modulo} 360^{\circ}$ is also an $n^{\text {th }}$ harmonic angle since m is not divisible by n. Now suppose that there exist integers k_{1}, k_{2} such that $k_{1} \neq k_{2}, k_{1} \& k_{2} \in\{0,1, \ldots, n-1\}$, and $m k_{1}\left(\frac{360^{\circ}}{n}\right)=m k_{2}\left(\frac{360^{\circ}}{n}\right)$ modulo 360°. Then $m\left(k_{1}-\right.$
$\left.k_{2}\right)\left(\frac{360^{\circ}}{n}\right)=0^{\circ}$ modulo 360° which implies that n divides $k_{1}-k_{2}$. However since $k_{1}-k_{2} \leq n-1$, this is not possible. Therefore, the $m^{\text {th }}$ harmonic produces a permutation of the $n^{\text {th }}$ harmonic angles.

Comment: Once more we see that harmonic charts possess incredible structure and that $n^{\text {th }}$ harmonic angles remain $n^{\text {th }}$ harmonic angles in higher, natural number harmonic charts.

Theorem: If θ is a root $m^{\text {th }}$ harmonic angle for some natural number m and a natural number n divides m, then the root $n^{\text {th }}$ harmonic angle is a natural number multiple of the root $m^{\text {th }}$ harmonic angle.

Proof: If θ is an $m^{t h}$ harmonic angle, then the root angle is $\frac{360^{\circ}}{m}$. But if $m=f n$ for some $f \in \mathbb{N}$, then $\frac{360^{\circ}}{m}=$ $\frac{360^{\circ}}{f n}=\frac{1}{f}\left(\frac{360^{\circ}}{n}\right)$. Hence, the $n^{t h}$ harmonic root angle is $\frac{360^{\circ}}{n}=f\left(\frac{360^{\circ}}{f n}\right)=f\left(\frac{360^{\circ}}{m}\right)=f \theta$. Therefore, the root $n^{\text {th }}$ harmonic angle is a natural number multiple of the root $m^{\text {th }}$ harmonic angle.

Comment: Again, this is another potentially useful result that is good to know as we continue to complete the mathematical theory of harmonic charts.

Theorem: If an angle θ can be written as $\theta=\theta_{1}+\theta_{2}$ where θ_{1}, θ_{2} are $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles for natural numbers n and m, respectively, and if k is an integer, then $k \theta$ can also be written as the sum of $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles.

Proof: This follows immediately from the fact that $k \theta=k\left(\theta_{1}+\theta_{2}\right)=k \theta_{1}+k \theta_{2}$, and by our previous results the latter is sum of $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles.

Comment: This is a very interesting result, so let's consider the ramifications by taking a simple example. Hence, consider $210^{\circ}=120^{\circ}+90^{\circ}$, the sum of a $3^{\text {rd }}$ harmonic angle with a $4^{\text {th }}$ harmonic angle. If we now look at various natural number harmonics (as indicated in the table below), then we can experience for ourselves that the harmonic of a $3^{\text {rd }}$ harmonic angle is another $3^{\text {rd }}$ harmonic angle, the harmonic of a $4^{\text {th }}$ harmonic angle is another $4^{\text {th }}$ harmonic angle, and the sum of these new harmonic angles is equivalent modulo 360° to the new harmonic of 210°.

HARMONIC	NTH HARMONIC MODULO 360	THETA1	THETA2	THETA1 + THETA 2 MODULO 360
1	210	120	90	210
2	60	240	180	60
3	270	0	270	270
4	120	120	0	120
5	330	240	90	330
6	180	0	180	180

Theorem: If $z=r e^{i \theta}$ and $\theta=\theta_{1}+\theta_{2}$ where θ_{1}, θ_{2} are $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles for natural numbers n and m, and if k is an integer, then z^{k} can be written as a product of complex numbers with angles that are $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles.

Proof: We prove the result for $z=r e^{i \theta}$, but it applies in particular to complex numbers on the unit circle which always have the form $z=e^{i \theta}$. Thus, if $z=r e^{i \theta}$ and $\theta=\theta_{1}+\theta_{2}$ where θ_{1}, θ_{2} are $n^{t h}$ and $m^{t h}$ harmonic angles and if k is an integer, then $z^{k}=\left(r e^{i \theta}\right)^{k}=r^{k} e^{i k \theta}=r^{k} e^{i k\left(\theta_{1}+\theta_{2}\right)}=\left(r^{k} e^{i k \theta_{1}}\right) e^{i k{ }_{2}}$, and by our previous results, $k \theta_{1}$ and $k \theta_{2}$ are $n^{t h}$ and $m^{t h}$ harmonic angles, respectively.

Comment: Once more we see that a lot of our original structure is preserved in harmonic charts.

Theorem: If $\theta=\theta_{1}+\theta_{2}$ where θ_{1}, θ_{2} are $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles for natural numbers n and m and if $q=\operatorname{lcm}(n, m)$ is the least common multiple of m and n, then θ is a q harmonic angle.

Proof: Since θ_{1} is an $n^{\text {th }}$ harmonic angle and since q is a multiple of n, it follows that $q \theta_{1}=$ 0° modulo 360°. And similarly, that $q \theta_{2}=0^{\circ}$ modulo 360°. Hence, $q \theta=q \theta_{1}+q \theta_{2}=$ 0° modulo 360°, and, thus, θ is a q harmonic angle. Furthermore, since $q=l c m(n, m)$, it is the smallest such natural number.

Commentary: I find this result both quite interesting and quite useful as it tells us, for example, that the sum of a $2^{\text {nd }}$ harmonic angle and a $3^{\text {rd }}$ harmonic angle will always be a $6^{\text {th }}$ harmonic angle. Thus, for instance, $180^{\circ}+120^{\circ}=300^{\circ}$ is a $6^{\text {th }}$ harmonic angle since $300^{\circ}=5 \cdot 60^{\circ}=5 \cdot \frac{360^{\circ}}{6}$.

Corollary: If an angle is the sum of $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles for some natural numbers n and m with θ_{1} and θ_{2} being the respective $n^{t h}$ and $m^{\text {th }}$ root harmonic angles and if $q=\operatorname{lcm}(n, m)$ is the least common multiple of m and n, then $\theta=\frac{360^{\circ}}{q}$, the root $q^{t h}$ harmonic angle, is the greatest common divisor of θ_{1} and θ_{2}. In symbols, $\theta=\operatorname{gcd}\left(\theta_{1}, \theta_{2}\right)$.

Proof: Suppose θ_{1}, θ_{2} are the respective $n^{\text {th }}$ and $m^{\text {th }}$ root harmonic angles for some natural numbers n and m, and suppose also that $q=\operatorname{lcm}(n, m)$ and $\theta=\frac{360^{\circ}}{q}$. Then $\theta_{1}=\frac{360^{\circ}}{n}$ and $\theta_{2}=\frac{360^{\circ}}{m}$, and $\theta=\frac{360^{\circ}}{q}$ is a root $q^{\text {th }}$ harmonic angle. Since $q=\operatorname{lcm}(n, m)$, we can write $q=n q_{1}=m q_{2}$. Thus, $\theta=\frac{360^{\circ}}{q}=\frac{360^{\circ}}{n q_{1}}=$ $\frac{360^{\circ} / n}{q_{1}}=\frac{\theta_{1}}{q_{1}} \Rightarrow \theta_{1}=q_{1} \cdot \theta$ and $\theta=\frac{360^{\circ}}{q}=\frac{360^{\circ}}{m q_{2}}=\frac{360^{\circ} / m}{q_{2}}=\frac{\theta_{2}}{q_{2}} \Rightarrow \theta_{2}=q_{2} \cdot \theta$. Hence, θ_{1} and θ_{2} are both natural number multiples of θ, and, thus, θ is a common divisor of θ_{1} and θ_{2}. Our claim now is that θ is the greatest common divisor of θ_{1} and θ_{2}, and to show this let's assume that there exists another common divisor θ^{\prime} such that $\theta^{\prime}>\theta$. Then since θ^{\prime} is a divisor of θ_{1} and θ_{2}, there exist $q_{1}{ }^{\prime}$ and $q_{2}{ }^{\prime}$ such that $\theta_{1}=$ $q_{1}{ }^{\prime} \theta^{\prime}$ and $\theta_{2}=q_{2}{ }^{\prime} \theta$. Hence, $\theta^{\prime}=\frac{\theta_{1}}{q_{1^{\prime}}}=\frac{360^{\circ} / n}{q_{1}^{\prime}}=\frac{360^{\circ}}{n q_{1^{\prime}}}$ and $\theta^{\prime}=\frac{\theta_{2}}{q_{2}{ }^{\prime}}=\frac{360^{\circ} / m}{q_{2^{\prime}}}=\frac{360^{\circ}}{m q_{2^{\prime}}}$. From this it follows that $n q_{1}{ }^{\prime}=m q_{2}{ }^{\prime}$, and if we set $q^{\prime}=n q_{1}{ }^{\prime}=m q_{2}{ }^{\prime}$, then $\theta^{\prime}=\frac{360^{\circ}}{q^{\prime}}$. From this we can conclude that q^{\prime} is a common multiple of n and m and that $q^{\prime}=\frac{360^{\circ}}{\theta^{\prime}}$. However, since we assumed that $\theta^{\prime}>\theta$, it follows that $q^{\prime}=\frac{360^{\circ}}{\theta^{\prime}}<\frac{360^{\circ}}{\theta}=q$. But since q^{\prime} is a common multiple of n and m, this contradicts our assertion that $q=\operatorname{lcm}(n, m)$, and the assumption that led to this contradiction was that θ was not the greatest common divisor of θ_{1} and θ_{2}. Therefore, $\theta=\operatorname{gcd}\left(\theta_{1}, \theta_{2}\right)$.

Comment: The angle 210° is equal to $90^{\circ}+120^{\circ}$, a $4^{\text {th }}$ harmonic angle plus a $3^{\text {rd }}$ harmonic angle. By our theorem, it should follow that 210° is a $12^{\text {th }}$ harmonic angle and that $\frac{360^{\circ}}{12}=30^{\circ}$ is the greatest common divisor for 90° and 120°, and that is indeed the case.

Theorem: If an angle is the sum of two angles θ_{1} and θ_{2} where θ_{1}, θ_{2} are $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles, respectively, for natural numbers n and m and if $q=\operatorname{lcm}(n, m)$ and $\theta=\operatorname{gcd}\left(\theta_{1}, \theta_{2}\right)$, then $\frac{360^{\circ}}{q}=\theta=$ $\theta_{1}+\theta_{2}$ and $n \theta$ is an $m^{\text {th }}$ harmonic angle.

Proof: It follows from previous proofs that $\frac{360^{\circ}}{q}=\theta=\theta_{1}+\theta_{2}$, and since where θ_{1}, θ_{2} are $n^{\text {th }}$ and $m^{\text {th }}$ harmonic angles, respectively, for natural numbers n and m, we have that $n \theta=n \theta_{1}+n \theta_{2}=0^{\circ}+$ $n \theta_{2}$ modulo $360^{\circ}=n \theta_{2}$ modulo 360°, and since θ_{2} is an $m^{\text {th }}$ harmonic angle, it follows that $n \theta_{2}$ is also an $m^{\text {th }}$ harmonic angle.

Comment: Nice!

Theorem: If m and n are natural numbers with no common divisor other than 1 and if $q=\operatorname{lcm}(m, n)=$ $m n$ and $\theta=\frac{360^{\circ}}{q}$, then $n \theta$ is an $m^{t h}$ harmonic angle and $m \theta$ is an $n^{t h}$ harmonic angle.

Proof: Since θ is a q harmonic angle, it follows from previous proof that $q \theta=0^{\circ}$ modulo 360°. However, since $q=m n$, it follows that 0° modulo $360^{\circ}=q \theta=m(n \theta)=n(m \theta)$. These last two inequalities imply that $n \theta$ is an $m^{t h}$ harmonic angle and $m \theta$ is an $n^{t h}$ harmonic angle.

Corollary: If m and n are natural numbers with no common divisor other than 1 and if $q=l c m(m, n)=$ $m n$ and j, k are natural numbers such that $j=k q=k m n$ and if $\theta=\frac{360^{\circ}}{j}$, then $k n \theta$ is an $m^{t h}$ harmonic angle and $k m \theta$ is an $n^{t h}$ harmonic angle.

Proof: Since 0° modulo $360^{\circ}=j \theta=k q \theta=m(k n \theta)=n(k m \theta)$, it follows that $k n \theta$ is an $m^{t h}$ harmonic angle and $k m \theta$ is an $n^{t h}$ harmonic angle.

Comment: The better you know and understand these theorems, the more you will be able to play harmonic charts like a violin, and these theorems are also stepping stones to new theorems yet to come!

Theorem: If an angle θ as measured in degrees is a rational fraction of 360° of the form $\frac{360^{\circ}}{f / g}=\frac{g\left(360^{\circ}\right)}{f}$, where $f, g \in \mathbb{N}$, then $f \theta=0^{\circ}$ modulo 360° and $(f+1) \theta=\theta$ modulo 360°.

Proof: Clearly, $f \theta=f\left(\frac{g\left(360^{\circ}\right)}{f}\right)=g\left(360^{\circ}\right)=0^{\circ} \operatorname{modulo} 360^{\circ}$, and $(f+1) \theta=(f+1)\left(\frac{g\left(360^{\circ}\right)}{f}\right)=$ $g\left(360^{\circ}\right)+\frac{g\left(360^{\circ}\right)}{f}=0^{\circ}+\theta=\theta$ modulo 360°.

Comment: This theorem helps to extend out results from natural number harmonics to rational number harmonics.

Theorem: If $\theta=\frac{360^{\circ}}{f}$ where f is irrational, then θ is irrational, and there is no natural number g such that $g \theta=0^{\circ}$ modulo 360°.

Proof: If θ is rational and f is irrational, then that would mean that $f \theta=360^{\circ}$ is irrational. Clearly not true. Therefore, θ is irrational. Thus, it also follows that $g \theta$ is irrational and never equal to a natural number multiple of 360°. Hence, there is no natural number g such that $g \theta=0^{\circ}$ modulo 360°.

Corollary: If $\theta=\frac{360^{\circ}}{f}$ where f is irrational, then there is no natural number $g>1$ such that $g \theta=$ θ modulo 360°.

Proof: If there were a natural number $g>1$ such that $g \theta=\theta$ modulo 360°, then we would have $(g-1) \theta=g \theta-\theta=\theta-\theta=0^{\circ}$ modulo 360° in contradiction to our theorem.

Commentary: As noted in our chapter on Astrology and Fractals, irrational number harmonics could lead to strange attractors. However, we also note that every irrational number can be approximated by a rational number. Thus, the rational numbers may be sufficient for all practical applications.

Theorem: Let $\theta=k\left(\frac{360^{\circ}}{n}\right)$ be a nonzero $n^{t h}$ harmonic angle, and let m be a natural number. If $\theta=$ $k\left(\frac{360^{\circ}}{n}\right)$ is fixed in the $m^{t h}$ harmonic, then all $n^{t h}$ harmonic angles are fixed in the $m^{t h}$ harmonic.

Proof: Let $\theta=k\left(\frac{360^{\circ}}{n}\right)$ be a nonzero $n^{\text {th }}$ harmonic angle for some natural number k, and suppose m is a natural number such that $m \theta=\theta$ modulo 360°. Then $m k\left(\frac{360^{\circ}}{n}\right)=k\left(\frac{360^{\circ}}{n}\right) \operatorname{modulo} 360^{\circ}$, and this implies via division by k that $m\left(\frac{360^{\circ}}{n}\right)=\frac{360^{\circ}}{n}$ modulo 360°. Hence, it now follows that for any natural number f that $m f\left(\frac{360^{\circ}}{n}\right)=f m\left(\frac{360^{\circ}}{n}\right)=f\left(\frac{360^{\circ}}{n}\right) \operatorname{modulo} 360^{\circ}$. Therefore, if one nonzero $n^{t h}$ harmonic angle is fixed in the $m^{\text {th }}$ harmonic, then all $n^{t h}$ harmonic angles are fixed in the $m^{t h}$ harmonic.

Comment: This strengthens one of our earlier results.

Theorem: The $n^{\text {th }}$ roots of unity form a finite cyclic group of order n under addition that is isomorphic to \mathbb{Z}_{n} 。

Proof-1: Obvious.
Proof-2: Easy.
Proof-3: Clear.
Proof-4: Why do you want more proofs? I've already given you three!!

Comment: If you want something done right, do it yourself!

