A GHITID BARDEN OF BDOUPS

Proving Theorems!

Creative Commons License

You are free to:

- Share this work
- Adapt this work
- Attribute all original materials to Doc Benton

You are not free to:

- Charge money for this work; Knowledge is free!

COATEMTS (PADT O

Introduction (Part 9) 1
Symbolic Logic 2
Theorem 1: A group G has a unique identity element. In other words, it has only oneelement e with the property that for every $a \in G, e \cdot a=a=a \cdot e$. 8
Theorem 2: Let G be a group, and let $a, b, c \in G$. If $a b=a c$, then $b=c$ 9
Theorem 3: Let G be a group, and let $a, b, c \in G$. If $b a=c a$, then $b=c$ 10
Theorem 4: Let G be a group, and let $a \in G$. Then a has a unique inverse,denoted by a^{-1}11
Theorem 5: Let G be a group, and let $a \in G$. Then $a=\left(a^{-1}\right)^{-1}$. 12
Theorem 6: Let G be a group, and let $a, b \in G$. Then $(a b)^{-1}=b^{-1} a^{-1}$ 13
Theorem 7: Let G be a group. If $x^{2}=e$ for every $x \in G$, then G is abelian.14
Theorem 8: Let G be a group and let $a, b \in G$. If $a b=e$, then $b a=e$.15

Theorem 9: Let G be a group and let H be a subset of G. If for every $a \in H$ we have that $a^{-1} \in H$ and if for every $a, b \in H$ we have that $a b \in H$, then H is a subgroup of G16
Theorem 10: Let G be a finite group and let H be a subset of G. If for every$a, b \in H$ we have that $a b \in H$, then H is a subgroup of G.................. 17

Theorem 11: If H is a subgroup of a finite group G, then any two right (left)cosets either coincide or have an empty intersection............................... 18

Theorem 12: If H is a subgroup of a finite group G, then any two right (left) cosets have the same number of elements. .. 19

Theorem 13 (Lagrange Part 1): If H is a subgroup of a finite group G, then the order of H is a divisor of the order of G. 20

Theorem 14 (Lagrange Part 2): If H is a subgroup of a finite group G, then the number of right (left) cosets of H in G, denoted by $[G: H]$, is equal to $\frac{|G|}{|H|}$.

Theorem 15: If H is a subgroup of a finite group G, then $H H=H$ 22

Theorem 16: If H is a subgroup of a group G, then the right (left) cosets of H in G define an equivalence relation. ... 23

Theorem 17: If H is a normal subgroup of G and $H a_{1}=H a_{2}$ and $H b_{1}=H b_{2}$, then
\qquad

Theorem 18: If H is a subgroup that is not a normal subgroup of G and $H a_{1}=H a_{2}$ and $H b_{1}=H b_{2}$, then $H a_{1} b_{1}$ is not necessarily equal to $H a_{2} b_{2}$ 25

Theorem 19: If N is a normal subgroup of a group G, then $G / N=\{N a \mid a \in G\}$ is a group where the multiplication of right (left) cosets is defined in terms of the multiplication of elements in G. In other words, by $N a \cdot N b=N(a b)$. 26

Theorem 20: The center of a group G is a normal subgroup of G. 27

Theorem 21: The commutator (or derived) subgroup of a group G is
\qquad

Theorem 22: If H is a subgroup of a group G and $a \in G$, then $a^{-1} H a$ (and $a \mathrm{Ha}^{-1}$) is a subgroup of G 29

Theorem 23: If H is a subgroup of a group G, then the subgroup N generated by H and its conjugates is normal in G.

Theorem 24: If a finite group G has an even number of elements, then at least one non-identity element is its own inverse.

Theorem 25: Let G be a group, let M and N be normal subgroups of G, and let $m \in M$ and $n \in N$. Then the commutator of m by $n, m^{-1} n^{-1} m n$, is an element of $M \cap N$ 32

Theorem 26: Let G be a group, let M and N be normal subgroups of G such that $M \cap N=e$ (the identity), and let $m \in M$ and $n \in N$. Then m and n commute with one another, or in other words, $m n=n m$ 33

Theorem 27: Let G be a group, let M and N be normal subgroups of G such that $M N=G$ and $M \cap N=e$ (the identity). Then if $m_{1}, m_{2} \in M$ and $n_{1}, n_{2} \in N$ such that $m_{1} n_{1}=m_{2} n_{2}$, it follows that $m_{1}=m_{2}$ and $n_{1}=n_{2}$. In other words, each element in G can be represented in a unique way as a product of an element in M with an element in N. 34

Theorem 28: If M and N are normal subgroups of G such that $M \cap N=e$ and $G=M N$, then G is isomorphic to the direct product of M and $N, G \cong M \times N .$.
Theorem 29: If H is a subgroup of a group G and if N is a normal subgroup of G,then the right (left) cosets corresponding to elements of H form a subgroup ofG / N37
Theorem 30: If H is a normal subgroup of a group G and if N is a normal subgroup of G, then the right (left) cosets corresponding to elements of H form a normal subgroup of G / N 38
Theorem 31: Every finite group G is isomorphic to a group of permutations acting on a set of objects. 39
Theorem 32: Let G be a group, let $g \in G$, and define a function $T_{g}: G \rightarrow G$ by$T_{g}(x)=g \times g^{-1}$. Then $T_{g}: G \rightarrow G$ is a one-to-one and onto function, or in other words,a bijection45
How to Use GAP (Part 9) 46
Summary (Part 9) 66
Practice (Part 9) 67
Practice (Part 9) - Answers 69

TATMODUCTHON (PADT O)

In Part 9 of this group theory saga we finally encounter theorem proving. This, of course, is where most college level courses on group theory and abstract algebra begin, but we have found so much other stuff to discuss that proving theorems in our work comes at the very end. Also, in this part, we restrict ourselves to theorems that have proofs that are generally very short and easy to comprehend. Nonetheless, we begin with an introductory chapter on symbolic logic and what expressions like "If A, then B," and " A if and only if B " actually mean. Additionally, we sometimes color-code parts of our proofs in order to make them easier to follow. Furthermore, in this part and in Part 10 which will look at more advanced proofs and theorems, we often are more verbose than most mathematicians might be, and we do this in order to make our explanations as clear as possible. Enjoy!

SyM OOLTC $206 T 6$

This lesson is an introduction to symbolic logic and what we actually mean in mathematics by statements such as "a implies b " and "a if and only if b." Below are some common symbols that are used in logic followed by the corresponding math symbols that I will use instead.

LOGIC	MATH
\sim or \neg	not
\vee	or
\wedge	and
$a \rightarrow b$	$a \Rightarrow b$
$a \leftrightarrow b$	$a \Leftrightarrow b$

The statement " $a \Rightarrow b$ " can be read as "a implies b " or "if a then b " or "a is a sufficient condition for b " or "b is a necessary condition for a."

The statement " $a \Leftrightarrow b$ " can be read or written as "a iff b" or "a if and only if b" or "a implies b and b implies a " or " a is a necessary and sufficient condition for b."

Using the logical connectives above, we can rewrite " $a \Rightarrow b$ " as "not (a \& not-b)." Similarly, since " $a \Leftrightarrow b$ " means " $a \Rightarrow b \& b \Rightarrow a$," we can rewrite " $a \Leftrightarrow b$ " as "[not (a \& not-b)] \& [not (b \& not-a)]."

In mathematics, for a compound statement " $A \& B$ " to be true, both of the statements A and B must be true. On the other hand, for the compound statement "A or B" to be true, only one of the statements must be true. You can
construct some simple examples to convince yourself that this is the correct way to proceed. Also, in mathematics, unless stated otherwise, we always use an inclusive or. That means that for " A or B " to be true, we either have A true or B true or both A and B true. In an exclusive or, either A or B can be true, but not both at the same time.

To determine the truth possibilities for a statement or a combination of statements, we often set up what we call a truth table. For example, below is a truth table for a statement in the form Not-A. We begin by noting that A can be a statement that is either true or false, and then we will always assume that the opposite of true is false, and the opposite of false is true. This assumption is known as the Law of the Excluded Middle. In other words, we'll assume that there is nothing in between true and false that could happen. This is what is generally assumed when doing mathematics, but to be honest, this is not always the case. For example, consider the following statement: This statement is false. Notice that if our statement is true, then it follows that it is false, and if it is false, then it follows that it is true. This type of statement is an example of a paradox that is neither true nor false. However, we generally take it for granted when doing mathematics that we are not dealing with paradoxes, and given that, here is the truth table for Not-A, where the final truth values are presented in the yellow column.

Not	A
F	T
T	F

From this truth table, we see that if A is true, then Not-A is false, and if A is false, then Not-A is true. Simple!

Now let's look at a truth table for a compound statement of the form A \& B. Notice that since both A and B can be either true or false statements, there are four separate combinations of true and false that we can come up with.

\mathbf{A}	$\boldsymbol{\&}$	\mathbf{B}
T	\mathbf{T}	T
T	F	F
F	F	T
F	F	F

Notice, also, that this time that our compound statement is true only when both A and B are true.

In our next example, we'll examine the possible truth values of a compound statement of the form A or B.

\mathbf{A}	or	\mathbf{B}
T	\mathbf{T}	T
T	\mathbf{T}	F
F	\mathbf{T}	T
F	F	F

This time, for the compound statement to be true, only one of the statements, A or B, need be true, and that the compound statement is false only when both A and B are false.

When we have an assertion in a mathematical proof such as A implies B or $A \Rightarrow B$ or if A, then B, then what we are trying to say is that if A is true, then B has to be true as well. In the language of symbolic logic, we consider all of the formulations in the previous sentence to be equivalent to the statement Not-(A \& Not-B). In other words, it's not the case that A can be true and B not be true. Below is our truth table for such a statement.

Not	[A	$\boldsymbol{\&}$	(Not	B)]
\mathbf{T}	T	F	F	T
F	T	T	T	F
\mathbf{T}	F	F	F	T
\mathbf{T}	F	F	T	F

There are a couple of things to notice here. First, a true statement cannot imply a false statement. Thus, the ultimate truth value of a compound statement such as, "If I am an old mathematician, then the moon is made of green cheese," is false. In this example, the first statement is true, but the second statement is false, and thus, the truth value of the whole implication is false. But on the other hand, a false statement can always imply anything. For instance, if I say, "If the moon is made of green cheese, then I am Superman," then that compound statement is considered true. In other words, you can't argue logically that the assertion A implies B is false simply because the first statement in our assertion isn't true to begin with. In symbolic logic, a false statement can imply anything, and the proof of this is in the truth table where we clearly see that if our first statement is false, then the implication is true regardless of whether the second statement is true or false.

When doing proofs in mathematics, the other type of compound statement you are likely to encounter is something of the form A if and only if B or $A \Leftrightarrow B$. This
is basically a shortened form for A implies B and B implies A. In other words, the implication goes in both directions! And then we can break this done further into the complex statement,
Not-[A \& Not-B] \& Not-[B \& Not-A]

Our truth table for this is as follows:

\{ Not	[A	$\boldsymbol{\&}$	$\mathbf{(N o t}$	$\mathbf{B})]\}$	$\boldsymbol{\&}$	\{ Not	[B	$\boldsymbol{\&}$	(Not	\mathbf{A})] \}
F	T	F	F	T	F	F	T	F	F	T
F	T	T	T	F	F	T	F	T	F	T
T	F	F	F	T	F	F	T	T	T	F
T	F	F	T	F	T	T	F	F	T	F

From this truth table we see that the statement $A \Leftrightarrow B$ or A if and only if B is true only when both statements A and B are true.

When we are doing proofs in mathematics that involve implications, we generally use argument forms that look like one of the following. The first form is called modus ponens and the second form is called modus tolens.

Modus Ponens

a. If A, then B
b. A
c. Therefore, B

Modus Tolens

a. If A, then B
b. Not-B
c. Therefore, Not-A

This second form, modus tolens, is related to what in mathematics is known as proof by contradiction. In this method of proof, you assume A is true and you want to prove that B is true. However, instead of arguing directly from A to B, you essentially say, "Suppose B isn't true," and then you show that this implies that A isn't true, thus arriving at a contradiction of your initial hypothesis and leaving the conclusion $A \Rightarrow B$ as your only way out of the contradiction.

And now you're ready to see some basic proofs in group theory! Enjoy them and study them well so that you can make these techniques your own!

THEPREM
 THE UNIQUENESS OF THE IDENTITY

Theorem 1: A group G has a unique identity element. In other words, it has only one element e with the property that for every $a \in G, e \cdot a=a=a \cdot e$.

Proof: Suppose that e_{1} and e_{2} are both identity elements in G. Then since e_{1} is an identity element, it follows that $e_{1} \cdot e_{2}=e_{1} \cdot\left(e_{2}\right)=e_{2}$. On the other hand, since e_{2} is an identity element, we also have that $e_{1} \cdot e_{2}=\left(e_{1}\right) \cdot e_{2}=e_{1}$. Therefore, $e_{1}=e_{1} \cdot e_{2}=e_{2}$, and the identity element in a group is unique.

THEOREP 2

LEFT CANCELLATION

Theorem 2: Let G be a group, and let $a, b, c \in G$. If $a b=a c$, then $b=c$.

Proof: Let G be a group with $a, b, c \in G$, and suppose that $a b=a c$. Then $a^{-1}(a b)=a^{-1}(a c)$. But by the associative property, this means that $\left(a^{-1} a\right) b=\left(a^{-1} a\right) c$ which implies that $e b=e c$ which implies that $b=c$. Therefore, if $a b=a c$, then $b=c$.

THEOMEP
 RIGHT CANCELLATION

Theorem 3: Let G be a group, and let $a, b, c \in G$. If $b a=c a$, then $b=c$.

Proof: Let G be a group with $a, b, c \in G$, and suppose that $b a=c a$. Then $(b a) a^{-1}=(c a) a^{-1}$. But by the associative property, this means that $b\left(a a^{-1}\right)=c\left(a a^{-1}\right)$ which implies that $b e=c e$ which implies that $b=c$. Therefore, if $b a=c a$, then $b=c$.

THEOREM M

THE UNIQUENESS OF INVERSES

Theorem 4: Let G be a group, and let $a \in G$. Then a has a unique inverse, denoted by a^{-1}.

Proof: Let G be a group, and let $a \in G$. Now suppose that $b, c \in G$ such that both b and c are inverses of a. Then $a b=e$, the identity, and $a c=e$. Hence, $a b=a c$. But by our Left Cancellation Theorem (Theorem 2), this implies that $b=c$. Therefore, in a group an element a has only one, unique inverse, denoted by a^{-1}.

THEORE施
 THE INVERSE OF THE INVERSE

Theorem 5: Let G be a group, and let $a \in G$. Then $a=\left(a^{-1}\right)^{-1}$.

Proof: Let G be a group, and let $a, a^{-1} \in G$. Then $a a^{-1}=e$, the identity. But on the other hand, $\left(a^{-1}\right)^{-1}\left(a^{-1}\right)=e$. Hence, by the Right Cancellation Theorem (Theorem $3)$, it follows that $a=\left(a^{-1}\right)^{-1}$.

THPOREM 6

THE INVERSE OF $a b$

Theorem 6: Let G be a group, and let $a, b \in G$. Then $(a b)^{-1}=b^{-1} a^{-1}$.

Proof: Let G be a group, and let $a, b \in G$. Then $(a b)^{-1}(a b)=e$, the identity. But on the other hand, $\left(b^{-1} a^{-1}\right)(a b)=b^{-1}\left(a^{-1} a\right) b=b^{-1} e b=b^{-1} b=e$. Hence, $(a b)^{-1}(a b)=\left(b^{-1} a^{-1}\right)(a b)$, and by the Left Cancellation Theorem (Theorem 2), it follows that $(a b)^{-1}=b^{-1} a^{-1}$.

THEOREM
 A CONDITION FOR BEING AN ABELIAN GROUP

Theorem 7: Let G be a group. If $x^{2}=e$ for every $x \in G$, then G is abelian.

Proof: Let G be a group, let $a, b \in G$, and suppose that for every $x \in G, x^{2}=e$.
Then, in particular, $(a b)^{2}=(a b)(a b)=e$, the identity. Hence, $a b=(a b)^{-1}=b^{-1} a^{-1}$. But since we also have that $a^{2}=a a=e$ and $b^{2}=b b=e$, it follows that $a=a^{-1}$ and $b=b^{-1}$. Therefore, $a b=(a b)^{-1}=b^{-1} a^{-1}=b a$ and G is abelian.

THEOMEA

A PROOF ABOUT THE IDENTITY

Theorem 8: Let G be a group and let $a, b \in G$. If $a b=e$, then $b a=e$.

Proof: If $a b=e$, then $b=a^{-1}$, and it now immediately follows that $b a=a^{-1} a=e$.

THEDREF S

SUBGROUP OF A GROUP

Theorem 9: Let G be a group and let H be a subset of G. If for every $a \in H$ we have that $a^{-1} \in H$ and if for every $a, b \in H$ we have that $a b \in H$, then H is a subgroup of G.

Proof: Let G be a group and let H be a subset of G, and assume that for every $a \in H$ we have that $a^{-1} \in H \quad$ and for every $a, b \in H \quad$ we have that $a b \in H$. To show that H is a subgroup of G, we need to show four things - closure under the group multiplication, the associative law, the existence of an identity, and the existence of inverses. We are assuming in our hypothesis that the closure and inverse properties are satisfied, and we get the associative property for free since it holds for all elements in the group G. Thus, we just need to establish the existence of an identity element. But this is easy because if $a \in H$, then $a^{-1} \in H$, and since we are assuming closure under multiplication in H, we have that $a a^{-1}=e \in H$. Therefore, H is a subgroup of G.

THEOREP 90

SUBGROUP OF A FINITE GROUP

Theorem 10: Let G be a finite group and let H be a subset of G. If for every $a, b \in H$ we have that $a b \in H$, then H is a subgroup of G.

Proof: Let G be a finite group and let H be a subset of G, and assume that for every $a, b \in H$ we have that $a b \in H$. Now let $a \in H$. Then our closure property tells us that all powers of a must also belong to H. But since G is a finite group, eventually one of our powers of a will have to be equal to the identity. More specifically, if the order of G is $n,|G|=n$, then because G has only a finite number of elements, at least one of the powers in the list $a, a^{2}, a^{3}, \ldots, a^{n}$ must be the identity. In particular, if $a^{m}=e$, then we can rewrite this as $a^{m-1} \cdot a$, and it now follows that $a^{m-1}=a^{-1} \in H$. Thus, it follows from the closure property that not only is $e \in H$, but $a^{-1} \in H$ as well, and, therefore, H is a subgroup of G.

THEORTEA 明

INTERSECTION OF COSETS

Theorem 11: If H is a subgroup of a finite group G, then any two right (left) cosets either coincide or have an empty intersection.

Proof: We will prove the theorem just for right cosets since the argument for left cosets is the same. Thus, let H is a subgroup of a finite group G and suppose that $a, b \in G$ and that $H a$ and $H b$ are right cosets. Recall that if H has m elements, $e=h_{1}, h_{2}, h_{3}, \ldots, h_{m}$, then the members of Ha are $a, h_{2} a, h_{3} a, \ldots, h_{m} a$ and the members of $H b$ are $b, h_{2} b, h_{3} b, \ldots, h_{m} b$. Also, if $H a \bigcap H b=\varnothing$, then we're done. Thus assume that the intersection is non-empty. Then that means there exist $h_{j} a \in H a$ and $h_{k} b \in H b$ such that $h_{j} a=h_{k} b$. But this also means that $a=h_{j}^{-1} h_{k} b$ and $b=h_{k}^{-1} h_{j} a$. Hence, every element in $H b$ can be written as a product of an element in H with a, and every element in Ha can be written as a product of an element in H with b. From this it follows that every element in Hb is also an element in Ha , and every element in Ha is also an element in Hb . And from this it follows that Hb is a subset of $H a$ and $H a$ is a subset of $H b, H a \subseteq H b$ and $H b \subseteq H a$. Thus, $H a=H b$, and, in general, for any two right cosets Ha and Hb , either $\mathrm{Ha} \cap \mathrm{Hb}=\varnothing$ or $H a=H b$.

NOTE: This proof can be extended to include infinite groups, but we don't want to get into the complexities of infinite sets at this point.

THEOREPA

SIZE OF COSETS

Theorem 12: If H is a subgroup of a finite group G, then any two right (left) cosets have the same number of elements.

Proof: We will prove the theorem just for right cosets since the argument for left cosets is the same. Thus, let H be a subgroup of a finite group G and suppose that $a \in G$ and that H and $H a$ are distinct right cosets. Recall that if H has m elements, $e=h_{1}, h_{2}, h_{3}, \ldots, h_{m}$, then the members of Ha are $a, h_{2} a, h_{3} a, \ldots, h_{m} a$. It now follows from the right cancellation law that these are m distinct elements in Ha since otherwise, for example, if we had $h_{2} a=h_{3} a$, then this would incorrectly imply that $h_{2}=h_{3}$. And since a was chosen to be any arbitrary element that is not in H, this argument shows that all right cosets of H in G will have the same number of elements as the subgroup H. Therefore, any two right cosets of H in G have the same number of elements.

NOTE: This proof can be extended to include infinite groups, but we don't want to get into the complexities of infinite sets at this point.

THEORME 4

LAGRANGE'S THEOREM - PART 1

Notation: The number of elements in a group (or set) G, also called the order of G, is denoted by $|G|$.

Theorem 13: If H is a subgroup of a finite group G, then the order of H is a divisor of the order of G.

Proof: Suppose that H is a subgroup of a finite group G, and suppose that $|G|=n$ and $|H|=m$. If $H=G$, then clearly $m=n$ and, thus, m divides n. Hence, suppose that $H \neq G$. Then there exists $a \in G$ such that $a \notin H$, and by previous proof (Theorems 11 \& 12), $|H|=|H a|$ and $H \cap H a=\varnothing$. Continuing in this manner, if $H \cup H a \neq G$, then there exists $b \in G$ such that $b \notin H$ and $|H|=|H a|=|H b|$ and no two of these right cosets have any elements in common. If now $H \cup H a \cup H b \neq G$, then we can continue once again in this manner, but since G is a finite group, we will eventually arrive at a set of right cosets whose union is G. Furthermore, since these cosets all contain m elements and since no two cosets have any elements in common, then if we have exactly k such right cosets whose union is G then the number of elements in G is equal to the number of elements in H times the number of distinct right cosets of H in G. In other words, $n=m k$ and, therefore, $m=|H|$ is a divisor of $n=m k=|G|$.

THEOREP 時

 LAGRANGE'S THEOREM - PART 2

 LAGRANGE'S THEOREM - PART 2}

Definition: If H is a subgroup of a finite group G, then the number of right (left) cosets of H in G is called the index of H in G and is denoted by $[G: H]$.

Theorem 14: If H is a subgroup of a finite group G, then the number of right (left) cosets of H in G, denoted by $[G: H]$, is equal to $\frac{|G|}{|H|}$.

Proof: By previous proof (Theorem 13), if $|G|=n$ and $|H|=m$, then $n=m k$ where k is the number of distinct right (left) cosets of H in G. Therefore, $[G: H]=k=\frac{m k}{m}=\frac{n}{m}=\frac{|G|}{|H|}$.

THPOREP 1

SUSBET PRODUCT

Definition: If H is a subgroup or subset of a group G, then $H H$ is the set of all products $h_{1} h_{2}$ such that $h_{1}, h_{2} \in H$.

Theorem 15: If H is a subgroup of a finite group G, then $H H=H$.

Proof: On the one hand, if $h_{1}, h_{2} \in H$, then we not only have $h_{1} h_{2} \in H H$, but also $h_{1} h_{2} \in H$ since H is closed under multiplication. Hence, $H H$ is a subset of H, $H H \subseteq H$. But on the other hand, if $h \in H$, then $h=e h \in H H$ and, thus, H is a subset of $H H, H \subseteq H H$. Therefore, if $H H \subseteq H$ and $H \subseteq H H$, then it follows that $H H=H$.

THEOPEP 15

COSETS AND EQUIVALENCE RELATIONS

Definition: If X is a non-empty set, then a relation between elements in X, denoted by \equiv, is called an equivalence relation if and only if the following conditions are met:

1. For every $a \in X, a \equiv a$ (reflexive),
2. For every $a, b \in X$, if $a \equiv b$, then $b \equiv a$ (symmetric), and
3. For every $a, b, c \in X$, if $a \equiv b$ and $b \equiv c$, then $a \equiv c$ (transitive).

Theorem 16: If H is a subgroup of a group G, then the right (left) cosets of H in G define an equivalence relation.

Proof: The easy way to prove this is to simply note that from previous proofs (theorems 11 \& 13) that the intersection of any two distinct right (left) cosets is the null set and the union of all the right (left) cosets gives us back all of G. Hence, the cosets form a partition of G into disjoint sets whose union is G, and, therefore, coset membership defines an equivalence relation. More specifically, previous proofs have shown that any two right (left) cosets either have an empty intersection or they are equal to one another, and thus, it follows that (1) $\mathrm{Ha}=\mathrm{Ha}$, (2) if $H a=H b$, then $H b=H a$, and (3) if $H a=H b$ and $H b=H c$, then $H a=H c$. Hence, the right (left) cosets define an equivalence relation.

THHOREP 9

WHEN MULTIPLICATION IS WELL-DEFINED

By well-defined multiplication we mean that if we define multiplication of cosets by $\mathrm{Ha} \cdot \mathrm{Hb}=\mathrm{Hab}$, then we'll get the same result even if we do this multiplication using different representatives, besides a and b, from our two cosets. We'll prove that this is what happens when H is a normal subgroup of G.

Theorem 17: If H is a normal subgroup of G and $H a_{1}=H a_{2}$ and $H b_{1}=H b_{2}$, then $H a_{1} b_{1}=H a_{2} b_{2}$.

Proof: Suppose that H is a normal subgroup of G. Then for every $a \in G$, we have that $H a=a H$. That means that for every product ha where $h \in H$, there exists $h_{1} \in H$ such that $a h_{1}=h a$. Now suppose that $H a_{1}=H a_{2}$. Then $a_{1}, a_{2} \in H a_{1}=H a_{2}$, and, hence, there exists $h_{2} \in H$ such that $a_{1}=h_{2} a_{2}$. In a similar manner, if $b_{1}, b_{2} \in H b_{1}=H b_{2}$, then there exists $h_{3} \in H$ such that $b_{1}=h_{3} b_{2}$. Putting this all together, we can now conclude that $H a_{1} b_{1}=H\left(h_{2} a_{2}\right)\left(h_{3} b_{2}\right)=H h_{2}\left(a_{2} h_{3}\right) b_{2}=H h_{2}\left(h_{4} a_{2}\right) b_{2}=H h_{2} h_{4}\left(a_{2} b_{2}\right)=H a_{2} b_{2}$. What this means is that when H is a normal subgroup, we can define multiplication of cosets in a way that is independent of which representative we pick of that coset. And this is what we mean when we say that the multiplication is well-defined.

THEOREM 3

 WHEN MULTIPLICATION IS NOT WELL-DEFINED

 WHEN MULTIPLICATION IS NOT WELL-DEFINED}

Theorem 18: If H is a subgroup that is not a normal subgroup of G and $H a_{1}=H a_{2}$ and $H b_{1}=H b_{2}$, then $H a_{1} b_{1}$ is not necessarily equal to $H a_{2} b_{2}$.

Proof: If H is a subgroup of G, but H is not normal in G, then there exists at least one $a_{1} \in G$ such that $H a_{1} \neq a_{1} H$. In particular, that means that there are no $h_{3}, h_{4} \in H$ such that $a_{1} h_{4}=h_{3} a_{1}$. Now suppose that $H a_{1}=H a_{2}$ and $H b_{1}=H b_{2}$, and assume that $H a_{1} b_{1}=H a_{2} b_{2}$. Then there exists $h_{1}, h_{2} \in H$ such that $a_{2}=h_{1} a_{1}$ and $b_{2}=h_{2} b_{1}$. Hence, $H a_{1} b_{1}=H a_{2} b_{2}=H\left(h_{1} a_{1}\right)\left(h_{2} b_{1}\right)=\left(H h_{1}\right) a_{1} h_{2} b_{1}=H a_{1} h_{2} b_{1}$. But this implies that there exists $h_{3} \in H$ such that $a_{1} b_{1}=h_{3} a_{1} h_{2} b_{1}$ which implies that $a_{1}=h_{3} a_{1} h_{2}$. Now let $h_{4}=h_{2}^{-1} \in H$. Then $a_{1}=h_{3} a_{1} h_{2} \Rightarrow a_{1} h_{2}^{-1}=h_{3} a_{1} \Rightarrow a_{1} h_{4}=h_{3} a_{1}$. But this contradicts our initial assumption about a_{1}. Therefore, if H is a subgroup that is not a normal subgroup of G and $H a_{1}=H a_{2}$ and $H b_{1}=H b_{2}$, then $H a_{1} b_{1}$ is not necessarily equal to $\mathrm{Ha}_{2} \mathrm{~b}_{2}$ and, thus, our multiplication of cosets is not well-defined.

THBOREM 19

QUOTIENT OR FACTOR GROUPS

Theorem 19: If N is a normal subgroup of a group G, then $G / N=\{N a \mid a \in G\}$ is a group where the multiplication of right (left) cosets is defined in terms of the multiplication of elements in G. In other words, by $N a \cdot N b=N(a b)$.

Proof: In a previous proof (Theorem 17) we showed that this multiplication is well-defined. That means that we get the same result regardless of which element from a coset is used to represent it. Having noted that, it's obvious that the closure property holds. In other words, if $a, b \in G$, then the product of the two right cosets $N a$ and $N b$ is again a right coset that is obtained by multiplying together the representatives from these two given right cosets, $N a \cdot N b=N(a b)$. Furthermore, we get the associative property for free, because multiplication in G is associative. Hence, $N(a b) c=N a(b c)$. Additionally, the identity element in G / N is $N=N e$. Furthermore, for any right coset $N a$, its inverse is $N a^{-1}$ since $N a \cdot N a^{-1}=N\left(a a^{-1}\right)=N e=N$. Therefore, G / N with the multiplication inherited from G is a group. This group is called a quotient or factor group.

THPOMEM 20

THE CENTER IS NORMAL

Definition: The center of a group G, denoted by $Z(G)$, is the set of all elements in G that commute with all other elements in G.

Theorem 20: The center of a group G is a normal subgroup of G.

Proof: We'll begin by showing that $Z(G)$ is at least a subgroup of G. Thus, first note that the center of a group always exists since the identity element always belongs to the center (since it commutes with every other element in G). Second, we'll show that the center is a subgroup by showing that it is closed under multiplication and every that element in the center has an inverse in the center. Thus, let $a, b \in Z(G)$ and let $c \in G$. Then $(a b) c=a(b c)=a(c b)=(a c) b=(c a) b=c(a b)$. Hence, since ab commutes with an arbitrary element of $G, a b$ is in the center of G, and, thus, $Z(G)$ is closed under multiplication. Now let $a \in Z(G)$ and let $c \in G$. Then $a c=c a \Rightarrow(a c) a^{-1}=(c a) a^{-1} \Rightarrow a c a^{-1}=c\left(a a^{-1}\right)=c \Rightarrow a c a^{-1}=c \Rightarrow a^{-1}\left(a c a^{-1}\right)=a^{-1} c$ $\Rightarrow\left(a^{-1} a\right) c a^{-1}=a^{-1} c \Rightarrow e c a^{-1}=a^{-1} c \Rightarrow c a^{-1}=a^{-1} c$. Therefore, if a commutes with c, then a^{-1} commutes with c, and, thus, $a^{-1} \in Z(G)$ and $Z(G)$ is a subgroup of G.

To show that $Z(G)$ is a normal subgroup, let $a \in Z(G)$ and let $c \in G$. Then it suffices to show that $c^{-1} a c \in Z(G)$. But this is easy since, a commutes with every element in G. In other words, $c^{-1} a c=\left(c^{-1} a\right) c=\left(a c^{-1}\right) c=a\left(c^{-1} c\right)=a e=a \in Z(G)$. Therefore, the center of a group G is a normal subgroup of G.

THEOREA 2

THE COMMUTATOR SUBGROUP IS NORMAL

Definition: The commutator or derived subgroup of a group G, denoted by G^{\prime}, is the set of all finite products of commutators in G where a commutator is a product of either the form $a^{-1} b^{-1} a b$ or $a b a^{-1} b^{-1}$ or $b a b^{-1} a^{-1}$ or $b^{-1} a^{-1} b a$ for $a, b \in G$.

Theorem 21: The commutator (or derived) subgroup of a group G is normal in G.

Proof: First of all, by definition the set of all finite products of commutators is closed under multiplication. Also, if $a^{-1} b^{-1} a b$ is a commutator in G, then its inverse, $\left(a^{-1} b^{-1} a b\right)^{-1}=b^{-1} a^{-1}\left(b^{-1}\right)^{-1}\left(a^{-1}\right)^{-1}=b^{-1} a^{-1} b a$ is also a commutator in G. From this it follows that any finite product of commutators will have an inverse that belongs to the set of all finite products of commutators in G. For example, if $a^{-1} b^{-1} a b \cdot c^{-1} d^{-1} c d$ is a product of commutators in G, then its inverse, $d^{-1} c^{-1} d c \cdot b^{-1} a^{-1} b a$, also belongs to G. Hence, the set of all finite products of commutators in G is a subgroup of G. To show that the commutator subgroup is a normal subgroup of G, let $a \in G^{\prime}$ and let $b \in G$. It now suffices to show that $b^{-1} a b \in G^{\prime}$. To do this, note that $\left(b^{-1} a b\right) a^{-1}=b^{-1} a b a^{-1}=b^{-1}\left(a^{-1}\right)^{-1} b a^{-1}$ is a commutator of b and a^{-1}, and, hence, it is equal to some element c in G^{\prime}. But if $\left(b^{-1} a b\right) a^{-1}=b^{-1} a b a^{-1}=c \in G^{\prime}$, then $b^{-1} a b=c a$. However, since $a, c \in G^{\prime}$, that means that $b^{-1} a b=c a \in G^{\prime}$, and that means that the commutator subgroup of a group G is normal in G.

THEOREM 22

THE CONJUGATE OF A SUBGROUP

Definition: If H is a subgroup of a group G and $a \in H$, then $a H a^{-1}$ and $a^{-1} H a$ are conjugates of H in G.

Theorem 22: If H is a subgroup of a group G and $a \in G$, then $a^{-1} \mathrm{Ha}$ (and $a \mathrm{Ha}^{-1}$) is a subgroup of G.

Proof: Let G be a group and let H be a subgroup, and let $a \in G$. To show that $a^{-1} \mathrm{Ha}$ is a subgroup of G, we need to show that $a^{-1} \mathrm{Ha}$ is closed under multiplication and that every element in $a^{-1} H a$ has an inverse. Thus, let $x, y \in H$. Then $a^{-1} x a, a^{-1} y a \in a^{-1} H a$. Also, since $x y \in H$, we have that $a^{-1}(x y) a \in a^{-1} H a$. Now suppose we pick two arbitrary elements of $a^{-1} \mathrm{Ha}$. Then we can write them as $a^{-1} x a$ and $a^{-1} y a$ since every element in $a^{-1} H a$ is the conjugate of some element in H. But now we have that $a^{-1} x a \cdot a^{-1} y a=a^{-1} x \cdot e \cdot y a=a^{-1}(x y) a \in a^{-1} H a$, and, hence, $a^{-1} \mathrm{Ha}$ is closed under multiplication. Furthermore, if $a^{-1} x a \in a^{-1} H a$, then $x^{-1} \in H$ implies that $a^{-1} x^{-1} a \in a^{-1} H a$, too, and since $a^{-1} x a \cdot a^{-1} x^{-1} a=a^{-1} x \cdot e \cdot x^{-1} a=a^{-1}\left(x x^{-1}\right) a=a^{-1} \cdot e \cdot a=a^{-1} a=e$, it follows that every element in $a^{-1} \mathrm{Ha}$ has an inverse that belongs to $a^{-1} \mathrm{Ha}$. Therefore, $a^{-1} \mathrm{Ha}$ is a subgroup of G.

THEOREM 23

THE SUBGROUP GENERATED BY CONJUGATE SUBGROUPS

Definition: If H is a subgroup of a group G and $a \in H$, then $a H a^{-1}$ and $a^{-1} H a$ are conjugates of H in G.

Theorem 23: If H is a subgroup of a group G, then the subgroup N generated by elements of H and elements of its conjugates is normal in G.

Proof: Let G be a group and let H be a subgroup. If H is normal (self-conjugate) in G, then set N equal to H and we are done. On the other hand, if G contains several subgroups that are conjugate to H, then let N be the subgroup generated by taking all finite products of elements of H with the elements in the corresponding conjugates of H. Now let abc represent a typical product of such elements from either H or its conjugates and let $g \in G$, and let's consider the product $g^{-1}(a b c) g$. Clearly, we could also write this as
$\left.g^{-1}(a b c) g=g^{-1}(a e b e c) g=g^{-1} a\left(g g^{-1}\right) b\left(g g^{-1}\right) c g\right)=\left(g^{-1} a g\right)\left(g^{-1} b g\right)\left(g^{-1} c g\right)$. From this last form we see that $g^{-1}(a b c) g$ will be equal to a product of conjugates of a, b, and c, and these conjugates will be elements of either H or one of the conjugates of H. Thus, $g^{-1}(a b c) g$ belongs to the subgroup N generated by elements of H and its conjugates. Therefore, N is a normal subgroup of G.

THEOREP 2 B

GROUPS WITH AN EVEN NUMBER OF ELEMENTS

Theorem 24: If a finite group G has an even number of elements, then at least one non-identity element is its own inverse.

Proof: We will illustrate the argument by assuming we have a group of order 8. If we remove the identity element, then that leaves 7 non-identity elements. Now let's consider the consequences of each of the remaining elements having an inverse that is different from itself. If this were the case, then we would need an even number of elements since every non-identity element would be paired with a different element that is also its inverse. However, since in actuality we have 7 non-identity elements left in the group, it follows that at least one of the elements is its own inverse. And now you can, hopefully, see that this same argument can be applied to any finite group with an even number of elements.

THPORE斿 2

 COMMUTATORS IN NORMAL SUBGROUPS

 COMMUTATORS IN NORMAL SUBGROUPS}

Theorem 25: Let G be a group, let M and N be normal subgroups of G, and let $m \in M$ and $n \in N$. Then the commutator of m by $n, m^{-1} n^{-1} m n$, is an element of $M \cap N$.

Proof: Let G be a group, let M and N be normal subgroups of G, and let $m \in M$ and $n \in N$, and consider the commutator $m^{-1} n^{-1} m n$. Since N is a normal subgroup of G, it follows that $m^{-1} n^{-1} m \in N$ and, hence, $\left(m^{-1} n^{-1} m\right) n=m^{-1} n^{-1} m n \in N$. But on the other hand, since M is a normal subgroup of G, it also follows that $n^{-1} m n \in M$ and, hence, $m^{-1}\left(n^{-1} m n\right)=m^{-1} n^{-1} m n \in M$. Therefore, $m^{-1} n^{-1} m n \in M \cap N$.

THEOREM 35
 COMMUTATIVITY IN NORMAL SUBGROUPS

Theorem 26: Let G be a group, let M and N be normal subgroups of G such that $M \cap N=e$ (the identity), and let $m \in M$ and $n \in N$. Then m and n commute with one another, or in other words, $m n=n m$.

Proof: Let G be a group, let M and N be normal subgroups of G such that $M \cap N=e$ (the identity), and let $m \in M$ and $n \in N$. Then by our previous proof (Theorem 25), the commutator $m^{-1} n^{-1} m n$ is in the intersection of M and N, But this means that $m^{-1} n^{-1} m n=M \cap N=e$. However,

$$
m^{-1} n^{-1} m n=e \Rightarrow m \cdot m^{-1} n^{-1} m n=m \cdot e \Rightarrow n^{-1} m n=m \Rightarrow n \cdot n^{-1} m n=n \cdot m \Rightarrow m n=n m .
$$

Therefore, m and n commute with one another.

THEOME 2

PRODUCT OF NORMAL SUBGROUPS

Theorem 27: Let G be a group, let M and N be normal subgroups of G such that $M N=G$ and $M \cap N=e$ (the identity). Then if $m_{1}, m_{2} \in M$ and $n_{1}, n_{2} \in N$ such that $m_{1} n_{1}=m_{2} n_{2}$, it follows that $m_{1}=m_{2}$ and $n_{1}=n_{2}$. In other words, each element in G can be represented in a unique way as a product of an element in M with an element in N.

Proof: Let G be a group, let M and N be normal subgroups of G such that $M N=G$ and $M \cap N=e$ (the identity), and suppose that $m_{1}, m_{2} \in M$ and $n_{1}, n_{2} \in N$ with $m_{1} n_{1}=m_{2} n_{2}$. Then

$$
\begin{aligned}
& m_{1} n_{1}=m_{2} n_{2} \Rightarrow m_{2}^{-1} \cdot m_{1} n_{1}=m_{2}^{-1} \cdot m_{2} n_{2} \Rightarrow m_{2}^{-1} m_{1} n_{1}=n_{2} . \\
& \Rightarrow m_{2}^{-1} m_{1} n_{1} \cdot n_{1}^{-1}=n_{2} \cdot n_{1}^{-1} \Rightarrow m_{2}^{-1} m_{1}=n_{2} n_{1}^{-1}
\end{aligned}
$$

But $m_{2}{ }^{-1} m_{1} \in M$ and $n_{2} n_{1}^{-1} \in N$. Hence, if $m_{2}^{-1} m_{1}=n_{2} n_{1}^{-1}$, then $m_{2}{ }^{-1} m_{1}, n_{2} n_{1}^{-1} \in M \cap N$. However, since $M \cap N=e$, it follows that $m_{2}^{-1} m_{1}=e$ and $n_{2} n_{1}^{-1}=e$. From this it follows that $m_{1}=m_{2}$ and $n_{2}=n_{1}$. Therefore, each element in G can be represented in a unique way as a product of an element in M with an element in N.

THEOREM 38

ISOMORPHISM TO DIRECT PRODUCT

Theorem 28: If M and N are normal subgroups of G such that $M \cap N=e$ and $G=M N$, then G is isomorphic to the direct product of M and $N, G \cong M \times N$.

Proof: Recall that when we say that two groups are isomorphic, that means that the groups are essentially the same except for the labeling of the elements. More specifically, that means that there is a one-to-one correspondence between elements of the two groups such that multiplication in one group corresponds to multiplication in the other. To show that such an isomorphism exists in this case, we'll first recall some consequences of the last two theorems (Theorem 26 \& Theorem 27) we proved. Namely, that, given that M and N are normal subgroups of G such that $M \cap N=e \quad M \cap N=e$ and $G=M N$, we are able to write each element of G in a unique way as a product of an element of M and an element of N, and that the elements of M and N commute with one another.

Now, a one-to-one correspondence means that each element in G will be paired with exactly one element in $M \times N$ and vice-versa, and we will establish our correspondence as follows. If $g \in G$, then g can be written in a unique way as $g=m n$ for some $m \in M$ and $n \in N$. We'll now let $g=m n$ correspond to (m, n) in the direct product $M \times N$. It should now be fairly obvious that every element of $M \times N$ corresponds to exactly one element of $G=M N$, and every element of $G=M N$ corresponds to exactly one element of $M \times N$. In other words, we have established a one-to-one correspondence between elements in the two groups.

To show that multiplication in one group corresponds to multiplication in the other, let's suppose that $g_{1}=m_{1} n_{1}$ and $g_{2}=m_{2} n_{2}$ where $m_{1}, m_{2} \in M$ and $n_{1}, n_{2} \in N$. Then since elements in M and N commute with one another,
$g_{1} g_{2}=\left(m_{1} n_{1}\right)\left(m_{2} n_{2}\right)=\left(m_{1} m_{2}\right) \cdot\left(n_{1} n_{2}\right)$. But this last product corresponds to the ordered pair $\left(m_{1} m_{2}, n_{1} n_{2}\right)$ in $M \times N$. Furthermore, the ordered pair $\left(m_{1} m_{2}, n_{1} n_{2}\right)=\left(m_{1}, n_{1}\right) \cdot\left(m_{2}, n_{2}\right)$. In other words, $g_{1}=m_{1} n_{1}$ corresponds to $\left(m_{1}, n_{1}\right)$, $g_{2}=m_{2} n_{2}$ corresponds to (m_{2}, n_{2}), and the product $g_{1} g_{2}$ corresponds to $\left(m_{1}, n_{1}\right) \cdot\left(m_{2}, n_{2}\right)$. Therefore, since we have a one-to-one correspondence between the groups such that multiplication in one group corresponds to multiplication in the other, the two groups are isomorphic, $G \cong M \times N$.

THEODEFA 29

CORRESPONDENCE OF SUBGROUPS

Theorem 29: If H is a subgroup of a group G and if N is a normal subgroup of G, then the right (left) cosets corresponding to elements of H form a subgroup of G / N.

Proof: Let H be a subgroup of G, let N be a normal subgroup of G, and consider the right (left) cosets in G / N that correspond to elements of H. By previous proof (Theorem 17), we know that when N is a normal subgroup of G that multiplication in G / N defined by $N a \cdot N b=N(a b)$ is well-defined, and recall that that means that it doesn't matter which elements of the cosets we use when performing the multiplication. Thus, to show that the cosets corresponding to elements in H form a subgroup, all we need to do is demonstrate closure under multiplication and the existence of inverses. But that is easy to do. For example, if $h_{1}, h_{2} \in H$, then $N h_{1} \cdot N h_{2}=N\left(h_{1} h_{2}\right)$ is also a right coset involving an element of H since $h_{1} h_{2} \in H$. Similarly, if $h, h^{-1} \in H$, then $H h \cdot H h^{-1}=H\left(h h^{-1}\right)=H e=H$ implies that $H h^{-1}=(H h)^{-1}$. Hence, inverses also exist in this collection of cosets, and so the cosets in G / N that correspond to elements of H form a subgroup of G / N.

THEOREM 80

CORRESPONDENCE OF NORMAL SUBGROUPS

Theorem 30: If H is a normal subgroup of a group G and if N is a normal subgroup of G, then the right (left) cosets corresponding to elements of H form a normal subgroup of G / N.

Proof: In our previous theorem (Theorem 29) we demonstrated that the right (left) cosets corresponding to elements of H form a subgroup of G / N, and so all that is left is to demonstrate that this will be a normal subgroup of G / N if H is a normal subgroup of a group G. Thus, note that since H is normal in G, if $g \in G$ and $h \in H$, then $g^{-1} h g \in H$. Recall also from the proof of Theorem 29 that $(N g)^{-1}=N g^{-1}$. Consequently, if follows that $(N g)^{-1} \cdot N h \cdot N g=N g^{-1} \cdot N h \cdot N g=N\left(g^{-1} h g\right)$ where, again, $g^{-1} h g \in H$. Therefore, the cosets in G / N corresponding to elements of H form a normal subgroup of G / N.

THEOMPM

CAYLEY'S THEOREM

Theorem 31: Every finite group G is isomorphic to a group of permutations acting on a set of objects.

Proof: Instead of a more formal argument, we'll simply take a typical finite group and show how to find a permutation group that is isomorphic to it. In particular, let's look at D_{3}, the group of symmetries of an equilateral triangle.

This group is generated by rotations about the center and flips about various axes of symmetry. Also, below is a multiplication table for D_{3} expressed in terms of the possible permutations of the vertices of the equilateral triangle.

	(1)(2)(3)	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right)$	$\left(\begin{array}{ll}2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$
(1)(2)(3)	(1)(2)(3)	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right)$	$\left(\begin{array}{ll}2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$
$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	1)(2)(3)	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right)$	$\left(\begin{array}{ll}2 & 3\end{array}\right)$
$\left(\begin{array}{ll}1 & 3\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$(1)(2)(3)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{ll}2 & 3\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$
$\left(\begin{array}{ll}2 & 3\end{array}\right)$	$\left(\begin{array}{ll}2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$(1)(2)(3)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right)$
$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$		$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	1)(2)(3)
$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$	$\left(\begin{array}{ll}1 & 3\end{array}\right)$	$\left(\begin{array}{ll}2 & 3\end{array}\right)$	$\left(\begin{array}{ll}1 & 2\end{array}\right)$	(1)(2)(3)	$\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$

If we use letters to represent the various rotations and flips, then we can rewrite our multiplication table as follows.

$$
\begin{aligned}
e & =(1)(2)(3) \\
R & =\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \\
R^{2} & =\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \\
F & =\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
F R & =\left(\begin{array}{ll}
1 & 2
\end{array}\right) \\
F R^{2} & =\left(\begin{array}{ll}
1 & 3
\end{array}\right)
\end{aligned}
$$

	e	R	R^{2}	F	$F R$	$F R^{2}$
e	e	R	R^{2}	F	$F R$	$F R^{2}$
R	R	R^{2}	e	$F R^{2}$	F	$F R$
R^{2}	R^{2}	e	R	$F R$	$F R^{2}$	F
F	F	$F R$	$F R^{2}$	e	R	R^{2}
$F R$	$F R$	$F R^{2}$	F	R^{2}	e	R
$F R^{2}$	$F R^{2}$	F	$F R$	R	R^{2}	e

When we look at this table, we notice that each row is a permutation of the elements in the very first row. However, this does not mean that we are going to say that R, for instance, is given by the following permutation:

$$
R=\left(\begin{array}{cccccc}
e & R & R^{2} & F & F R & F R^{2} \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
R & R^{2} & e & F R^{2} & F & F R
\end{array}\right)=\left(e, R, R^{2}\right)\left(F, F R^{2}, F R\right)
$$

No, instead we have to be a little more sophisticated so that things will work out properly with regard to multiplication. In particular, remember that we want to think of our initial elements as occupying positions. Thus, in our very top row, e is in the first position, R is in the second position, R^{2} is in the third position, F is in the fourth position, $F R$ is in the fifth position, and $F R^{2}$ is in the sixth position.

		$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
	$6^{\text {th }}$					
	e	R	R^{2}	F	$F R$	$F R^{2}$
e	e	R	R^{2}	F	$F R$	$F R^{2}$
R	R	R^{2}	e	$F R^{2}$	F	$F R$
R^{2}	R^{2}	e	R	$F R$	$F R^{2}$	F
F	F	$F R$	$F R^{2}$	e	R	R^{2}
$F R$	$F R$	$F R^{2}$	F	R^{2}	e	R
$F R^{2}$	$F R^{2}$	F	$F R$	R	R^{2}	e

We can now set up our permutations correctly. In the maneuver R, the first element, e, moves from position one to position three which corresponds to R^{2} in the top row.

$1^{\text {st }}$		$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$
	e	R	R^{2}	F	$F R$	$F R^{2}$
e	e	R	R^{2}	F	$F R$	$F R^{2}$
R	R	R^{2}	\searrow_{e}	$F R^{2}$	F	$F R$
R^{2}	R^{2}	e	R	$F R$	$F R^{2}$	F
F	F	$F R$	$F R^{2}$	e	R	R^{2}
$F R$	$F R$	$F R^{2}$	F	R^{2}	e	R
$F R^{2}$	$F R^{2}$	F	$F R$	R	R^{2}	e

Similarly, the element in the third position of the top row, R^{2}, moves to the second position which corresponds to R in the top row.

		$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
	e	$6^{\text {th }}$				
	e	R	R^{2}	F	$F R$	$F R^{2}$
e	e	R	R^{2}	F	$F R$	$F R^{2}$
R	R	R^{2}	e	$F R^{2}$	F	$F R$
R^{2}	R^{2}	e	R	$F R$	$F R^{2}$	F
F	F	$F R$	$F R^{2}$	e	R	R^{2}
$F R$	$F R$	$F R^{2}$	F	R^{2}	e	R
$F R^{2}$	$F R^{2}$	F	$F R$	R	R^{2}	e

And the element in the second position of the top row, R, moves to the first position which corresponds to e in the top row.

$1^{\text {st }}$		$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$
	e	R	R^{2}	F	$F R$	$F R^{2}$
e	e	R	R^{2}	F	$F R$	$F R^{2}$
R	R	R^{2}	e	$F R^{2}$	F	$F R$
R^{2}	R^{2}	e	R	$F R$	$F R^{2}$	F
F	F	$F R$	$F R^{2}$	e	R	R^{2}
$F R$	$F R$	$F R^{2}$	F	R^{2}	e	R
$F R^{2}$	$F R^{2}$	F	$F R$	R	R^{2}	e

In other words, so far, we have the permutation $\left(e, R^{2}, R\right)$. Continuing, we see that the element originally in the fourth position of the top row, F, moves to the fifth position which corresponds to FR in the top row.

$1^{s t}$		$2^{\text {nd }}$	$3^{r d}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$
	e	R	R^{2}	F	$F R$	$F R^{2}$
e	e	R	R^{2}	F	$F R$	$F R^{2}$
R	R	R^{2}	e	$F R^{2}$	F	$F R$
R^{2}	R^{2}	e	R	$F R$	$F R^{2}$	F
F	F	$F R$	$F R^{2}$	e	R	R^{2}
$F R$	$F R$	$F R^{2}$	F	R^{2}	e	R
$F R^{2}$	$F R^{2}$	F	$F R$	R	R^{2}	e

The element originally in the fifth position of the top row, $F R$, moves to the sixth position which corresponds to $F R^{2}$ in the top row.

$1^{\text {st }}$		$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$
	e	R	R^{2}	F	$F R$	$F R^{2}$
e	e	R	R^{2}	F	$F R$	$F R^{2}$
R	R	R^{2}	e	$F R^{2}$	F	$F R$
R^{2}	R^{2}	e	R	$F R$	$F R^{2}$	F
F	F	$F R$	$F R^{2}$	e	R	R^{2}
$F R$	$F R$	$F R^{2}$	F	R^{2}	e	R
$F R^{2}$	$F R^{2}$	F	$F R$	R	R^{2}	e

And the element in the sixth position in the top row, $F R^{2}$, moves to the fourth position which corresponds to F in the top row.

$1^{\text {st }}$		$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$
	e	R	R^{2}	F	$F R$	$F R^{2}$
e	e	R	R^{2}	F	$F R$	$F R^{2}$
R	R	R^{2}	e	$F R^{2}$	F	$F R$
R^{2}	R^{2}	e	R	$F R$	$F R^{2}$	F
F	F	$F R$	$F R^{2}$	e	R	R^{2}
$F R$	$F R$	$F R^{2}$	F	R^{2}	e	R
$F R^{2}$	$F R^{2}$	F	$F R$	R	R^{2}	e

Thus, the complete permutation associated with R is $R \leftrightarrow\left(e, R^{2}, R\right)\left(F, F R, F R^{2}\right)$. Similarly, the permutation associated F, when we construct it by thinking of the positions that our original top row elements get moved to, is
$F \leftrightarrow(e, F)(R, F R)\left(R^{2}, F R^{2}\right)$. Now from our multiplication table we can see that $R \cdot F=F R^{2}$, and this latter element corresponds to the permutation $R F=F R^{2} \leftrightarrow\left(e, F R^{2}\right)(R, F)\left(R^{2}, F R\right)$. And finally, if we manually multiply our permutations, then we get that the permutation corresponding to R times the permutation corresponding to F gives us the permutation corresponding to $R \cdot F=F R^{2}$.

$$
R F \leftrightarrow\left(e, R^{2}, R\right)\left(F, F R, F R^{2}\right)(e, F)(R, F R)\left(R^{2}, F R^{2}\right)=\left(e, F R^{2}\right)(R, F)\left(R^{2}, F R\right) \leftrightarrow F R^{2} .
$$

So what does this show us? Well, we've demonstrated how to convert each element in our group to a permutation that acts upon the elements of the group, and we've shown that a product such as $R \cdot F=F R^{2}$ gives us the same result when we express our group elements as permutations,

$$
R F \leftrightarrow\left(e, R^{2}, R\right)\left(F, F R, F R^{2}\right)(e, F)(R, F R)\left(R^{2}, F R^{2}\right)=\left(e, F R^{2}\right)(R, F)\left(R^{2}, F R\right) \leftrightarrow F R^{2} .
$$

Therefore, this example suggests that every finite group G is indeed isomorphic to a group of permutations that acts upon the set G of group elements themselves.

THEOREM 32

AN IMPORTANT BIJECTION

Theorem 32: Let G be a group, let $g \in G$, and define a function $T_{g}: G \rightarrow G$ by $T_{g}(x)=g x g^{-1}$. Then $T_{g}: G \rightarrow G$ is a one-to-one and onto function, or in other words, a bijection.

Proof: Let $T_{g}: G \rightarrow G$ be defined by $T_{g}(x)=\operatorname{gxg}^{-1}$ for $x \in G$. To show that T_{g} is one-to-one, we just need to demonstrate that if $T_{g}(x)=T_{g}(y)$, then $x=y$.

However, this follows immediately from our right and left cancellation laws in a group. That is,

$$
T_{g}(x)=T_{g}(y) \Rightarrow g x g^{-1}=g y g^{-1} \Rightarrow g^{-1}\left(g x g^{-1}\right) g=g^{-1}\left(g y g^{-1}\right) g \Rightarrow \text { exe }=\text { eye } \Rightarrow x=y .
$$

Thus, T_{g} is one-to-one.

To show that T_{g} is onto, that means that if $b \in G$, then there exists $x \in G$ such that $T_{g}(x)=b$. But it is easy to find such an x. Just let $x=g^{-1} b g \in G$. Then $T_{g}(x)=T_{g}\left(g^{-1} b g\right)=g\left(g^{-1} b g\right) g^{-1}=e b e=b$, and T_{g} is onto. Therefore, since $T_{g}: G \rightarrow G$ defined by $T_{g}(x)=g x g^{-1}$ for $x \in G$ is both one-to-one and onto, it follows that $T_{g}: G \rightarrow G$ is a bijection.

HOW TO HSE GAP (PADT O)

Once more there is no difference between this file and "How to Use GAP (Part 8)." We are simply including all the previous GAP commands for reference.

1. How can I redisplay the previous command in order to edit it?

Press down on the control key and then also press p. In other words, "Ctrl p".
2. If the program gets in a loop and shows you the prompt "brk>" instead of "gap>", how can I exit the loop?

Press down on the control key and then also press d. In other words, "Ctrl d".
3. How can I exit the program?

Either click on the "close" box for the window, or type "quit;" and press "Enter."
4. How do I find the inverse of a permutation?
gap> $a:=(1,2,3,4)$;
(1,2,3,4)
gap> $a^{\wedge}-1$;
(1,4,3,2)
5. How can I multiply permutations and raise permutations to powers?
gap> $(1,2) *(1,2,3)$;
$(1,3)$
gap> (1,2,3)^2;
$(1,3,2)$
gap> (1,2,3) ${ }^{\wedge}-1$;
$(1,3,2)$
gap> $(1,2,3)^{\wedge}-2 ;$
$(1,2,3)$
gap> $\mathrm{a}:=(1,2,3)$;
$(1,2,3)$
gap> $\mathrm{b}:=(1,2)$;
$(1,2)$
gap> a*b;
$(2,3)$
gap> $a^{\wedge} 2 ;$
$(1,3,2)$
gap> $a^{\wedge}-2$;
$(1,2,3)$
gap> $a^{\wedge} 3 ;$
()
gap> $a^{\wedge}-3 ;$
0
gap> (a*b)^2;
0
gap> (a*b)^3;
$(2,3)$
6. How can I create a group from permutations, find the size of the group, and find the elements in the group?
gap> $a:=(1,2)$;
$(1,2)$
gap> b:=(1,2,3);
$(1,2,3)$
gap> g1:=Group(a,b);
Group([$(1,2),(1,2,3)])$
gap> Size(g1);
6
gap> Elements(g1);
[()$,(2,3),(1,2),(1,2,3),(1,3,2),(1,3)]$
gap> g2:=Group([(1,2),(1,2,3)]);
$\operatorname{Group}([(1,2),(1,2,3)])$
gap> g3:=Group((1,2),(2,3,4));
Group([$(1,2),(2,3,4)])$
7. How can I create a cyclic group of order 3?
gap> $a:=(1,2,3)$;
$(1,2,3)$
gap> g1:=Group(a);
Group([(1,2,3)])
gap> Size(g1);
3
gap> Elements(g1);
[()$,(1,2,3),(1,3,2)]$
gap> g2:=Group((1,2,3));
Group([$(1,2,3)])$
gap> g3: =CyclicGroup(IsPermGroup, 3);
Group([(1, 2, 3)])
8. How can I create a multiplication table for the cyclic group of order 3 that I just created?
gap> ShowMultiplicationTable(g1);

*	\| ()	$(1,2,3)$	$(1,3,2)$
()	()	$(1,2,3)$	$(1,3,2)$
$(1,2,3)$	$(1,2,3)$	$(1,3,2)$	()
$(1,3,2)$	$\mid(1,3,2)$	()	1,2,3)

9. How do I determine if a group is abelian?
```
gap> g1:=Group((1,2,3));
Group([ (1,2,3) ])
gap> IsAbelian(g1);
true
gap> g2:=Group((1,2),(1,2,3));
Group([ (1,2), (1,2,3) ])
gap> IsAbelian(g2);
false
```

10. What do I type in order to get help for a command like "Elements?"
gap> ?Elements
11. How do I find all subgroups of a group?
```
gap> a: =(1, 2,3);
```

```
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2,3), (2,3) ])
gap> Size(g);
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> h:=Al|Subgroups(g);
[Group(()),Group([ (2,3) ]),Group([ (1,2) ]), Group([ (1,3)]),
Group([(1,2,3) ]), Group([(1,2,3),(2,3)])]
gap>List(h,i->E|ements(i));
[[() ], [ (), (2,3)],[(), (1, 2)], [ (), (1,3)], [ (), (1, 2,3),
(1,3,2) ], [ (), (2,3),'(1,2)', (1,2,3)', (1,3,2),'(1,3) ] ]
gap> Elements(h[1]);
[() ]
gap> Elements(h[2]);
[(), (2,3) ]
gap> Elements(h[3]);
[(), (1,2) ]
gap> Elements(h[4]);
[ (), (1,3) ]
gap> Elements(h[5]);
[(), (1,2,3),(1,3,2) ]
gap> Elements(h[6]);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
```

12. How do I find the subgroup generated by particular permutations?
```
gap> g:=Group((1,2),(1,2,3));
Groupl[(1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> h:=Subgroup(g,[(1,2)]);
Group([ (1, 2) ])
gap> Elements(h);
[(), (1,2)]
```

13. How do I determine if a subgroup is normal?
```
gap> g:=Group((1,2),(1,2,3));
Group([ (1,2), (1,2,3) ])
gap> h1:=Group((1,2));
Group([ (1,2)])
```

```
gap> | sNormal(g,h1);
gap> h2:=Group((1,2,3));
Group([ (1, 2, 3) ])
gap> I sNormal(g,h2);
true
```

14. How do I find all normal subgroups of a group?
```
gap> g:=Group((1, 2),(1, 2,3));
Group([ (1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> n:=Normal Subgroups(g);
gap> Elements(n[1]);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> Elements(n[2]);
[(), (1,2,3),(1,3,2) ]
gap> Elements(n[3]);
[ () ]
```


15. How do I determine if a group is simple?

```
gap> g:=Group((1,2),(1, 2,3));
Group([ (1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> |sSimple(g);
false
gap> h:=Group((1,2));
Group([ (1,2)])
gap> Elements(h);
[(), (1,2) ]
gap> |ssimple(h);
true
```


16. How do I find the right cosets of a subset H of G ?

```
gap> g:=Group([(1, 2, 3), (1, 2)]);
Group([ (1,2,3), (1,2)'])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3),(1,3,2), (1,3)]
gap> h:=Subgroup(g,[(1,2)]);
Group([ (1,2) ])
gap> Elements(h);
gap> c:=RightCosets(g,h);
M,
gap> List(c,i->E| ements(i));
[[(),(1,2) ],[(2,3), (1,3,2) ], [ (1, 2,3), (1,3)] ]
gap> Elements(c[1]);
[ (), (1,2) ]
gap> Elements(c[2]);
gap> Elements(c[3]);
gap> rc:=RightCoset(h, (1, 2,3));
RightCoset(Group([ (1, 2) ]),(1, 2, 3))
gap> Elements(rc);
[(1,2,3), (1,3) ]
gap> rc:=h*(1,2,3);
RightCoset(Group(['(1,2) ]),(1, 2, 3))
gap> El ements(rc);
[(1,2,3), (1,3) ]
```


17. How can I create a quotient (factor) group?

```
gap> g:=Group([(1, 2, 3), (1, 2)]);
Group([ (1,2,3), (1,2) ])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> n:=Group((1,2,3));
Group([ (1, 2,3) ])
gap> Elements(n);
[(),(1,2,3),(1,3,2) ]
gap> | sNormal(g,n);
true
gap> c:=RightCosets(g,n);
[RightCoset(Group([(1,2,3) ]),()), RightCoset(Group([ (1, 2,3) ]),(2,3)) ]
```

```
gap> Elements(c[1]);
[(), (1,2,3), (1,3,2) ]
gap> Elements(c[2]);
[(2,3),(1,2),(1,3) ]
gap> f:=FactorGroup(g,n);
Group([ f1 ])
gap> Elements(f);
[ <identity> of ..., fl ]
gap> ShowMultiplicationTable(f);
* .l <identity> of ...f1
<identity> of ... < <identity> of ... f 1
fl fl fl <identity> of ...
```

18. How do I find the center of a group?
```
gap> a:=(1, 2,3);
(1,2,3)
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2, 3), (2,3) ])
gap> Center(g);
Group(())
gap> c:=Center(g);
Group(())
gap> Elements(c);
[ () ]
gap> a:=(1, 2,3,4);
(1, 2, 3, 4)
gap>b:=(1,3);
(1,3)
gap> g:=Group(a,b);
Group([ (1, 2,3,4),'(1,3) ])
gap> c:=Center(g);
Group([ (1,3)(2,4) ])
gap> Elements(c);
[(), (1,3)(2,4)]
```

19. How do I find the commutator (derived) subgroup of a group?
gap> a: $=(1,2,3)$;
(1, 2, 3)
```
gap> b:=(2,3);
(2,3)
gap>g:=Group(a,b);
Groupl[ (1, 2, 3),, (2,3) ])
gap> d:=DerivedSubgroup(g);
Group([ (1,3,2) ])
gap> Elements(d);
[(), (1,2,3), (1, 3, 2) ]
gap> a:=(1, 2,3,4);
(1, 2, 3,4)
gap> b:=(1,3);
(1,3)
gap>g:=Group(a,b);
Group([ (1,2,3,4), (1,3) ])
gap> d:=DerivedSubgroup(g);
Group([ (1,3)(2,4)])
gap> Elements(d);
[(), (1,3)(2,4)]
```


20. How do I find all Sylow p-subgroups for a given group?

```
gap> a:=(1, 2, 3);
(1,2,3)
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2, 3), (2,3) ])
gap>Size(g);
gap> Factorslnt(6);
[2, 3]
gap> sylow2:=SylowSubgroup(g,2);
gap> | sNormal(g,sy| ow2);
false
gap> c:=ConjugateSubgroups(g, sylow2);
[Group([(2,3) ]), Group([(1,3)])', Group([ (1,2) ])]
gap> Elements(c[1]);
[(), (2,3) ]
gap> Elements(c[2]);
[(), (1,3)]
gap> Elements(c[3]);
[ (), (1,2) ]
gap> sylow3:=SylowSubgroup(g, 3);
Group([ (1, 2,3) ])
```

```
gap> |sNormal(g,sy|ow3);
true
gap> El ements(sylow3);
[ (), (1,2,3), (1,3,2) ]
```

21. How can I create the Rubik's cube group using GAP?

First you need to save the following permutations as a pure text file with the name rubik.txt to your C-drive before you can import it into GAP.

```
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);
```

And now you can read the file into GAP and begin exploring.

```
gap> Read("C:/rubik.txt");
gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>
gap> Size(rubik);
432520003274489856000
```

22. How can I find the center of the Rubik's cube group?
```
gap> c:=Center(rubik);
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ])
gap> Size(c);
gap> Elements(c);
[ [39,47) [ ] (2)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29, 36)(31,45)
```

```
gap> d:=DerivedSubgroup(rubik);
<permutation group with 5 generators>
gap> Size(d);
216260001637244928000
gap> |sNormal(rubik,d);
true
```

24. How can I find the quotient (factor) group of the Rubik's cube group by its commutator (derived) subgroup?
```
gap> d:=DerivedSubgroup(rubik);
<permutation group of size 21626001637244928000 with 5 generators>
gap> f:=FactorGroup(rubik,d);
Group([ f1 ])
gap>Size(f);
```

25. How can I find some Sylow p-subgroups of the Rubik's cube group?
```
gap> Read("C:/rubik.txt");
gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>
gap> Size(rubik);
43252003274489856000
gap> Factorslnt(43252003274489856000);
[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11]
gap> sylow2:=SylowSubgroup(rubik, 2);
<permutation group of size 134217728 with 27 generators>
gap> sylow3:=SylowSubgroup(rubik,3);
<permutation group of size 4782969 with 14 generators>
gap> sylow5:=SylowSubgroup(rubik, 5);
<permutation group of size 125 with 3 generators>
gap> sylow7:=SylowSubgroup(rubik,7);
<permutation group of size 49 with 2 generators>
gap> sylow11:=SylowSubgroup(rubik,11);
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ])
```

```
gap> Elements(sylowl1);
(1), (4,5,36,21,31,15,39,13,42,7,12)(10, 26,29,28,45,44,47,20,23,18,37),
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29),
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26),
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45),
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47),
(4,21,39,7,5,31,13,12,36,15,42)(10, 28,47,18,26,45,20,37,29,44, 23),
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20),
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18),
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44),
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ]
gap> I sNormal(rubik, sylow2);
false
gap> IsNormal(rubik,sylow3);
false
gap> | sNormal(rubik, sylow5);
false
gap> |sNormal(rubik,sylow7);
false
gap> | sNormal(rubik,sylowl1);
false
```

NOTE: All of the Sylow p-subgroups found above have conjugates, but the sheer size of the Rubik's cube group makes it too difficult to pursue them on a typical desktop computer.

26. How do I determine if a group is cyclic?

```
gap> a:=(1,2,3)*(4,5,6,7);
(1,2,3)(4,5,6,7)
gap>g:=Group(a);
Group([ (1, 2,3)(4,5,6,7) ])
gap>Size(g);
12
gap> |sCyclic(g);
true
```

27. How do I create a dihedral group with $2 n$ elements for an n-sided regular polygon?
```
gap> d4:=Dihedral Group(|spermGroup,8);
Group([ (1, 2, 3,4), (2,4) ])
```

gap> Elements(d4);
$[(),(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(1,3)(2,4),(1,4,3,2),(1,4)(2,3)]$
28. How can I express the elements of a dihedral group as rotations and flips rather than as permutations?

```
gap> d3:=Di hedral Group(6);
<pc group of size 6 with 2 generators>
gap> Elements(d3);
[<identity> of ..., f1,f2,f1*f2,f2^2,f1*f2^2 ]
```


29. How do I create a symmetric group of degree n with n! elements?

```
gap> s4:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
244
gap> Elements(s4);
{(1,2,3,4),}(1,2,4,3),(2,3,4),(2,4,3),(2,4),(1,2),(1,2)(3,4),(1,2,3)
(1,3,4,2),(1,3),(1,3,4),(1,3)(2,4),(1,3,2,4),(1,4,3,2),(1,4,2),(1,4,3)
(1,4), (1,4,2,3), (1,4)(2,3) ]
```

30. How do I create an alternating group of degree n with $\frac{n!}{2}$ elements?
```
gap> a4:=AlternatingGroup(4);
Alt( [ 1 .. 4 ] )
gap> Size(a4);
gap> Elements(a4);
[(),(2,3,4),(2,4,3),(1,2)(3,4),(1,2,3),(1,2,4), (1,3,2), (1,3,4),
(1,3)(2,4),(1,4,2),(1,4,3), (1,4)(2,3) ]
```


31. How do I create a direct product of two or more groups?

```
gap> g1: \(=\operatorname{Group}((1,2,3))\);
Group([ \((1,2,3)])\)
gap> g2: \(=\operatorname{Group}((4,5))\);
Group( \((4,5)])\)
gap>dp: =DirectProduct \((g 1, g 2)\);
Groupl \((1,2,3),(4,5)\) ]),
gap>Size(dp);
gap> Elements (dp);
[ \((1),(4,5),(1,2,3),(1,2,3)(4,5),(1,3,2),(1,3,2)(4,5)]\)
gap \({ }_{*}\) ShowMultiplicationTable \((4,5)\) p) ;
\((1,3,2)(4,5)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & () & \((4,5)\) & \((1,2,3)\) & \((1,2,3)(4,5)\) & \((1,3,2)\) & \\
\hline \((1,3,2)(4,5)\) & & & & & & \\
\hline 4, 5) & \((4,5)\) & () & \((1,2,3)(4,5)\) & \((1,2,3)\) & \((1,3,2)(4,5)\) & \((1,3,2)\) \\
\hline 1, 2, 3) & ( 1, 2, 3) & \((1,2,3)(4,5)\) & \((1,3,2)\) & \((1,3,2)(4,5)\) & & \((4,5)\) \\
\hline \((1,2,3)(4,5)\) & \((1,2,3)(4,5)\) & \((1,2,3)\) & \((1,3,2)(4,5)\) & \((1,3,2)\) & \((4,5)\) & () \\
\hline 1, 3, 2) & \((1,3,2)\) & \((1,3,2)(4,5)\) & () \({ }^{\text {l }}\) & \((4,5)\) & \((1,2,3)\) & \\
\hline \((1,2,3)(4,5)\) & & & & & & \\
\hline \((1,3,2)(4,5)\) & \((1,3,2)(4,5)\) & ( \(1,3,2\) ) & \((4,5)\) & () & \((1,2,3)(4,5)\) & \((1,2,3)\) \\
\hline
\end{tabular}
```


32. How can I create the Quaternion group?

```
gap> a:=(1, 2, 5, 6)*(3,8,7,4);
(1,2,5,6)(3,8,7,4)
gap>b:=(1,4,5,8)*(2,7,6,3);
(1,4,5,8)(2,7,6,3)
gap> q:=Group(a,b);
Group([ (1, 2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ])
g
gap> |sAbelian(q);
gap> Elements(q);
[(), (1,2,5,6) (3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3),
(1,5)(2,6)(3,7)(4,8), (1,6,5,2) (3,4,7,8),
    (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ]
gap> q:=QuaternionGroup(l sPermGroup, 8);
Group([ (1,5,3,7)(2,8,4,6),(1, 2, 3,4)(5,6,7,8) ])
g
gap> IsAbelian(q);
false
gap> El ements(q);
[(), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6),
(1,5,3,7)(2,8,4,6),(1,6,3,8)(2,5,4,7),
    (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ]
```

33. How can I find a set of independent generators for a group?
```
gap> c6:=CyclicGroup(IsPermGroup, 6);
Group([ (1, 2, 3, 4,5,6) ])
gap>Size(c6);
gap> GeneratorsOf Group(c6);
[(1, 2, 3, 4, 5, 6) ]
gap> d4:=Di hedral Group(I sPermGroup, 8);
Group([ (1, 2,3,4), (2,4) ])
gap> Size(d4);
gap> GeneratorsOf Group(d4);
gap> s 5:=SymmetricGroup(5);
Sym( [1 .. 5 ] )
gap> Size(s5);
gap> GeneratorsOf Group(s5);
[ (1, 2, 3,4,5), (1, 2)
gap> a5:=AlternatingGroup(5);
Alt([ 1 .. 5 ] )
gap> Size(a5);
\sigma
gap> GeneratorsOf Group(a5);
[(1,2,3,4,5),(3,4,5)]
gap> q: =QuaternionGroup(IsPermGroup, 8);
gap> Size(q);
gap> GeneratorsOf Group(q);
[(1,5,3,7)(2,8,4,6),(1,2,3,4)(5,6,7,8)]
```

34. How do I find the conjugate of a permutation in the form $a^{b}=b^{-1} a b$?
```
gap> a:=(1, 2, 3,4,5);
(1,2,3,4,5)
```

```
gap>b:=(2,4,5);
```

(2,4,5)
$g a p>a^{\wedge} b ;$
$(1,4,3,5,2)$
gap> $b^{\wedge}-1 * a * b$
$(1,4,3,5,2)$
35. How do I divide up a group into classes of elements that are conjugate to one another? (Note that "conjugacy" is an equivalence relation on our group G. That means that G can be separated into nonintersecting subsets that contain only elements that are conjugate to one another.)

```
gap> d3:=Di hedral Group(IsPermGroup, 6);
Group([ (1,2,3), (2,3)])
gap> Size(d3):
gap> Elements(d3);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> cc:=ConjugacyCl asses(d3);
[()^G, (2,3)^G, (1, 2, 3)^G ]
gap> Elements(cc[1]);
[() ]
gap> Elements(cc[2])
[(2,3), (1,2), (1,3)]
gap> Elements(cc[3]);
[(1,2,3), (1,3,2)]
```

36. How do I input a 3x3 matrix in GAP and display in its usual rectangular format?
gap> $x:=[[1,2,3],[4,5,6],[7,8,9]]$;
$[11,2,3],[4,5,6],[7,8,9]]$

37. How do I do arithmetic with matrices?
```
gap> x:=[[1, 2],[3,4]];
gap> y: =[ [ 5, 6],[7, 8]];
gap> PrintArray(x+y);
gap> PrintArray(x-y);
gap> PrintArray(x*y);
```

38. How do I multiply a matrix by a number (scalar)?
$g a p>x:=[[1,2],[3,4]] ;$
$\left[\begin{array}{l}\text { gap }>\text { PrintArray }(x) \text {; } \\ {\left[\begin{array}{lll}1, & 2\end{array}\right]} \\ 3\end{array}\right]$

39. How do I find the inverse of a matrix?
gap> $x:=[[1,2],[3,4]] ;$

gap> xinverse: =x^-1;
[$\left[\begin{array}{ll}2,1],[3 / 2, & 1 / 2]\end{array}\right]$
```
gap> PrintArray(xinverse);
gap> xinverse:=1/x;
[[-2, 1],[ 3/2, -1/2 ] ]
gap> PrintArray(xinverse);
gap> PrintArray(x*xinverse);
[[[\begin{array}{llll}{1,}&{0}\\{0,}&{1}\end{array}]
```

40. How do I find the transpose of a matrix?
```
gap> x:=[[1, 2],[3,4]];
gap> PrintArray(x);
[[[1, 2 [ ], ]
gap> xtranspose:=TransposedMat(x);
[[ 1, 3], [ 2, 4 ] ]
gap> PrintArray(xtranspose);
[[{
```

41. How do I find the determinant of a matrix?
gap> x: $=[[1,2],[3,4]] ;$
gap> PrintArray(x);
[[[[1, $\left[\begin{array}{ll}1 \\ 3, & 4\end{array}\right]$
${\underset{-2}{ }}_{-2} p>$ Determinant Mat (x);
42. How do I find the orbits that the Rubik's cube group creates on the set $\{1,2,3, \ldots, 48\} ?$

In Windows, use Notepad to type the following file, and save it to your C-drive.

```
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4, 20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34, 26,18)(11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14, 22,30,38)(15, 23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7, 28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47, 29)(1, 14,48,27);
```

Now enter the following commands.

```
gap> Read("C:/rubik.txt");
gap>
gap> rubik:=Group(r, !,u,d,f,b);
<permutation group with 6 generators>
gap> Orbit(rubik,1);
35, 25, 32]
gap> Orbit(rubik,2);
[47, 5, 13, 18, 36, 37, 42, 39, 34, 12, 10, 31, 15, 7, 4, 26, 20, 45, 21, 44,
47, 28, 29, 23]
gap> 0:=Orbits(rubik);
[1],17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27,
16, 35,}25, 32,]
[2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15,
gap>Size(0);
gap> El ements(0);
16, 35, 25, 32],
[2,5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15,
31,' 23,' 18,' 39'] ]
```


SUMMADM (PADT O)

As we indicated at the beginning, this part has been an introduction to theorem proving which is the primary activity of a research mathematician. Thus, it's important to study the proofs that have been presented in this part and to learn to replicate them. This will help enable to eventually create more complex proofs of your own for theorems that are more complicated than the ones given here. Excelsior!

PTMETIEE (PAPMT O)

Prove each theorem below. For the most part, they are either theorems already presented in this section or theorems where we proved the veracity in one case, such as for right cosets, and we now ask you to provide a proof in another case, such as for left cosets. A few of the theorems below, however, may be a little more original. See first if you can construct a proof on your own, but if need be, simply copy or modify one of the proofs given in this part. If you pay attention to what you are doing, then even copying will help train you in the right direction.

Theorem: A group G has a unique identity element. In other words, it has only one element e with the property that for every $a \in G, e \cdot a=a=a \cdot e$.

Theorem: Let G be a group, and let $a \in G$. Then a has a unique inverse, denoted by a^{-1}.

Theorem: Let G be a group and let $a, b \in G$. If $a b=e$, then $b a=e$.

Theorem: Let G be a group and let $a, b \in G$. If $a b=e$, then $b^{-1} a^{-1}=e$ and then $a^{-1} b^{-1}=e$.

Theorem: Let G be a group and let H be a subset of G. If for every $a \in H$ we have that $a^{-1} \in H$ and if for every $a, b \in H$ we have that $a b \in H$, then H is a subgroup of G.

Theorem: If H is a subgroup of a finite group G, then any two left cosets either coincide or have an empty intersection.

Theorem: If H is a subgroup of a finite group G, then any two left cosets have the same number of elements.

Theorem: If H is a subgroup of a finite group G, then the order of H is a divisor of the order of G.

Theorem: If H is a subgroup of a group G, then the right (left) cosets of H in G define an equivalence relation.

Theorem: The center of a group G is a normal subgroup of G.

Theorem: If H is a subgroup of a group G and $a \in G$, then $a \mathrm{Ha}^{-1}$ is a subgroup of G.

Theorem: Let G be a group, let M and N be normal subgroups of G such that $M \cap N=e$ (the identity), and let $m \in M$ and $n \in N$. Then m and n commute with one another, or in other words, $m n=n m$.

PDACTTE (PADT O) - Ans Mep

Theorem: A group G has a unique identity element. In other words, it has only one element e with the property that for every $a \in G, e \cdot a=a=a \cdot e$.

Proof: Suppose that e_{1} and e_{2} are both identity elements in G. Then since e_{1} is an identity element, $e_{1} \cdot\left(e_{2}\right)=e_{2}$. On the other hand, since e_{2} is an identity element, $\left(e_{1}\right) \cdot e_{2}=e_{1}$. Therefore, $e_{1}=e_{1} \cdot e_{2}=e_{2}$, and the identity element in a group is unique.

Theorem: Let G be a group, and let $a \in G$. Then a has a unique inverse, denoted by a^{-1}.

Proof: Let G be a group, and let $a \in G$. Now suppose that $b, c \in G$ such that both b and c are inverses of a. Then $a b=e$, the identity, and $a c=e$. Hence, $a b=a c$. But by our Left Cancellation Theorem, this implies that $b=c$. Therefore, in a group an element a has only one, unique inverse, denoted by a^{-1}.

Theorem: Let G be a group and let $a, b \in G$. If $a b=e$, then $b a=e$.

Proof: If $a b=e$, then $b=a^{-1}$, and it now immediately follows that $b a=a^{-1} a=e$.

Theorem: Let G be a group and let $a, b \in G$. If $a b=e$, then $b^{-1} a^{-1}=e$ and then $a^{-1} b^{-1}=e$.

Proof: If $a b=e$, then $(a b)^{-1}=e^{-1}=e$. But $(a b)^{-1}=b^{-1} a^{-1}$, and hence, $b^{-1} a^{-1}=e$, and that proves the first part of this theorem. To prove the second part, we just invoke the previous theorem to conclude that if $b^{-1} a^{-1}=e$, then $a^{-1} b^{-1}=e$.

Theorem: Let G be a group and let H be a subset of G. If for every $a \in H$ we have that $a^{-1} \in H \quad$ and if for every $a, b \in H$ we have that $a b \in H$, then H is a subgroup of G.

Proof: Let G be a group and let H be a subset of G, and assume that for every $a \in H \quad$ we have that $a^{-1} \in H \quad$ and for every $a, b \in H \quad$ we have that $a b \in H$. To show that H is a subgroup of G, we need to show four things - closure under the group multiplication, the associative law, the existence of an identity, and the existence of inverses. We are assuming in our hypothesis that the closure and inverse properties are satisfied, and we get the associative property for free since it holds for all elements in the group G. Thus, we just need to establish the existence of an identity element. But this is easy because if $a \in H$, then $a^{-1} \in H$, and since we are assuming closure under multiplication in H, we have that $a a^{-1}=e \in H$. Therefore, H is a subgroup of G.

Theorem: If H is a subgroup of a finite group G, then any two left cosets either coincide or have an empty intersection.

Proof: Let H is a subgroup of a finite group G and suppose that $a, b \in G$ and that aH and bH are left cosets. Recall that if H has m elements, $e=h_{1}, h_{2}, h_{3}, \ldots, h_{m}$, then the members of aH are $a, a h_{2}, a h_{3}, \ldots, a h_{m}$ and the members of $H b$ are $b, b h_{2}, b h_{3}, \ldots, b h_{m}$. If $a H \cap b H=\varnothing$, then we're done. Thus assume that the intersection is non-empty. Then that means there exist $a h_{j} \in a H$ and $b h_{k} \in b H$ such that $a h_{j}=b h_{k}$. But this means that $a=b h_{k} h_{j}^{-1}$ and $b=a h_{j} h_{k}{ }^{-1}$. Hence, every element in $b H$ can be written as a product of a with an element in H, and every element in $a H$ can be written as a product of b with an element in H. From this it follows that every element in $b H$ is also an element in $a H$, and every element in $a H$ is also an element in $b H$. Thus, $a H=b H$, and, in general, for any two left cosets $a H$ and $b H$, either $a H \cap b H=\varnothing$ or $a H=b H$.

Theorem: If H is a subgroup of a finite group G, then any two left cosets have the same number of elements.

Proof: Let H be a subgroup of a finite group G and suppose that $a \in G$ and that H and aH are distinct left cosets. Recall that if H has m elements, $e=h_{1}, h_{2}, h_{3}, \ldots, h_{m}$, then the members of aH are $a, a h_{2}, a h_{3}, \ldots, a h_{m}$. It now follows from the left cancellation law that these are m distinct elements in $a H$ since otherwise if, for example, we had $a h_{2}=a h_{3}$, then this would incorrectly imply that $h_{2}=h_{3}$. And since a was chosen to be any arbitrary element that is not in H, this argument shows that all left cosets of H in G will have the same number of elements as the subgroup H. Therefore, any two left cosets of H in G have the same number of elements.

Theorem: If H is a subgroup of a finite group G, then the order of H is a divisor of the order of G.

Proof: Suppose that H is a subgroup of a finite group G, and suppose that $|G|=n$ and $|H|=m$. If $H=G$, then clearly $m=n$ and, thus, m divides n. Hence, suppose that $H \neq G$. Then there exists $a \in G$ such that $a \notin H$, and by previous proof, $|H|=|H a|$ and $H \cap H a=\varnothing$. Continuing in this manner, if $H \cup H a \neq G$, then there exists $b \in G$ such that $b \notin H$ and $|H|=|H a|=|H b|$ and no two of these right cosets have any elements in common. If now $H \cup H a \bigcup H b \neq G$, then we can continue once again in this manner, but since G is a finite group, we will eventually arrive at a set of right cosets whose union is G. Furthermore, since these cosets all contain m elements and since no two cosets have any elements in common, then if we have exactly k such right cosets whose union is G then the number of elements in G is equal to the number of elements in H times the number of distinct right cosets of H in G. In other words, $n=m k$ and, therefore, $m=|H|$ is a divisor of $n=m k=|G|$.

Theorem: If H is a subgroup of a group G, then the right (left) cosets of H in G define an equivalence relation.

Proof: The easy way to prove this is to simply note that from previous proofs that the intersection of any two distinct right (left) cosets is the null set and the union of all the right (left) cosets gives us back all of G. Hence, the cosets form a partition of G into disjoint sets whose union is G, and, therefore, coset membership defines an equivalence relation. More specifically, previous proofs have shown that any two right (left) cosets either have an empty intersection or they are equal to one another, and thus, it follows that (1) $H a=H a$, (2) if $H a=H b$, then $H b=H a$, and (3) if $H a=H b$ and $H b=H c$, then $H a=H c$. Hence, the right (left) cosets define an equivalence relation.

Theorem: The center of a group G is a normal subgroup of G.

Proof: We'll begin by showing that $Z(G)$ is at least a subgroup of G. Thus, first note that the center of a group always exists since the identity element always belongs to the center (since it commutes with every other element in G). Second, we'll show that the center is a subgroup by showing that it is closed under multiplication and every that element in the center has an inverse in the center.

Thus, let $a, b \in Z(G)$ and let $c \in G$. Then $(a b) c=a(b c)=a(c b)=(a c) b=(c a) b=c(a b)$.
Hence, since $a b$ commutes with an arbitrary element of $G, a b$ is in the center of G, and, thus, $Z(G)$ is closed under multiplication. Now let $a \in Z(G)$ and let $c \in G$.
Then $a c=c a \Rightarrow(a c) a^{-1}=(c a) a^{-1} \Rightarrow a c a^{-1}=c\left(a a^{-1}\right) \Rightarrow a c a^{-1}=c \Rightarrow a^{-1}\left(a c a^{-1}\right)=a^{-1} c$

$$
\Rightarrow\left(a^{-1} a\right) c a^{-1}=a^{-1} c \Rightarrow e c a^{-1}=a^{-1} c \Rightarrow c a^{-1}=a^{-1} c .
$$

Therefore, if a commutes with c, then a^{-1} commutes with c, and, thus, $a^{-1} \in Z(G)$ and $Z(G)$ is a subgroup of G.

To show that $Z(G)$ is a normal subgroup, let $a \in Z(G)$ and let $c \in G$. Then it suffices to show that $c^{-1} a c \in Z(G)$. But this is easy since, a commutes with every element in G. In other words, $c^{-1} a c=\left(c^{-1} a\right) c=\left(a c^{-1}\right) c=a\left(c^{-1} c\right)=a e=a \in Z(G)$.

Therefore, the center of a group G is a normal subgroup of G.

Theorem: If H is a subgroup of a group G and $a \in G$, then $a H a^{-1}$ is a subgroup of G.

Proof: Let G be a group and let H be a subgroup, and let $a \in G$. To show that $a \mathrm{Ha}^{-1}$ is a subgroup of G, we need to show that $a \mathrm{Ha}^{-1}$ is closed under multiplication and that every element in $a \mathrm{Ha}^{-1}$ has an inverse. Thus, let $x, y \in H$. Then $a x a^{-1}, a y a^{-1} \in a H a^{-1}$. Also, since $x y \in H$, we have that $a(x y) a^{-1} \in a H a^{-1}$. Now suppose we pick two arbitrary elements of $a \mathrm{Ha}^{-1}$. Then we can write them as $a x a^{-1}$ and $a y a^{-1}$ since every element in $a H^{-1}$ is the conjugate of some element in H. But now we have that $a x a^{-1} \cdot a y a^{-1}=a x \cdot e \cdot y a^{-1}=a(x y) a^{-1} \in a H a^{-1}$, and, hence, $a \mathrm{Ha}^{-1}$ is closed under multiplication. Furthermore, if $a x a^{-1} \in a \mathrm{Ha}^{-1}$, then $a x^{-1} a^{-1} \in a H a^{-1}$, too, and since $a x a^{-1} \cdot a x^{-1} a^{-1}=a x \cdot e \cdot x^{-1} a^{-1}=a\left(x x^{-1}\right) a^{-1}=a \cdot e \cdot a^{-1}=a a^{-1}=e$, it follows that every element in $a \mathrm{Ha}^{-1}$ has an inverse that belongs to $a \mathrm{Ha}^{-1}$. Therefore, $a \mathrm{Ha}^{-1}$ is a subgroup of G.

Theorem: Let G be a group, let M and N be normal subgroups of G such that $M \cap N=e$ (the identity), and let $m \in M$ and $n \in N$. Then m and n commute with one another, or in other words, $m n=n m$.

Proof: Let G be a group, let M and N be normal subgroups of G such that $M \cap N=e$ (the identity), and let $m \in M$ and $n \in N$. Then by our previous proof, the commutator $m^{-1} n^{-1} m n$ is in the intersection of M and N, But this means that $m^{-1} n^{-1} m n=M \cap N=e$. However, $m^{-1} n^{-1} m n=e \Rightarrow n^{-1} m n=m \Rightarrow m n=n m$. Therefore, m and n commute with one another.

IT C CBOUP THPORY THAM

