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INTRODUCTION (part 9) 
 
 

 
In Part 9 of this group theory saga we finally encounter theorem proving.  This, of 

course, is where most college level courses on group theory and abstract algebra 

begin, but we have found so much other stuff to discuss that proving theorems in 

our work comes at the very end.  Also, in this part, we restrict ourselves to 

theorems that have proofs that are generally very short and easy to comprehend.  

Nonetheless, we begin with an introductory chapter on symbolic logic and what 

expressions like “If A, then B,” and “A if and only if B” actually mean.  Additionally, 

we sometimes color-code parts of our proofs in order to make them easier to 

follow.  Furthermore, in this part and in Part 10 which will look at more advanced 

proofs and theorems, we often are more verbose than most mathematicians 

might be, and we do this in order to make our explanations as clear as possible.  

Enjoy! 
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SYMBOLIC LOGIC 
 

This lesson is an introduction to symbolic logic and what we actually mean in 

mathematics by statements such as “a implies b” and “a if and only if b.”  Below 

are some common symbols that are used in logic followed by the corresponding 

math symbols that I will use instead. 

 

LOGIC MATH 

~ or ¬  not 

∨  or 

∧  and 

a b→  a b⇒  

a b↔  a b⇔  

 

The statement “ a b⇒ ” can be read as “a implies b” or “if a then b” or “a is a 

sufficient condition for b” or “b is a necessary condition for a.”   

 

The statement “ a b⇔ ” can be read or written as “a iff b” or “a if and only if b” or 

“a implies b and b implies a” or  “a is a necessary and sufficient condition for b.”  

 

Using the logical connectives above, we can rewrite “ a b⇒ ” as “ not (  & not- )a b .”  

Similarly, since “ a b⇔ ” means “ a b⇒  & b a⇒ ,” we can rewrite “ a b⇔ ” as 

“[ not (  & not- )a b ] & [ not (  & not- )b a ].” 

 

In mathematics, for a compound statement “A & B” to be true, both of the 

statements A and B must be true.  On the other hand, for the compound 

statement “A or B” to be true, only one of the statements must be true.  You can 
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construct some simple examples to convince yourself that this is the correct way 

to proceed.  Also, in mathematics, unless stated otherwise, we always use an 

inclusive or.  That means that for “A or B” to be true, we either have A true or B 

true or both A and B true.  In an exclusive or, either A or B can be true, but not 

both at the same time. 

 

To determine the truth possibilities for a statement or a combination of 

statements, we often set up what we call a truth table.  For example, below is a 

truth table for a statement in the form Not-A.  We begin by noting that A can be a 

statement that is either true or false, and then we will always assume that the 

opposite of true is false, and the opposite of false is true.  This assumption is 

known as the Law of the Excluded Middle.  In other words, we’ll assume that 

there is nothing in between true and false that could happen.  This is what is 

generally assumed when doing mathematics, but to be honest, this is not always 

the case.  For example, consider the following statement:  This statement is false.  

Notice that if our statement is true, then it follows that it is false, and if it is false, 

then it follows that it is true.  This type of statement is an example of a paradox 

that is neither true nor false.  However, we generally take it for granted when 

doing mathematics that we are not dealing with paradoxes, and given that, here 

is the truth table for Not-A, where the final truth values are presented in the 

yellow column.  

 

Not A 

F T 

T F 

 

From this truth table, we see that if A is true, then Not-A is false, and if A is false, 

then Not-A is true.  Simple! 

 



 4

Now let’s look at a truth table for a compound statement of the form A & B.  

Notice that since both A and B can be either true or false statements, there are 

four separate combinations of true and false that we can come up with. 

 

A & B 

T T T 

T F F 

F F T 

 F F F 

 

Notice, also, that this time that our compound statement is true only when both A 

and B are true. 

 

In our next example, we’ll examine the possible truth values of a compound 

statement of the form A or B. 

 

A or B 

T T T 

T T F 

F T T 

F F F 

 

This time, for the compound statement to be true, only one of the statements, A 

or B, need be true, and that the compound statement is false only when both A 

and B are false. 
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When we have an assertion in a mathematical proof such as A implies B or 

A B⇒  or if A, then B, then what we are trying to say is that if A is true, then B 

has to be true as well.  In the language of symbolic logic, we consider all of the 

formulations in the previous sentence to be equivalent to the statement          

Not-(A & Not-B).  In other words, it’s not the case that A can be true and B not be 

true.   Below is our truth table for such a statement. 

 

Not [ A & ( Not B ) ] 

T T F F T 

F T T T F 

T F F F T 

T F F T F 

 

There are a couple of things to notice here.  First, a true statement cannot imply 

a false statement.  Thus, the ultimate truth value of a compound statement such 

as, “If I am an old mathematician, then the moon is made of green cheese,” is 

false.  In this example, the first statement is true, but the second statement is 

false, and thus, the truth value of the whole implication is false.  But on the other 

hand, a false statement can always imply anything.  For instance, if I say, “If the 

moon is made of green cheese, then I am Superman,” then that compound 

statement is considered true.  In other words, you can’t argue logically that the 

assertion A implies B is false simply because the first statement in our assertion 

isn’t true to begin with.  In symbolic logic, a false statement can imply anything, 

and the proof of this is in the truth table where we clearly see that if our first 

statement is false, then the implication is true regardless of whether the second 

statement is true or false. 

 

 When doing proofs in mathematics, the other type of compound statement you 

are likely to encounter is something of the form A if and only if B or A B⇔ .  This 
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is basically a shortened form for A implies B and B implies A.  In other words, the 

implication goes in both directions!  And then we can break this done further into 

the complex statement, 

 

Not-[A & Not-B] & Not-[B & Not-A] 

 

Our truth table for this is as follows: 

 

{ Not [ A & ( Not B ) ] } & { Not [ B & ( Not A ) ] }

F T F F T F F T F F T 

F T T T F F T F T F T 

T F F F T F F T T T F 

T F F T F T T F F T F 

 

From this truth table we see that the statement A B⇔  or A if and only if B is true 

only when both statements A and B are true. 

 

When we are doing proofs in mathematics that involve implications, we generally 

use argument forms that look like one of the following.  The first form is called 

modus ponens and the second form is called modus tolens.   

 

Modus Ponens 

 

a. If A, then B 

b. A 

c. Therefore, B 

 

Modus Tolens 

 

a. If A, then B 

b. Not-B 
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c. Therefore, Not-A 

 

This second form, modus tolens, is related to what in mathematics is known as 

proof by contradiction.  In this method of proof, you assume A is true and you 

want to prove that B is true.  However, instead of arguing directly from A to B, 

you essentially say, “Suppose B isn’t true,” and then you show that this implies 

that A isn’t true, thus arriving at a contradiction of your initial hypothesis and 

leaving the conclusion A B⇒  as your only way out of the contradiction. 

 

And now you’re ready to see some basic proofs in group theory!  Enjoy them and 

study them well so that you can make these techniques your own! 
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Theorem 1 
THE UNIQUENESS OF THE IDENTITY 

 
Theorem 1: A group G has a unique identity element.  In other words, it has only 

one element e with the property that for every a G∈ , e a a a e⋅ = = ⋅ .  

⋅  

Proof:  Suppose that 1e  and 2e  are both identity elements in G.  Then since 1e  

is an identity element, it follows that 1 2 1 2 2( )e e e e e⋅ = ⋅ = .  On the other hand, since 

2e  is an identity element, we also have that 1 2 1 2 1( )e e e e e⋅ = ⋅ = .  Therefore, 

1 1 2 2e e e e= ⋅ = , and the identity element in a group is unique. 
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Theorem 2 
LEFT CANCELLATION 

 

 

Theorem 2:  Let G be a group, and let , ,a b c G∈ .  If ab ac= , then b c= . 

 

Proof:  Let G be a group with , ,a b c G∈ , and suppose that ab ac= .  Then 
1 1( ) ( )a ab a ac− −= .  But by the associative property, this means that 1 1( ) ( )a a b a a c− −=  

which implies that eb ec=  which implies that b c= .  Therefore, if ab ac= , then b c= . 
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Theorem 3 
RIGHT CANCELLATION 

 

 

Theorem 3:  Let G be a group, and let , ,a b c G∈ .  If ba ca= , then b c= . 

 

Proof:  Let G be a group with , ,a b c G∈ , and suppose that ba ca= .  Then 
1 1( ) ( )ba a ca a− −= .  But by the associative property, this means that 1 1( ) ( )b aa c aa− −=  

which implies that be ce=  which implies that b c= .  Therefore, if ba ca= , then b c= . 
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Theorem 4 
THE UNIQUENESS OF INVERSES 

 

 

Theorem 4:  Let G be a group, and let a G∈ .  Then a has a unique inverse, 

denoted by 1a− . 

 

Proof:  Let G be a group, and let a G∈ . Now suppose that ,b c G∈  such that both 

b and c are inverses of a.  Then ab e= , the identity, and ac e= .  Hence, ab ac= .  

But by our Left Cancellation Theorem (Theorem 2), this implies that b c= .  

Therefore, in a group an element a has only one, unique inverse, denoted by 1a− . 
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Theorem 5 
THE INVERSE OF THE INVERSE 

 

 

Theorem 5:  Let G be a group, and let a G∈ .  Then 1 1( )a a− −= . 

 

Proof:  Let G be a group, and let 1,a a G− ∈ . Then 1aa e− = , the identity.  But on the 

other hand, 1 1 1( ) ( )a a e− − − = .  Hence, by the Right Cancellation Theorem (Theorem 

3), it follows that 1 1( )a a− −= .  
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Theorem 6 
THE INVERSE OF ab  

 

 

Theorem 6:  Let G be a group, and let ,a b G∈ .  Then 1 1 1( )ab b a− − −= . 

 

Proof:  Let G be a group, and let ,a b G∈ . Then 1( ) ( )ab ab e− = , the identity.  But on 

the other hand, 1 1 1 1 1 1( )( ) ( )b a ab b a a b b eb b b e− − − − − −= = = = .  Hence, 
1 1 1( ) ( ) ( )( )ab ab b a ab− − −= , and by the Left Cancellation Theorem (Theorem 2), it 

follows that 1 1 1( )ab b a− − −= .  
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Theorem 7 
A CONDITION FOR BEING AN ABELIAN GROUP 

 

 

Theorem 7:  Let G be a group.  If 2x e=  for every x G∈ , then G is abelian. 

 

Proof:  Let G be a group, let ,a b G∈ , and suppose that for every x G∈ , 2x e= . 

Then, in particular, 2( ) ( )( )ab ab ab e= = , the identity.  Hence, 1 1 1( )ab ab b a− − −= = .  But 

since we also have that 2a aa e= =  and 2b bb e= = , it follows that 1a a−=  and 1b b−= .  

Therefore, 1 1 1( )ab ab b a ba− − −= = =  and G is abelian.  
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Theorem 8 
 A PROOF ABOUT THE IDENTITY 

 

 

Theorem 8:  Let G be a group and let ,a b G∈ .  If a b e= , then b a e= . 

 

Proof:  If a b e= , then 1b a −= , and it now immediately follows that 
1a a eab −= = . 
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Theorem 9 
SUBGROUP OF A GROUP 

 

 

Theorem 9:  Let G be a group and let H be a subset of G.  If for every a H∈  we 

have that 1a H− ∈  and if for every ,a b H∈  we have that a b H∈ , then H is a 

subgroup of G. 

 

Proof:  Let G be a group and let H be a subset of G, and assume that for every 

a H∈  we have that 1a H− ∈  and for every ,a b H∈  we have that a b H∈ .  

To show that H is a subgroup of G, we need to show four things – closure under 

the group multiplication, the associative law, the existence of an identity, and the 

existence of inverses.  We are assuming in our hypothesis that the closure and 

inverse properties are satisfied, and we get the associative property for free since 

it holds for all elements in the group G.  Thus, we just need to establish the 

existence of an identity element.  But this is easy because if a H∈ , then 
1a H− ∈ , and since we are assuming closure under multiplication in H, we have 

that 1a a e H− = ∈ .  Therefore, H is a subgroup of G. 
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Theorem 10 
SUBGROUP OF A FINITE GROUP 

 

 

Theorem 10:  Let G be a finite group and let H be a subset of G.  If for every 

,a b H∈  we have that a b H∈ , then H is a subgroup of G. 

 

Proof:  Let G be a finite group and let H be a subset of G, and assume that for 

every ,a b H∈  we have that a b H∈ .  Now let a H∈ .  Then our closure 

property tells us that all powers of a must also belong to H.  But since G is a finite 

group, eventually one of our powers of a will have to be equal to the identity.  

More specifically, if the order of G is n, G n= , then because G has only a finite 

number of elements, at least one of the powers in the list 2 3, , , , na a a a…  must 

be the identity.  In particular, if ma e= , then we can rewrite this as 1ma a− ⋅ , and 

it now follows that 1 1ma a H− −= ∈ .  Thus, it follows from the closure property 

that not only is e H∈ , but 1a H− ∈  as well, and, therefore, H is a subgroup of 

G. 

         ,  
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Theorem 11 
INTERSECTION OF COSETS 

 

 

Theorem 11:  If H is a subgroup of a finite group G, then any two right (left) 

cosets either coincide or have an empty intersection. 

 

Proof:  We will prove the theorem just for right cosets since the argument for left 

cosets is the same.  Thus, let H is a subgroup of a finite group G and suppose 

that ,a b G∈  and that Ha and Hb are right cosets.  Recall that if H has m elements, 

1 2 3, , , , me h h h h= … ,then the members of Ha are 2 3, , , , ma h a h a h a…  and the members of 

Hb are 2 3, , , , mb h b h b h b… .  Also, if Ha Hb =∅∩ , then we’re done.  Thus assume that 

the intersection is non-empty.  Then that means there exist jh a Ha∈  and kh b Hb∈  

such that j kh a h b= .  But this also means that 1
j ka h h b−=  and 1

k jb h h a−= .  Hence, 

every element in Hb can be written as a product of an element in H with a, and 

every element in Ha can be written as a product of an element in H with b.  From 

this it follows that every element in Hb is also an element in Ha, and every 

element in Ha is also an element in Hb.  And from this it follows that Hb is a 

subset of Ha and Ha is a subset of Hb, Ha Hb⊆  and Hb Ha⊆ .  Thus, Ha Hb= , 

and, in general, for any two right cosets Ha and Hb, either Ha Hb =∅∩  or 

Ha Hb= . 

         ,  

 

 

NOTE:  This proof can be extended to include infinite groups, but we don’t want 

to get into the complexities of infinite sets at this point. 
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Theorem 12 
SIZE OF COSETS 

 

Theorem 12:  If H is a subgroup of a finite group G, then any two right (left) 

cosets have the same number of elements. 

 

Proof:  We will prove the theorem just for right cosets since the argument for left 

cosets is the same.  Thus, let H be a subgroup of a finite group G and suppose 

that a G∈  and that H and Ha are distinct right cosets.  Recall that if H has m 

elements, 1 2 3, , , , me h h h h= … ,then the members of Ha are 2 3, , , , ma h a h a h a… .  It now 

follows from the right cancellation law that these are m distinct elements in Ha 

since otherwise, for example, if we had 2 3h a h a= , then this would incorrectly imply 

that 2 3h h= .  And since a was chosen to be any arbitrary element that is not in H, 

this argument shows that all right cosets of H in G will have the same number of 

elements as the subgroup H.  Therefore, any two right cosets of H in G have the 

same number of elements. 

         ,  

 

 

NOTE:  This proof can be extended to include infinite groups, but we don’t want 

to get into the complexities of infinite sets at this point. 
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Theorem 13 
LAGRANGE’S THEOREM – PART 1 

 

 

Notation:  The number of elements in a group (or set) G, also called the order of 

G, is denoted by G . 

 

 

Theorem 13:  If H is a subgroup of a finite group G, then the order of H is a 

divisor of the order of G. 

 

Proof:  Suppose that H is a subgroup of a finite group G, and suppose that G n=  

and H m= .  If H G= , then clearly m n=  and, thus, m divides n.  Hence, suppose 

that H G≠ .  Then there exists a G∈  such that a H∉ , and by previous proof 

(Theorems 11 & 12), H Ha=  and H Ha =∅∩ .  Continuing in this manner, if 

H Ha G≠∪ , then there exists b G∈  such that b H∉  and H Ha Hb= =  and no two 

of these right cosets have any elements in common.  If now H Ha Hb G≠∪ ∪ , then 

we can continue once again in this manner, but since G is a finite group, we will 

eventually arrive at a set of right cosets whose union is G.  Furthermore, since 

these cosets all contain m elements and since no two cosets have any elements 

in common, then if we have exactly k such right cosets whose union is G then the 

number of elements in G is equal to the number of elements in H times the 

number of distinct right cosets of H in G.  In other words, n mk=  and, therefore, 

m H=  is a divisor of n mk G= = . 

         ,   
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THEOREM 14 
LAGRANGE’S THEOREM – PART 2 

 

 

Definition:  If H is a subgroup of a finite group G, then the number of right (left) 

cosets of H in G is called the index of H in G and is denoted by [ ]:G H . 

 

 

Theorem 14:  If H is a subgroup of a finite group G, then the number of right (left) 

cosets of H in G, denoted by [ ]:G H , is equal to 
G
H

. 

 

Proof:  By previous proof (Theorem 13), if G n=  and H m= , then n mk=  where k 

is the number of distinct right (left) cosets of H in G.  Therefore, 

[ ]:
Gmk nG H k

m m H
= = = = . 
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Theorem 15 
SUSBET PRODUCT  

 

 

Definition:  If H is a subgroup or subset of a group G, then HH is the set of all 

products 1 2h h  such that 1 2,h h H∈ . 

 

 

Theorem 15:  If H is a subgroup of a finite group G, then HH H= . 

 

Proof:  On the one hand, if 1 2,h h H∈ , then we not only have 1 2h h HH∈ , but also 

1 2h h H∈  since H is closed under multiplication.  Hence, HH is a subset of H, 

HH H⊆ .  But on the other hand, if h H∈ , then h eh HH= ∈  and, thus, H is a 

subset of HH, H HH⊆ .  Therefore, if HH H⊆  and H HH⊆ , then it follows that 

HH H= . 
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Theorem 16 
COSETS AND EQUIVALENCE RELATIONS 

 

 

Definition:  If X is a non-empty set, then a relation between elements in X, 

denoted by ≡ , is called an equivalence relation if and only if the following 

conditions are met: 

1. For every a X∈ , a a≡  (reflexive), 

2. For every ,a b X∈ , if a b≡ , then b a≡  (symmetric), and 

3. For every , ,a b c X∈ , if a b≡  and b c≡ , then a c≡  (transitive). 

 

 

Theorem 16:  If H is a subgroup of a group G, then the right (left) cosets of H in G 

define an equivalence relation. 

 

Proof:  The easy way to prove this is to simply note that from previous proofs 

(theorems 11 & 13) that the intersection of any two distinct right (left) cosets is 

the null set and the union of all the right (left) cosets gives us back all of G.  

Hence, the cosets form a partition of G into disjoint sets whose union is G, and, 

therefore, coset membership defines an equivalence relation.  More specifically, 

previous proofs have shown that any two right (left) cosets either have an empty 

intersection or they are equal to one another, and thus, it follows that (1) Ha Ha= , 

(2) if Ha Hb= , then Hb Ha= , and (3) if Ha Hb=  and Hb Hc= , then Ha Hc= .  

Hence, the right (left) cosets define an equivalence relation.     
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Theorem 17 
WHEN MULTIPLICATION IS WELL-DEFINED 

 

 

By well-defined multiplication we mean that if we define multiplication of cosets 

by Ha Hb Hab⋅ = , then we’ll get the same result even if we do this multiplication 

using different representatives, besides a and b, from our two cosets.  We’ll 

prove that this is what happens when H is a normal subgroup of G. 

 

 

Theorem 17:  If H is a normal subgroup of G and 1 2Ha Ha=  and 1 2Hb Hb= , then 

1 1 2 2Ha b Ha b= . 

 

Proof:  Suppose that H is a normal subgroup of G.  Then for every a G∈ , we 

have that Ha aH= .  That means that for every product ha  where h H∈ , there 

exists 1h H∈  such that 1ah ha= .  Now suppose that 1 2Ha Ha= .  Then 

1 2 1 2,a a Ha Ha∈ = , and, hence, there exists 2h H∈  such that 1 2 2a h a= .  In a similar 

manner, if 1 2 1 2,b b Hb Hb∈ = , then there exists 3h H∈  such that 1 3 2b h b= .  Putting 

this all together, we can now conclude that 

1 1 2 2 3 2 2 2 3 2 2 4 2 2 2 4 2 2 2 2( )( ) ( ) ( ) ( )Ha b H h a h b Hh a h b Hh h a b Hh h a b Ha b= = = = = .  What this 

means is that when H is a normal subgroup, we can define multiplication of 

cosets in a way that is independent of which representative we pick of that coset.  

And this is what we mean when we say that the multiplication is well-defined. 
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Theorem 18 
WHEN MULTIPLICATION IS NOT WELL-DEFINED 

 

 

Theorem 18:  If H is a subgroup that is not a normal subgroup of G and 1 2Ha Ha=  

and 1 2Hb Hb= , then 1 1Ha b  is not necessarily equal to 2 2Ha b . 

 

Proof:  If H is a subgroup of G, but H is not normal in G, then there exists at least 

one 1a G∈  such that 1 1Ha a H≠ .  In  particular, that means that there are no 

3 4,h h H∈  such that 1 4 3 1a h h a= .  Now suppose that 1 2Ha Ha=  and 1 2Hb Hb= , and 

assume that 1 1 2 2Ha b Ha b= .  Then there exists 1 2,h h H∈  such that 2 1 1a h a=  and 

2 2 1b h b= .  Hence, 1 1 2 2 1 1 2 1 1 1 2 1 1 2 1( )( ) ( )Ha b Ha b H h a h b Hh a h b Ha h b= = = = .  But this implies 

that there exists 3h H∈  such that 1 1 3 1 2 1a b h a h b=  which implies that 1 3 1 2a h a h= .  Now 

let 1
4 2h h H−= ∈ .  Then 1

1 3 1 2 1 2 3 1 1 4 3 1a h a h a h h a a h h a−= ⇒ = ⇒ = .  But this contradicts our 

initial assumption about 1a .  Therefore, if H is a subgroup that is not a normal 

subgroup of G and 1 2Ha Ha=  and 1 2Hb Hb= , then 1 1Ha b  is not necessarily equal to 

2 2Ha b  and, thus, our multiplication of cosets is not well-defined. 
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Theorem 19 
QUOTIENT OR FACTOR GROUPS 

 

 

Theorem 19:  If N is a normal subgroup of a group G, then { }|G N Na a G= ∈  is a 

group where the multiplication of right (left) cosets is defined in terms of the 

multiplication of elements in G.  In other words, by ( )Na Nb N ab⋅ = . 

 

Proof:  In a previous proof (Theorem 17) we showed that this multiplication is 

well-defined.  That means that we get the same result regardless of which 

element from a coset is used to represent it.  Having noted that, it’s obvious that 

the closure property holds.  In other words, if ,a b G∈ , then the product of the two 

right cosets Na  and Nb  is again a right coset that is obtained by multiplying 

together the representatives from these two given right cosets, ( )Na Nb N ab⋅ = .  

Furthermore, we get the associative property for free, because multiplication in G 

is associative.  Hence, ( ) ( )N ab c Na bc= .  Additionally, the identity element in G N  

is N Ne= .  Furthermore, for any right coset Na , its inverse is 1Na−  since 
1 1( )Na Na N aa Ne N− −⋅ = = = .  Therefore, G N  with the multiplication inherited from 

G is a group.  This group is called a quotient or factor group. 
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Theorem 20 
THE CENTER IS NORMAL 

 

 

Definition:  The center of a group G, denoted by ( )Z G , is the set of all elements in 

G that commute with all other elements in G. 

 

 

Theorem 20:  The center of a group G is a normal subgroup of G. 

 

Proof:  We’ll begin by showing that ( )Z G  is at least a subgroup of G.  Thus, first 

note that the center of a group always exists since the identity element always 

belongs to the center (since it commutes with every other element in G).  Second, 

we’ll show that the center is a subgroup by showing that it is closed under 

multiplication and every that element in the center has an inverse in the center.  

Thus, let , ( )a b Z G∈  and let c G∈ .  Then ( ) ( ) ( ) ( ) ( ) ( )ab c a bc a cb ac b ca b c ab= = = = = .  

Hence, since ab commutes with an arbitrary element of G, ab is in the center of 

G, and, thus, ( )Z G  is closed under multiplication.  Now let ( )a Z G∈  and let c G∈ .  

Then 1 1 1 1 1 1 1 1( ) ( ) ( ) ( )ac ca ac a ca a aca c aa c aca c a aca a c− − − − − − − −= ⇒ = ⇒ = = ⇒ = ⇒ =  
1 1 1 1 1 1 1( ) .a a ca a c eca a c ca a c− − − − − − −⇒ = ⇒ = ⇒ =   Therefore, if a commutes with c, then 

1a−  commutes with c, and, thus, 1 ( )a Z G− ∈  and ( )Z G  is a subgroup of G. 

 

To show that ( )Z G  is a normal subgroup, let ( )a Z G∈  and let c G∈ .  Then it 

suffices to show that 1 ( )c ac Z G− ∈ .  But this is easy since, a commutes with every 

element in G.  In other words, 1 1 1 1( ) ( ) ( ) ( )c ac c a c ac c a c c ae a Z G− − − −= = = = = ∈ .  

Therefore, the center of a group G is a normal subgroup of G.   
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Theorem 21 
THE COMMUTATOR SUBGROUP IS NORMAL 

 

 

Definition:  The commutator or derived subgroup of a group G, denoted by G′ , is 

the set of all finite products of commutators in G where a commutator is a 

product of either the form 1 1a b ab− −  or 1 1aba b− −  or 1 1bab a− −  or 1 1b a ba− −  for ,a b G∈ . 

 

 

Theorem 21:  The commutator (or derived) subgroup of a group G is normal in G. 

 

Proof:  First of all, by definition the set of all finite products of commutators is 

closed under multiplication.  Also, if 1 1a b ab− −  is a commutator in G, then its 

inverse, 1 1 1 1 1 1 1 1 1 1 1( ) ( ) ( )a b ab b a b a b a ba− − − − − − − − − − −= =  is also a commutator in G.  From 

this it follows that any finite product of commutators will have an inverse that 

belongs to the set of all finite products of commutators in G.  For example, if 
1 1 1 1a b ab c d cd− − − −⋅  is a product of commutators in G, then its inverse, 
1 1 1 1d c dc b a ba− − − −⋅ , also belongs to G.  Hence, the set of all finite products of 

commutators in G is a subgroup of G.  To show that the commutator subgroup is 

a normal subgroup of G, let a G′∈  and let b G∈ .  It now suffices to show that 
1b ab G− ′∈ .  To do this, note that 1 1 1 1 1 1 1 1( ) ( )b ab a b aba b a ba− − − − − − − −= =  is a commutator 

of b and 1a− , and, hence, it is equal to some element c in G′ .  But if 
1 1 1 1( )b ab a b aba c G− − − − ′= = ∈ , then 1b ab ca− = .  However, since ,a c G′∈ , that means 

that 1b ab ca G− ′= ∈ , and that means that the commutator subgroup of a group G is 

normal in G. 
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Theorem 22 
THE CONJUGATE OF A SUBGROUP 

 

 

Definition:  If H is a subgroup of a group G and a H∈ , then 1aHa−  and 1a Ha−  are 

conjugates of H in G. 

 

 

Theorem 22:  If H is a subgroup of a group G and a G∈ , then 1a Ha−  (and 1aHa− ) 

is a subgroup of G. 

 

Proof:  Let G be a group and let H be a subgroup, and let a G∈ .  To show that 
1a Ha−  is a subgroup of G, we need to show that 1a Ha−  is closed under 

multiplication and that every element in 1a Ha−  has an inverse.  Thus, let ,x y H∈ .  

Then 1 1 1,a xa a ya a Ha− − −∈ .  Also, since xy H∈ , we have that 1 1( )a axy a Ha− −∈ .  Now 

suppose we pick two arbitrary elements of 1a Ha− .  Then we can write them as 
1a xa−  and 1a ya−  since every element in 1a Ha−  is the conjugate of some element 

in H.  But now we have that 1 1 1 11 ( )a x ya a a a a a Haa a x e y xy− − −− −⋅ = ⋅ ⋅ = ∈ , and, hence, 

1a Ha−  is closed under multiplication.  Furthermore, if 1 1a xa a Ha− −∈ , then 1x H− ∈  

implies that 1 1 1a x a a Ha− − −∈ , too, and since 
11 1 1 1 1 1 11( )a x x a a x x a a a aa a ae x a a ex e− − − −− − − −−⋅ = ⋅ ⋅ = = ⋅ ⋅ = = , it follows that every 

element in 1a Ha−  has an inverse that belongs to 1a Ha− .  Therefore, 1a Ha−  is a 

subgroup of G. 
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Theorem 23 
THE SUBGROUP GENERATED BY CONJUGATE SUBGROUPS 

 

 

Definition:  If H is a subgroup of a group G and a H∈ , then 1aHa−  and 1a Ha−  are 

conjugates of H in G. 

 

 

Theorem 23:  If H is a subgroup of a group G, then the subgroup N generated by 

elements of H and elements of its conjugates is normal in G. 

 

Proof:  Let G be a group and let H be a subgroup.  If H is normal (self-conjugate) 

in G, then set N equal to H and we are done.  On the other hand, if G contains 

several subgroups that are conjugate to H, then let N be the subgroup generated 

by taking all finite products of elements of H with the elements in the 

corresponding conjugates of H.  Now let abc represent a typical product of such 

elements from either H or its conjugates and let g G∈ , and let’s consider the 

product 1( )g abc g− .  Clearly, we could also write this as 
1 1 1 1 1 11 1( ) ( ) ( ) ( ) ) ( )( )( ).g abc g g a b c g g a b cg g ag g be e g gg g g cg g−− − −−− − −= = =   From this last 

form we see that 1( )g abc g−  will be equal to a product of conjugates of a, b, and c, 

and these conjugates will be elements of either H or one of the conjugates of H.  

Thus, 1( )g abc g−  belongs to the subgroup N generated by elements of H and its 

conjugates.  Therefore, N is a normal subgroup of G. 
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Theorem 24 
GROUPS WITH AN EVEN NUMBER OF ELEMENTS 

 

 

Theorem 24:  If a finite group G has an even number of elements, then at least 

one non-identity element is its own inverse. 

 

Proof:  We will illustrate the argument by assuming we have a group of order 8.  

If we remove the identity element, then that leaves 7 non-identity elements.  Now 

let’s consider the consequences of each of the remaining elements having an 

inverse that is different from itself.  If this were the case, then we would need an 

even number of elements since every non-identity element would be paired with 

a different element that is also its inverse.  However, since in actuality we have 7 

non-identity elements left in the group, it follows that at least one of the elements 

is its own inverse.  And now you can, hopefully, see that this same argument can 

be applied to any finite group with an even number of elements. 
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Theorem 25 
COMMUTATORS IN NORMAL SUBGROUPS 

 

 

Theorem 25:  Let G be a group, let M and N be normal subgroups of G, and let 

m M∈  and n N∈ .  Then the commutator of m by n, 1 1m n mn− − , is an element of 

M N∩ . 

 

Proof:  Let G be a group, let M and N be normal subgroups of G, and let m M∈  

and n N∈ , and consider the commutator 1 1m n mn− − .  Since N is a normal subgroup 

of G, it follows that 1 1m n m N− − ∈  and, hence, 1 1 11( )nm n Nn m mm n− − −− = ∈ .  But on the 

other hand, since M is a normal subgroup of G, it also follows that 1n mn M− ∈  and, 

hence, 11 1 1( )m mn Mm mnn n− − −− = ∈ .  Therefore, 1 1m n mn M N− − ∈ ∩ . 

        ,  
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Theorem 26 
COMMUTATIVITY IN NORMAL SUBGROUPS 

 

 

Theorem 26:  Let G be a group, let M and N be normal subgroups of G such that 

M N e=∩  (the identity), and let m M∈  and n N∈ .  Then m and n commute with 

one another, or in other words, mn nm= . 

 

Proof:  Let G be a group, let M and N be normal subgroups of G such that 

M N e=∩  (the identity), and let m M∈  and n N∈ .  Then by our previous proof 

(Theorem 25), the commutator 1 1m n mn− −  is in the intersection of M and N,  But 

this means that 1 1m n mn M N e− − = =∩ .  However,  

 
1 1 1 1 1 1m n mn e m n mn e n mn m n mn m mn nm m n n m− − − − − −= ⇒ ⋅ = ⋅ ⇒ = ⇒ ⋅ = ⋅ ⇒ = . 

 

Therefore, m and n commute with one another. 

         ,  
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Theorem 27 
PRODUCT OF NORMAL SUBGROUPS 

 

 

Theorem 27:  Let G be a group, let M and N be normal subgroups of G such that 

MN G=  and M N e=∩  (the identity).  Then if 1 2,m m M∈  and 1 2,n n N∈  such that 

1 1 2 2m n m n= , it follows that 1 2m m=  and 1 2n n= .  In other words, each element in G 

can be represented in a unique way as a product of an element in M with an 

element in N. 

 

Proof:  Let G be a group, let M and N be normal subgroups of G such that 

MN G=  and M N e=∩  (the identity), and suppose that 1 2,m m M∈  and 1 2,n n N∈  

with 1 1 2 2m n m n= .  Then  

 
1

1 1 2 2 1 1 2 2 2 1 1 2
1 1

2 1 2 1

1 1
2 2

1 1
1 2 1

1
2 1 1

m n m n m n m n m m n n

m m n n m m n n

m m

n n

− −

− −

−

− −−

= ⇒ ⋅ = ⋅ ⇒ =

=⇒ ⋅ = ⋅ ⇒
. 

 

But 1
2 1m m M− ∈  and 1

2 1n n N− ∈ .  Hence, if 1 1
2 1 2 1m m n n− −= , then 1 1

2 1 2 1,m m n n M N− − ∈ ∩ .  

However, since M N e=∩ , it follows that 1
2 1m m e− =  and 1

2 1n n e− = .  From this it 

follows that 1 2m m=  and 2 1n n= .  Therefore, each element in G can be represented 

in a unique way as a product of an element in M with an element in N. 

         ,  
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Theorem 28 
ISOMORPHISM TO DIRECT PRODUCT  

 

 

Theorem 28:  If M and N are normal subgroups of G such that M N e=∩  and 

G MN= , then G is isomorphic to the direct product of M and N, G M N≅ × . 

 

Proof:  Recall that when we say that two groups are isomorphic, that means that 

the groups are essentially the same except for the labeling of the elements.  

More specifically, that means that there is a one-to-one correspondence between 

elements of the two groups such that multiplication in one group corresponds to 

multiplication in the other.  To show that such an isomorphism exists in this case, 

we’ll first recall some consequences of the last two theorems (Theorem 26 & 

Theorem 27) we proved.  Namely, that, given that M and N are normal 

subgroups of G such that M N e=∩  M N e=∩  and G MN= , we are able to write 

each element of G in a unique way as a product of an element of M and an 

element of N, and that the elements of M and N commute with one another.   

 

Now, a one-to-one correspondence means that each element in G will be paired 

with exactly one element in M N×  and vice-versa, and we will establish our 

correspondence as follows.  If g G∈ , then g can be written in a unique way as 

g mn=  for some m M∈  and n N∈ .  We’ll now let g mn=  correspond to ( , )m n  in 

the direct product M N× .  It should now be fairly obvious that every element of 

M N×  corresponds to exactly one element of G MN= , and every element of 

G MN=  corresponds to exactly one element of M N× .  In other words, we have 

established a one-to-one correspondence between elements in the two groups. 

 

To show that multiplication in one group corresponds to multiplication in the other, 

let’s suppose that 1 1 1g m n=  and 2 2 2g m n=  where 1 2,m m M∈  and 1 2,n n N∈ .  Then 

since elements in M and N commute with one another, 
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1 2 1 1 2 2 1 2 1 2( )( ) ( ) ( )g g m n m n m m n n= = ⋅ .  But this last product corresponds to the ordered 

pair 1 2 1 2( , )m m n n  in M N× .  Furthermore, the ordered pair 

1 2 1 2 1 1 2 2( , ) ( , ) ( , )m m n n m n m n= ⋅ .  In other words, 1 1 1g m n=  corresponds to 1 1( , )m n , 

2 2 2g m n=  corresponds to 2 2( , )m n , and the product 1 2g g  corresponds to 

1 1 2 2( , ) ( , )m n m n⋅ .  Therefore, since we have a one-to-one correspondence between 

the groups such that multiplication in one group corresponds to multiplication in 

the other, the two groups are isomorphic, G M N≅ × . 

         ,  
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Theorem 29 
CORRESPONDENCE OF SUBGROUPS 

 

 

Theorem 29:  If H is a subgroup of a group G and if N is a normal subgroup of G, 

then the right (left) cosets corresponding to elements of H form a subgroup of 

G N . 

 

Proof:  Let H be a subgroup of G, let N be a normal subgroup of G, and consider 

the right (left) cosets in G N  that correspond to elements of H.  By previous proof 

(Theorem 17), we know that when N is a normal subgroup of G that multiplication 

in G N  defined by ( )Na Nb N ab⋅ =  is well-defined, and recall that that means that 

it doesn’t matter which elements of the cosets we use when performing the 

multiplication.  Thus, to show that the cosets corresponding to elements in H 

form a subgroup, all we need to do is demonstrate closure under multiplication 

and the existence of inverses.  But that is easy to do.  For example, if 1 2,h h H∈ , 

then 1 2 1 2( )Nh Nh N h h⋅ =  is also a right coset involving an element of H since 

1 2h h H∈ .  Similarly, if 1,h h H− ∈ , then 1 1( )Hh Hh H hh He H− −⋅ = = =  implies that 
1 1( )Hh Hh− −= .  Hence, inverses also exist in this collection of cosets, and so the 

cosets in G N  that correspond to elements of H form a subgroup of G N . 
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Theorem 30 
CORRESPONDENCE OF NORMAL SUBGROUPS 

 

 

Theorem 30:  If H is a normal subgroup of a group G and if N is a normal 

subgroup of G, then the right (left) cosets corresponding to elements of H form a 

normal subgroup of G N . 

 

Proof:  In our previous theorem (Theorem 29) we demonstrated that the right (left) 

cosets corresponding to elements of H form a subgroup of G N , and so all that is 

left is to demonstrate that this will be a normal subgroup of G N  if H is a normal 

subgroup of a group G.  Thus, note that since H is normal in G, if g G∈  and 

h H∈ , then 1g hg H− ∈ .  Recall also from the proof of Theorem 29 that 
1 1( )Ng Ng− −= .  Consequently, if follows that 1 1 1( ) ( )Ng Nh Ng Ng Nh Ng N g hg− − −⋅ ⋅ = ⋅ ⋅ =  

where, again, 1g hg H− ∈ .  Therefore, the cosets in G N  corresponding to 

elements of H form a normal subgroup of G N . 
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Theorem 31 
CAYLEY’S THEOREM 

 

 

Theorem 31:  Every finite group G is isomorphic to a group of permutations 

acting on a set of objects. 

 

Proof:  Instead of a more formal argument, we’ll simply take a typical finite group 

and show how to find a permutation group that is isomorphic to it.  In particular, 

let’s look at 3D , the group of symmetries of an equilateral triangle. 
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This group is generated by rotations about the center and flips about various 

axes of symmetry.  Also, below is a multiplication table for 3D  expressed in terms 

of the possible permutations of the vertices of the equilateral triangle. 

 

 

 ( )( )( ) ( ) ( ) ( ) ( ) ( )
( )( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )

1 2 3 1 2 1 3 2 3 1 2 3 1 3 2
1 2 3 1 2 3 1 2 1 3 2 3 1 2 3 1 3 2

1 2 1 2 1 2 3 1 2 3 1 3 2 1 3 2 3
1 3 1 3 1 3 2 1 2 3 1 2 3 2 3 1 2
2 3 2 3 1 2 3 1 3 2 1 2 3 1 2 1 3

1 2 3 1 2 3 2 3 1 2 1 3 1 3 2 1 2 3
1 3 2 1 3 2 1 3 2 3 1 2 1 2 3 1 2 3  

 

If we use letters to represent the various rotations and flips, then we can rewrite 

our multiplication table as follows. 

 

( )
( )
( )
( )
( )

2

2

(1)(2)(3)
1 2 3

1 3 2
2 3
1 2

1 3

e
R

R
F
FR

FR

=
=

=
=
=

=

 

 
2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

e R R F FR FR

e e R R F FR FR

R R R e FR F FR

R R e R FR FR F

F F FR FR e R R

FR FR FR F R e R

FR FR F FR R R e
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When we look at this table, we notice that each row is a permutation of the 

elements in the very first row.  However, this does not mean that we are going to 

say that R, for instance, is given by the following permutation: 

 
2 2

2 2

2 2

( , , )( , , )
e R R F FR FR

R e R R F FR FR

R R e FR F FR

⎛ ⎞
⎜ ⎟

= ↓ ↓ ↓ ↓ ↓ ↓ =⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

No, instead we have to be a little more sophisticated so that things will work out 

properly with regard to multiplication.  In particular, remember that we want to 

think of our initial elements as occupying positions.  Thus, in our very top row, e 

is in the first position, R is in the second position, 2R  is in the third position, F is in 

the fourth position, FR is in the fifth position, and 2FR  is in the sixth position. 

 

2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

1 2 3 4 5 6st nd rd th th th

e R R F FR FR

e e R R F FR FR

R R R e FR F FR

R R e R FR FR F

F F FR FR e R R

FR FR FR F R e R

FR FR F FR R R e

 

 

We can now set up our permutations correctly.  In the maneuver R, the first 

element, e, moves from position one to position three which corresponds to 2R  in 

the top row. 
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Similarly, the element in the third position of the top row, 2R , moves to the 

second position which corresponds to R in the top row. 

 

 

 

 

 

 

 

 

 

 

And the element in the second position of the top row, R, moves to the first 

position which corresponds to e in the top row.  

 

 

 

 

 

 

 

 

2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

1 2 3 4 5 6st nd rd th th th

e R R F FR FR

e e R R F FR FR

R R R e FR F FR

R R e R FR FR F

F F FR FR e R R

FR FR FR F R e R

FR FR F FR R R e

2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

1 2 3 4 5 6st nd rd th th th

e R R F FR FR

e e R R F FR FR

R R R e FR F FR

R R e R FR FR F

F F FR FR e R R

FR FR FR F R e R

FR FR F FR R R e

2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

1 2 3 4 5 6st nd rd th th th

e R R F FR FR

e e R R F FR FR

R R R e FR F FR

R R e R FR FR F

F F FR FR e R R

FR FR FR F R e R

FR FR F FR R R e

2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

1 2 3 4 5 6st nd rd th th th

e R R F FR FR

e e R R F FR FR

R R R e FR F FR

R R e R FR FR F

F F FR FR e R R

FR FR FR F R e R

FR FR F FR R R e

2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

1 2 3 4 5 6st nd rd th th th

e R R F FR FR

e e R R F FR FR

R R R e FR F FR

R R e R FR FR F

F F FR FR e R R

FR FR FR F R e R

FR FR F FR R R e

2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

1 2 3 4 5 6st nd rd th th th
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In other words, so far, we have the permutation 2( , , )e R R .  Continuing, we see 

that the element originally in the fourth position of the top row, F, moves to the 

fifth position which corresponds to FR in the top row. 

 

 

 

 

 

 

 

 

 

 

 

 

The element originally in the fifth position of the top row, FR , moves to the sixth 

position which corresponds to 2FR  in the top row. 

 

 

 

 

 

 

 

 

 

 

And the element in the sixth position in the top row, 2FR , moves to the fourth 

position which corresponds to F in the top row.   
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Thus, the complete permutation associated with R is 2 2( , , )( , , )R e R R F FR FR↔ .  

Similarly, the permutation associated F, when we construct it by thinking of the 

positions that our original top row elements get moved to, is 
2 2( , )( , )( , )F e F R FR R FR↔ .  Now from our multiplication table we can see that 

2R F FR⋅ = , and this latter element corresponds to the permutation 
2 2 2( , )( , )( , )RF FR e FR R F R FR= ↔ .  And finally, if we manually multiply our 

permutations, then we get that the permutation corresponding to R times the 

permutation corresponding to F gives us the permutation corresponding to 
2R F FR⋅ = . 

 
2 2 2 2 22 2( , )( , )( , ) ( , )( ,( , , )( , , ) )( , )R e R R F FF e F R eFR R F FR R F RR FRR FRF R↔ = ↔ . 

 

So what does this show us?  Well, we’ve demonstrated how to convert each 

element in our group to a permutation that acts upon the elements of the group, 

and we’ve shown that a product such as 2R F FR⋅ =  gives us the same result 

when we express our group elements as permutations, 

 
2 2 2 2 22 2( , )( , )( , ) ( , )( ,( , , )( , , ) )( , )R e R R F FF e F R eFR R F FR R F RR FRR FRF R↔ = ↔ . 

 

Therefore, this example suggests that every finite group G is indeed isomorphic 

to a group of permutations that acts upon the set G of group elements 

themselves.    
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Theorem 32 
AN IMPORTANT BIJECTION 

 

 

Theorem 32:  Let G be a group, let g G∈ , and define a function :gT G G→  by 

1( )gT x gxg−= .  Then :gT G G→  is a one-to-one and onto function, or in other words, 

a bijection. 

 

Proof:  Let :gT G G→  be defined by 1( )gT x gxg−=  for x G∈ .  To show that gT  is 

one-to-one, we just need to demonstrate that if ( ) ( )g gT x T y= , then x y= .  

However, this follows immediately from our right and left cancellation laws in a 

group.  That is,  

 
11 1 1 11( ) ( ) ( ) ( )g gT x T y gxg gyg gxg gyg exe eyeg g xg g y− − − −− −= ⇒ = ⇒ = ⇒ = ⇒ = . 

 

Thus, gT  is one-to-one. 

 

To show that gT  is onto, that means that if b G∈ , then there exists x G∈  such that 

( )gT x b= .  But it is easy to find such an x.  Just let 1x g bg G−= ∈ . Then 

1 1 1( ) ( ) ( )g g gT x T g bg g bg be bg e− − −= = = = , and gT  is onto.  Therefore, since :gT G G→  

defined by 1( )gT x gxg−=  for x G∈  is both one-to-one and onto, it follows that 

:gT G G→  is a bijection. 
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How to use gap (part 9) 

 

Once more there is no difference between this file and “How to Use GAP (Part 

8).”  We are simply including all the previous GAP commands for reference.  

 

 

1. How can I redisplay the previous command in order to edit it? 

 

Press down on the control key and then also press p.  In other words, “Ctrl p”. 

 

 

2. If the program gets in a loop and shows you the prompt “brk>” instead of 

“gap>”, how can I exit the loop? 

 

Press down on the control key and then also press d.  In other words, “Ctrl d”. 

 

 

3. How can I exit the program? 

 

Either click on the “close” box for the window, or type “quit;” and press 

“Enter.” 

 

 

4. How do I find the inverse of a permutation? 

 

gap> a:=(1,2,3,4); 

(1,2,3,4) 

gap> a^-1; 

(1,4,3,2) 
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5. How can I multiply permutations and raise permutations to powers? 

 

gap> (1,2)*(1,2,3); 

(1,3) 

 

gap> (1,2,3)^2; 

(1,3,2) 

 

gap> (1,2,3)^-1; 

(1,3,2) 

 

gap> (1,2,3)^-2; 

(1,2,3) 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> b:=(1,2); 

(1,2) 

 

gap> a*b; 

(2,3) 

 

gap> a^2; 

(1,3,2) 

 

gap> a^-2; 

(1,2,3) 

 

gap> a^3; 

() 
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gap> a^-3; 

() 

 

gap> (a*b)^2; 

() 

 

gap> (a*b)^3; 

(2,3) 

 

 

6. How can I create a group from permutations, find the size of the group, and 

find the elements in the group? 

 

gap> a:=(1,2); 

(1,2) 

 

gap> b:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a,b); 

Group([ (1,2), (1,2,3) ]) 

 

gap> Size(g1); 

6 

 

gap> Elements(g1); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> g2:=Group([(1,2),(1,2,3)]); 

Group([ (1,2), (1,2,3) ]) 
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gap> g3:=Group((1,2),(2,3,4)); 

Group([ (1,2), (2,3,4) ]) 

 

 

7. How can I create a cyclic group of order 3? 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a); 

Group([ (1,2,3) ]) 

 

gap> Size(g1); 

3 

 

gap> Elements(g1); 

[ (), (1,2,3), (1,3,2) ] 

 

gap> g2:=Group((1,2,3)); 

Group([ (1,2,3) ]) 

 
gap> g3:=CyclicGroup(IsPermGroup,3); 

Group([ (1,2,3) ]) 
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8. How can I create a multiplication table for the cyclic group of order 3 that I just 

created? 

 

gap> ShowMultiplicationTable(g1); 

 

*          | ()          (1,2,3)     (1,3,2) 

--------+--------------------------------- 

()         | ()          (1,2,3)     (1,3,2) 

(1,2,3) | (1,2,3)  (1,3,2)     () 

(1,3,2) | (1,3,2)  ()             1,2,3) 

 

 

9. How do I determine if a group is abelian? 

 

gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> IsAbelian(g1); 
true 
 
gap> g2:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 
gap> IsAbelian(g2); 
false 

 

 

10. What do I type in order to get help for a command like “Elements?” 

 

gap> ?Elements 

 

 

11. How do I find all subgroups of a group? 

 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=AllSubgroups(g); 
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]), 
Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ] 
 
gap> List(h,i->Elements(i)); 
[ [ () ], [ (), (2,3) ], [ (), (1,2) ], [ (), (1,3) ], [ (), (1,2,3), 
(1,3,2) ], [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] ] 
 
gap> Elements(h[1]); 
[ () ] 
 
gap> Elements(h[2]); 
[ (), (2,3) ] 
 
gap> Elements(h[3]); 
[ (), (1,2) ] 
 
gap> Elements(h[4]); 
[ (), (1,3) ] 
 
 
gap> Elements(h[5]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(h[6]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

 

12. How do I find the subgroup generated by particular permutations? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 

 

 

13. How do I determine if a subgroup is normal? 
 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 
gap> h1:=Group((1,2)); 
Group([ (1,2) ]) 
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gap> IsNormal(g,h1); 
 
gap> h2:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
 
gap> IsNormal(g,h2); 
true 

 

 
 
 
14. How do I find all normal subgroups of a group? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 

gap> n:=NormalSubgroups(g); 
[ Group([ (1,2), (1,2,3) ]), Group([ (1,3,2) ]), Group(()) ] 
 

gap> Elements(n[1]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> Elements(n[2]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(n[3]); 
[ () ] 

 

 

15. How do I determine if a group is simple? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> IsSimple(g); 
false 

 
gap> h:=Group((1,2)); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> IsSimple(h); 
true 

 

 

 



 53

16. How do I find the right cosets of a subset H of G? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> c:=RightCosets(g,h); 
[ RightCoset(Group( [ (1,2) ] ),()), RightCoset(Group( [ (1,2) ] ),(1,3,2)), 
RightCoset(Group( [ (1,2) ] ),(1,2,3)) ] 
 
gap> List(c,i->Elements(i)); 
[ [ (), (1,2) ], [ (2,3), (1,3,2) ], [ (1,2,3), (1,3) ] ] 
gap> Elements(c[1]); 
[ (), (1,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,3,2) ] 
 
 
gap> Elements(c[3]); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=RightCoset(h,(1,2,3)); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=h*(1,2,3); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 

 
 

17. How can I create a quotient (factor) group? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> n:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> Elements(n); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> IsNormal(g,n); 
true 
 
gap> c:=RightCosets(g,n); 
[ RightCoset(Group([ (1,2,3) ]),()), RightCoset(Group([ (1,2,3) ]),(2,3)) ] 
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gap> Elements(c[1]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,2), (1,3) ] 
 
gap> f:=FactorGroup(g,n); 
Group([ f1 ]) 
 
gap> Elements(f); 
[ <identity> of ..., f1 ] 
 
gap> ShowMultiplicationTable(f); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
 
 
 

 

18. How do I find the center of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Center(g); 
Group(()) 
 
gap> c:=Center(g); 
Group(()) 
 
gap> Elements(c); 
[ () ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> c:=Center(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 

 
 
19. How do I find the commutator (derived) subgroup of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3,2) ]) 
 
gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(d); 
[ (), (1,3)(2,4) ] 
 

 
20. How do I find all Sylow p-subgroups for a given group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> FactorsInt(6); 
[ 2, 3 ] 
 
gap> sylow2:=SylowSubgroup(g,2); 
Group([ (2,3) ]) 
 
gap> IsNormal(g,sylow2); 
false 
 
gap> c:=ConjugateSubgroups(g,sylow2); 
[ Group([ (2,3) ]), Group([ (1,3) ]), Group([ (1,2) ]) ] 
 
gap> Elements(c[1]); 
[ (), (2,3) ] 
 
gap> Elements(c[2]); 
[ (), (1,3) ] 
 
gap> Elements(c[3]); 
[ (), (1,2) ] 
 
gap> sylow3:=SylowSubgroup(g,3); 
Group([ (1,2,3) ]) 
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gap> IsNormal(g,sylow3); 
true 
 
gap> Elements(sylow3); 
[ (), (1,2,3), (1,3,2) ] 
 

 
 
21. How can I create the Rubik’s cube group using GAP? 

 

First you need to save the following permutations as a pure text file with the 

name rubik.txt to your C-drive before you can import it into GAP. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 

 

And now you can read the file into GAP and begin exploring. 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
 
 
22. How can I find the center of the Rubik’s cube group? 
 
 
gap> c:=Center(rubik); 
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45) 
(39,47) ] 
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23. How can I find the commutator (derived) subgroup of the Rubik’s cube group? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group with 5 generators> 
 
gap> Size(d); 
21626001637244928000 
 
gap> IsNormal(rubik,d); 
true 

 

 

24. How can I find the quotient (factor) group of the Rubik’s cube group by its 

commutator (derived) subgroup? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group of size 21626001637244928000 with 5 generators> 
 
gap> f:=FactorGroup(rubik,d); 
Group([ f1 ]) 
 
gap> Size(f); 
2 
 

 

25. How can I find some Sylow p-subgroups of the Rubik’s cube group? 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
gap> FactorsInt(43252003274489856000); 
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11 ] 
 
gap> sylow2:=SylowSubgroup(rubik,2); 
<permutation group of size 134217728 with 27 generators> 
 
gap> sylow3:=SylowSubgroup(rubik,3); 
<permutation group of size 4782969 with 14 generators> 
 
gap> sylow5:=SylowSubgroup(rubik,5); 
<permutation group of size 125 with 3 generators> 
 
gap> sylow7:=SylowSubgroup(rubik,7); 
<permutation group of size 49 with 2 generators> 
 
gap> sylow11:=SylowSubgroup(rubik,11); 
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ]) 
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gap> Elements(sylow11); 
[ (), (4,5,36,21,31,15,39,13,42,7,12)(10,26,29,28,45,44,47,20,23,18,37), 
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29), 
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26), 
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45), 
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47), 
(4,21,39,7,5,31,13,12,36,15,42)(10,28,47,18,26,45,20,37,29,44,23), 
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20), 
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18), 
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44), 
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ] 
 
gap> IsNormal(rubik,sylow2); 
false 
 
gap> IsNormal(rubik,sylow3); 
false 
 
 
gap> IsNormal(rubik,sylow5); 
false 
 
gap> IsNormal(rubik,sylow7); 
false 
 
gap> IsNormal(rubik,sylow11); 
false 
 
NOTE:  All of the Sylow p-subgroups found above have conjugates, but the 
sheer size of the Rubik’s cube group makes it too difficult to pursue them on a 
typical desktop computer. 
 

 

26. How do I determine if a group is cyclic? 

 
gap> a:=(1,2,3)*(4,5,6,7); 
(1,2,3)(4,5,6,7) 
 
gap> g:=Group(a); 
Group([ (1,2,3)(4,5,6,7) ]) 
 
gap> Size(g); 
12 
 
gap> IsCyclic(g); 
true 

 

 

27. How do I create a dihedral group with 2n elements for an n-sided regular 

polygon? 

 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
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gap> Elements(d4); 
[ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ] 
 

 

28. How can I express the elements of a dihedral group as rotations and flips 
rather than as permutations? 

 
 
gap> d3:=DihedralGroup(6); 
<pc group of size 6 with 2 generators> 
 
gap> Elements(d3); 
[ <identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2 ] 
 
gap> ShowMultiplicationTable(d3); 
*                 | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
------------------+---------------------------------------------------------------------------------------------------\ 
--------- 
<identity> of ... | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
f1                | f1                <identity> of ... f1*f2             f2                f1*f2^2           f2^2       
f2                | f2                f1*f2^2           f2^2              f1                <identity> of ... f1*f2      
f1*f2             | f1*f2             f2^2              f1*f2^2           <identity> of ... f1                f2         
f2^2              | f2^2              f1*f2             <identity> of ... f1*f2^2           f2                f1         
f1*f2^2           | f1*f2^2           f2                f1                f2^2              f1*f2             
<identity> of ... 
 
 
 
29. How do I create a symmetric group of degree n with n! elements? 
 
gap> s4:=SymmetricGroup(4); 
Sym( [ 1 .. 4 ] ) 
 
gap> Size(s4); 
24 
 
gap> Elements(s4); 
[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), 
(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), 
  (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), 
(1,4), (1,4,2,3), (1,4)(2,3) ] 

 
 
 

30. How do I create an alternating group of degree n with !
2
n  elements? 

 
gap> a4:=AlternatingGroup(4); 
Alt( [ 1 .. 4 ] ) 

 
gap> Size(a4); 
12 
gap> Elements(a4); 
[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), 
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ] 

 
 
 
 
 



 60

31. How do I create a direct product of two or more groups? 
 
gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
 
gap> g2:=Group((4,5)); 
Group([ (4,5) ]) 
 
gap> dp:=DirectProduct(g1,g2); 
Group([ (1,2,3), (4,5) ]) 
 
gap> Size(dp); 
6 
gap> Elements(dp); 
[ (), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) ] 
 
gap> ShowMultiplicationTable(dp); 
*            | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
-------------+---------------------------------------------------------------------------
--- 
()           | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
(4,5)        | (4,5)        ()           (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2) 
(1,2,3)      | (1,2,3)      (1,2,3)(4,5) (1,3,2)      (1,3,2)(4,5) ()           (4,5) 
(1,2,3)(4,5) | (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2)      (4,5)        () 
(1,3,2)      | (1,3,2)      (1,3,2)(4,5) ()           (4,5)        (1,2,3)      
(1,2,3)(4,5) 
(1,3,2)(4,5) | (1,3,2)(4,5) (1,3,2)      (4,5)        ()           (1,2,3)(4,5) (1,2,3) 

 
 

 
 

32. How can I create the Quaternion group? 
 
gap> a:=(1,2,5,6)*(3,8,7,4); 
(1,2,5,6)(3,8,7,4) 
 
gap> b:=(1,4,5,8)*(2,7,6,3); 
(1,4,5,8)(2,7,6,3) 
 
gap> q:=Group(a,b); 
Group([ (1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ]) 
 
gap> Size(q); 
8 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3), 
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8), 
  (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ] 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6), 
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7), 
  (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ] 
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33. How can I find a set of independent generators for a group? 
 
 
gap> c6:=CyclicGroup(IsPermGroup,6); 
Group([ (1,2,3,4,5,6) ]) 
 
gap> Size(c6); 
6 
 
gap> GeneratorsOfGroup(c6); 
[ (1,2,3,4,5,6) ] 

 
 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
 
gap> Size(d4); 
8 
 
gap> GeneratorsOfGroup(d4); 
[ (1,2,3,4), (2,4) ] 

 
 
gap> s5:=SymmetricGroup(5); 
Sym( [ 1 .. 5 ] ) 
 
 
gap> Size(s5); 
120 
 
gap> GeneratorsOfGroup(s5); 
[ (1,2,3,4,5), (1,2) ] 
 
 
gap> a5:=AlternatingGroup(5); 
Alt( [ 1 .. 5 ] ) 
 
gap> Size(a5); 
60 
 
gap> GeneratorsOfGroup(a5); 
[ (1,2,3,4,5), (3,4,5) ] 
 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
gap> GeneratorsOfGroup(q); 
[ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ] 
 
 
 

34. How do I find the conjugate of a permutation in the form 1ba b ab−= ? 
 
gap> a:=(1,2,3,4,5); 
(1,2,3,4,5) 
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gap> b:=(2,4,5); 
(2,4,5) 

 
 
gap> a^b; 
(1,4,3,5,2) 

 
gap> b^-1*a*b; 
(1,4,3,5,2) 
 
 
 
35. How do I divide up a group into classes of elements that are conjugate to one another?  

(Note that “conjugacy” is an equivalence relation on our group G.  That means that 
G can be separated into nonintersecting subsets that contain only elements that are 
conjugate to one another.) 

 
gap> d3:=DihedralGroup(IsPermGroup,6); 
Group([ (1,2,3), (2,3) ]) 

 
gap> Size(d3); 
6 

 
gap> Elements(d3); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 
gap> cc:=ConjugacyClasses(d3); 
[ ()^G, (2,3)^G, (1,2,3)^G ] 

 
gap> Elements(cc[1]); 
[ () ] 

 
gap> Elements(cc[2]); 
[ (2,3), (1,2), (1,3) ] 

 
gap> Elements(cc[3]); 
[ (1,2,3), (1,3,2) ] 
 

 

36. How do I input a 3x3 matrix in GAP and display in its usual rectangular format? 

 
gap> x:=[[1,2,3],[4,5,6],[7,8,9]]; 
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2,  3 ], 
  [  4,  5,  6 ], 
  [  7,  8,  9 ] ] 
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37. How do I do arithmetic with matrices? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> y:=[[5,6],[7,8]]; 
[ [ 5, 6 ], [ 7, 8 ] ] 

 
gap> PrintArray(x+y); 
[ [   6,   8 ], 
  [  10,  12 ] ] 

 
gap> PrintArray(x-y); 
[ [  -4,  -4 ], 
  [  -4,  -4 ] ] 

 
gap> PrintArray(x*y); 
[ [  19,  22 ], 
  [  43,  50 ] ] 

 

 

38. How do I multiply a matrix by a number (scalar)? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> PrintArray(2*x); 
[ [  2,  4 ], 
  [  6,  8 ] ] 

 
gap> PrintArray(x/2); 
[ [  1/2,    1 ], 
  [  3/2,    2 ] ] 

39. How do I find the inverse of a matrix? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> xinverse:=x^-1; 
[ [ -2, 1 ], [ 3/2, -1/2 ] ] 
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gap> PrintArray(xinverse); 
[ [    -2,     1 ], 
  [   3/2,  -1/2 ] ] 

 
gap> xinverse:=1/x; 
[ [ -2, 1 ], [ 3/2, -1/2 ] ] 

 
gap> PrintArray(xinverse); 
[ [    -2,     1 ], 
  [   3/2,  -1/2 ] ] 

 
gap> PrintArray(x*xinverse); 
[ [  1,  0 ], 
  [  0,  1 ] ] 

 

 

40. How do I find the transpose of a matrix? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> xtranspose:=TransposedMat(x); 
[ [ 1, 3 ], [ 2, 4 ] ] 

 

gap> PrintArray(xtranspose); 
[ [  1,  3 ], 
  [  2,  4 ] ] 

 

 

 

41. How do I find the determinant of a matrix? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> DeterminantMat(x); 
-2 
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42.  How do I find the orbits that the Rubik’s cube group creates on the set 

{ }1,2,3, ,48… ? 

 

In Windows, use Notepad to type the following file, and save it to your C-drive. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 
 

Now enter the following commands. 

 
gap> Read("C:/rubik.txt"); 
gap> 

 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 

 
gap> Orbit(rubik,1); 
[ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 16, 
35, 25, 32 ] 

 
gap> Orbit(rubik,2); 
[ 2, 5, 13, 18, 36, 37, 42, 39, 34, 12, 10, 31, 15, 7, 4, 26, 20, 45, 21, 44, 
47, 28, 29, 23 ] 

 
gap> o:=Orbits(rubik); 
[ [ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 
16, 35, 25, 32 ], 
[ 2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15, 
31, 23, 18, 39 ] ] 

 
gap> Size(o); 
2 

 
gap> Elements(o); 
[ [ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 
16, 35, 25, 32 ], 
[ 2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15, 
31, 23, 18, 39 ] ] 
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Summary (part 9) 

 

As we indicated at the beginning, this part has been an introduction to theorem 

proving which is the primary activity of a research mathematician.  Thus, it’s 

important to study the proofs that have been presented in this part and to learn to 

replicate them.  This will help enable to eventually create more complex proofs of 

your own for theorems that are more complicated than the ones given here.  

Excelsior! 
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practice (part 9) 

 

Prove each theorem below.  For the most part, they are either theorems already 

presented in this section or theorems where we proved the veracity in one case, 

such as for right cosets, and we now ask you to provide a proof in another case, 

such as for left cosets.  A few of the theorems below, however, may be a little 

more original.  See first if you can construct a proof on your own, but if need be, 

simply copy or modify one of the proofs given in this part.  If you pay attention to 

what you are doing, then even copying will help train you in the right direction. 

 

 

Theorem: A group G has a unique identity element.  In other words, it has only 

one element e with the property that for every a G∈ , e a a a e⋅ = = ⋅ .  

 

Theorem:  Let G be a group, and let a G∈ .  Then a has a unique inverse, 

denoted by 1a− . 

 

Theorem:  Let G be a group and let ,a b G∈ .  If a b e= , then b a e= . 

 

Theorem:  Let G be a group and let ,a b G∈ .  If a b e= , then 1 1b a e− − =  and 

then 1 1a b e− − = . 

 

Theorem :  Let G be a group and let H be a subset of G.  If for every a H∈  we 

have that 1a H− ∈  and if for every ,a b H∈  we have that a b H∈ , then H is a 

subgroup of G. 

 

Theorem:  If H is a subgroup of a finite group G, then any two left cosets either 

coincide or have an empty intersection. 
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Theorem:  If H is a subgroup of a finite group G, then any two left cosets have 

the same number of elements. 

 

Theorem:  If H is a subgroup of a finite group G, then the order of H is a divisor of 

the order of G. 

 

Theorem:  If H is a subgroup of a group G, then the right (left) cosets of H in G 

define an equivalence relation. 

 

Theorem:  The center of a group G is a normal subgroup of G. 

 

Theorem:  If H is a subgroup of a group G and a G∈ , then 1aHa−  is a subgroup of 

G. 

 

Theorem:  Let G be a group, let M and N be normal subgroups of G such that 

M N e=∩  (the identity), and let m M∈  and n N∈ .  Then m and n commute with 

one another, or in other words, mn nm= . 
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practice (part 9) - answers 

 

Theorem: A group G has a unique identity element.  In other words, it has only 

one element e with the property that for every a G∈ , e a a a e⋅ = = ⋅ .  

 

Proof:  Suppose that 1e  and 2e  are both identity elements in G.  Then since 1e  is 

an identity element, 1 2 2( )e e e⋅ = .  On the other hand, since 2e  is an identity 

element, 1 2 1( )e e e⋅ = .  Therefore, 1 1 2 2e e e e= ⋅ = , and the identity element in a group 

is unique. 

          ,  
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Theorem:  Let G be a group, and let a G∈ .  Then a has a unique inverse, 

denoted by 1a− . 

 

Proof:  Let G be a group, and let a G∈ . Now suppose that ,b c G∈  such that both 

b and c are inverses of a.  Then ab e= , the identity, and ac e= .  Hence, ab ac= .  

But by our Left Cancellation Theorem, this implies that b c= .  Therefore, in a 

group an element a has only one, unique inverse, denoted by 1a− . 

         ,  
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Theorem:  Let G be a group and let ,a b G∈ .  If a b e= , then b a e= . 

 

Proof:  If a b e= , then 1b a −= , and it now immediately follows that 
1b a a a e−= = . 

         ,  
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Theorem:  Let G be a group and let ,a b G∈ .  If a b e= , then 1 1b a e− − =  and 

then 1 1a b e− − = . 

 

Proof:  If a b e= , then 1 1( )a b e e− −= = .  But 1 1 1( )a b b a− − −= , and hence,  

1 1b a e− − = , and that proves the first part of this theorem.  To prove the second 

part, we just invoke the previous theorem to conclude that if 1 1b a e− − = , then 
1 1a b e− − = . 

         ,  
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Theorem :  Let G be a group and let H be a subset of G.  If for every a H∈  we 

have that 1a H− ∈  and if for every ,a b H∈  we have that a b H∈ , then H is a 

subgroup of G. 

 

Proof:  Let G be a group and let H be a subset of G, and assume that for every 

a H∈  we have that 1a H− ∈  and for every ,a b H∈  we have that a b H∈ .  

To show that H is a subgroup of G, we need to show four things – closure under 

the group multiplication, the associative law, the existence of an identity, and the 

existence of inverses.  We are assuming in our hypothesis that the closure and 

inverse properties are satisfied, and we get the associative property for free since 

it holds for all elements in the group G.  Thus, we just need to establish the 

existence of an identity element.  But this is easy because if a H∈ , then 
1a H− ∈ , and since we are assuming closure under multiplication in H, we have 

that 1a a e H− = ∈ .  Therefore, H is a subgroup of G. 

         ,  
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Theorem:  If H is a subgroup of a finite group G, then any two left cosets either 

coincide or have an empty intersection. 

 

Proof:  Let H is a subgroup of a finite group G and suppose that ,a b G∈  and that 

aH and bH are left cosets.  Recall that if H has m elements, 1 2 3, , , , me h h h h= … ,then 

the members of aH are 2 3, , , , ma ah ah ah…  and the members of Hb are 

2 3, , , , mb bh bh bh… .  If aH bH =∅∩ , then we’re done.  Thus assume that the 

intersection is non-empty.  Then that means there exist jah aH∈  and kbh bH∈  

such that j kah bh= .  But this means that 1
k ja bh h −=  and 1

j kb ah h −= .  Hence, every 

element in bH can be written as a product of a with an element in H , and every 

element in aH can be written as a product of b with an element in H.  From this it 

follows that every element in bH is also an element in aH, and every element in 

aH is also an element in bH.  Thus, aH bH= , and, in general, for any two left 

cosets aH and bH, either aH bH =∅∩  or aH bH= . 

         ,  
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Theorem:  If H is a subgroup of a finite group G, then any two left cosets have 

the same number of elements. 

 

Proof:  Let H be a subgroup of a finite group G and suppose that a G∈  and that H 

and aH are distinct left cosets.  Recall that if H has m elements, 

1 2 3, , , , me h h h h= … ,then the members of aH are 2 3, , , , ma ah ah ah… .  It now follows from 

the left cancellation law that these are m distinct elements in aH since otherwise 

if, for example, we had 2 3ah ah= , then this would incorrectly imply that 2 3h h= .  

And since a was chosen to be any arbitrary element that is not in H, this 

argument shows that all left cosets of H in G will have the same number of 

elements as the subgroup H.  Therefore, any two left cosets of H in G have the 

same number of elements. 

         ,  
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Theorem:  If H is a subgroup of a finite group G, then the order of H is a divisor of 

the order of G. 

 

Proof:  Suppose that H is a subgroup of a finite group G, and suppose that G n=  

and H m= .  If H G= , then clearly m n=  and, thus, m divides n.  Hence, suppose 

that H G≠ .  Then there exists a G∈  such that a H∉ , and by previous proof, 

H Ha=  and H Ha =∅∩ .  Continuing in this manner, if H Ha G≠∪ , then there 

exists b G∈  such that b H∉  and H Ha Hb= =  and no two of these right cosets 

have any elements in common.  If now H Ha Hb G≠∪ ∪ , then we can continue 

once again in this manner, but since G is a finite group, we will eventually arrive 

at a set of right cosets whose union is G.  Furthermore, since these cosets all 

contain m elements and since no two cosets have any elements in common, then 

if we have exactly k such right cosets whose union is G then the number of 

elements in G is equal to the number of elements in H times the number of 

distinct right cosets of H in G.  In other words, n mk=  and, therefore, m H=  is a 

divisor of n mk G= = . 

         ,   
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Theorem:  If H is a subgroup of a group G, then the right (left) cosets of H in G 

define an equivalence relation. 

 

Proof:  The easy way to prove this is to simply note that from previous proofs that 

the intersection of any two distinct right (left) cosets is the null set and the union 

of all the right (left) cosets gives us back all of G.  Hence, the cosets form a 

partition of G into disjoint sets whose union is G, and, therefore, coset 

membership defines an equivalence relation.  More specifically, previous proofs 

have shown that any two right (left) cosets either have an empty intersection or 

they are equal to one another, and thus, it follows that (1) Ha Ha= , (2) if Ha Hb= , 

then Hb Ha= , and (3) if Ha Hb=  and Hb Hc= , then Ha Hc= .  Hence, the right 

(left) cosets define an equivalence relation.     

         ,  
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Theorem:  The center of a group G is a normal subgroup of G. 

 

Proof:  We’ll begin by showing that ( )Z G  is at least a subgroup of G.  Thus, first 

note that the center of a group always exists since the identity element always 

belongs to the center (since it commutes with every other element in G).  Second, 

we’ll show that the center is a subgroup by showing that it is closed under 

multiplication and every that element in the center has an inverse in the center.  

Thus, let , ( )a b Z G∈  and let c G∈ .  Then ( ) ( ) ( ) ( ) ( ) ( )ab c a bc a cb ac b ca b c ab= = = = = .  

Hence, since ab commutes with an arbitrary element of G, ab is in the center of 

G, and, thus, ( )Z G  is closed under multiplication.  Now let ( )a Z G∈  and let c G∈ .  

Then 
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

( ) ( ) ( ) ( )

( ) .

ac ca ac a ca a aca c aa aca c a aca a c

a a ca a c eca a c ca a c

− − − − − − − −

− − − − − − −

= ⇒ = ⇒ = ⇒ = ⇒ =

⇒ = ⇒ = ⇒ =
 

Therefore, if a commutes with c, then 1a−  commutes with c, and, thus, 1 ( )a Z G− ∈  

and ( )Z G  is a subgroup of G. 

 

To show that ( )Z G  is a normal subgroup, let ( )a Z G∈  and let c G∈ .  Then it 

suffices to show that 1 ( )c ac Z G− ∈ .  But this is easy since, a commutes with every 

element in G.  In other words, 1 1 1 1( ) ( ) ( ) ( )c ac c a c ac c a c c ae a Z G− − − −= = = = = ∈ .  

Therefore, the center of a group G is a normal subgroup of G.   

           ,   
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Theorem:  If H is a subgroup of a group G and a G∈ , then 1aHa−  is a subgroup of 

G. 

 

Proof:  Let G be a group and let H be a subgroup, and let a G∈ .  To show that 
1aHa−  is a subgroup of G, we need to show that 1aHa−  is closed under 

multiplication and that every element in 1aHa−  has an inverse.  Thus, let ,x y H∈ .  

Then 1 1 1,axa aya aHa− − −∈ .  Also, since xy H∈ , we have that 1 1( )a xy a aHa− −∈ .  Now 

suppose we pick two arbitrary elements of 1aHa− .  Then we can write them as 
1axa−  and 1aya−  since every element in 1aHa−  is the conjugate of some element in 

H.  But now we have that 1 1 1 1 1( )axa aya ax e ya a xy a aHa− − − − −⋅ = ⋅ ⋅ = ∈ , and, hence, 

1aHa−  is closed under multiplication.  Furthermore, if 1 1axa aHa− −∈ , then 
1 1 1ax a aHa− − −∈ , too, and since 

1 1 1 1 1 1 1 1 1( )axa ax a ax e x a a xx a a e a aa e− − − − − − − − −⋅ = ⋅ ⋅ = = ⋅ ⋅ = = , it follows that every 

element in 1aHa−  has an inverse that belongs to 1aHa− .  Therefore, 1aHa−  is a 

subgroup of G. 

         ,  
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Theorem:  Let G be a group, let M and N be normal subgroups of G such that 

M N e=∩  (the identity), and let m M∈  and n N∈ .  Then m and n commute with 

one another, or in other words, mn nm= . 

 

Proof:  Let G be a group, let M and N be normal subgroups of G such that 

M N e=∩  (the identity), and let m M∈  and n N∈ .  Then by our previous proof, the 

commutator 1 1m n mn− −  is in the intersection of M and N,  But this means that 
1 1m n mn M N e− − = =∩ .  However, 1 1 1m n mn e n mn m mn nm− − −= ⇒ = ⇒ = .  Therefore, m 

and n commute with one another. 

         ,  

 



 
 

It’s group theory time! 




