
A CHILD’S GARDEN OF GROUPS

Deep Inside Rubik’s Cube
(Part 8)

by

Doc Benton

Creative Commons License

You are free to:

• Share this work
• Adapt this work
• Attribute all original materials to Doc Benton

You are not free to:

• Charge money for this work; Knowledge is free!

contents (part 8)

Introduction (Part 8) ... 1

Rubik’s Cube Subgroups ... 2

Conjugates, Commutators, Centers, and Orbits 11

How to Use GAP (Part 8)... 16

Conjugates, Commutators, Centers, and Orbits in Rubik’s Cube 36

Patterns on Rubik’s Cube .. 44

Counting the Number of Permutations in Rubik’s Cube........................... 56

Revisiting the Solution to Rubik’s Cube ... 68

Summary (Part 8)... 77

Practice (Part 8) ... 78

Practice (Part 8) – Answers ... 80

 1

INTRODUCTION (part 8)

Part 8 of this work contains an amazing amount of stuff! The focus is on group

theory as applied to Rubik’s cube, but we’ll also learn in more depth about

conjugates and commutators and how they apply to Rubik’s cube, the

commutator or derived subgroup, centers and orbits, special subgroups of the

Rubik’s cube group, an update on how to use GAP to study Rubik’s cube, a

deeper analysis of the solution to Rubik’s cube, and an explanation of how to

correctly count just how many permutations are possible of the facelets of

Rubik’s cube.

 2

RUBIK’S CUBE SUBGROUPS

Some of the tools that we introduced in Part 2 and other parts of this book can

now give us more information about the kinds of subgroups that exist within all

the permutations that may be reached on Rubik’s cube. For example, we

previously stated that the total number of attainable permutations on Rubik’s

cube is 43,252,003,274,489,856,000 . This rather large number factors into
27 14 3 243,252,003,274,489,856,000 2 3 5 7 11= ⋅ ⋅ ⋅ ⋅ . Now recall that we also mentioned in

Part 2 that there is an advanced theorem called the Sylow Theorem tells us that

if a prime number raised to a power divides the order of a group G, then our

group contains a subgroup composed of that many elements. In particular, there

is a subgroup of order np where p is prime and np is the largest power of that

prime number that divides the order of our group G. In this case, we call the

subgroup of order np a Sylow p-subgroup, and G will also have subgroups of

order mp where m is any nonnegative integer less than n. For instance, in our

Rubik’s cube group there will be Sylow p-subgroups with orders of 272 , 143 , 35 , 27 ,

and 11 . In fact, here is a generator for one of the Sylow 11-subgroups.

Interesting, isn’t it!

1 1 1 1 1 1 1 1 1U FBU F DBUDB U RRD LLU LLD LLU R− − − − − − − − −

There will be additional subgroups of orders 2, 3, 5, and 7 raised to all the

various powers between 1 and the power of the corresponding Sylow p-subgroup.

And then there will undoubtedly be a whole lot of other subgroups whose orders

are not simply a prime raised to a power. However, we know immediately that

there is no subgroup of order 13. And how do we know this? Simple! It’s

because 13 doesn’t divide the order of the group.

 3

The Rubik’s cube group itself is generated by the operations of R, L, U, D, F, and

B being applied to the cube, and each individual operation generates a cyclic

group of order 4. For example, { }2 3, , ,R e R R R= is the subgroup that we

generate by rotating the right face of the cube a quarter turn each time, and this

subgroup is isomorphic to 4 . Likewise, L , U , D , F , and B are all

isomorphic to 4 .

Rotating the right face a quarter-turn four times

However, if we look at the subgroup that is generated by both R and L, i.e. by

twisting the right and left faces separately, then since these operations commute

with one another we get 4 4,R L ≅ ⊕ . In other words, we can think of the

group that is generated by R and L as simply consisting of ordered pairs where

the elements of R might occupy the first coordinate, and then the elements of L

can occupy the second coordinate. It’s a nice, uncomplicated, abelian group.

However, if we perform the move RU on the cube, then we are working with

cycles that overlap, and the result is far from abelian, or, to put it another way,

RU UR≠ . Furthermore, if we keep repeating this move RU, then we eventually

generate a cyclic group of order 105!

 4

RU UR≠

Things work out a little differently, though, if we repeatedly do the operation 2 2R U .

For one thing, if we look at the cycle structure of just the permuted cublets and

ignore any rotations or flips that might occur along the way, then we can describe

the permutation created by this operation as:

()()()()()UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF .

2 2R U

 5

In this notation, UB is used to identify the edge cublet shared by the up face and

the back face while UFR, for example, identifies the corner cublet at the up-front-

right position.

Notice, though, that in the cycle structure given above that we have two cycles of

length 2 and three cycles of length 3. This means that if we do this operation

twice, ()22 2R U , then we will undo the 2-cycles and just be left with some 3-cycles.

In fact, the resulting permutation is

()()()DR UR UL DBR UFR UBL DRF URB ULF .

To see this algebraically, let’s just raise our first permutation to the second power.

If we do, then we’ll get

()()()()()
() () () () ()
() () ()
()()()

2

2 2 2 2 2

2 2 2

.

UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UL UR DR UBL UFR DBR ULF URB DRF

DR UR UL DBR UFR UBL DRF URB ULF

⎡ ⎤⎣ ⎦

=

=

=

Any questions? If we look more closely at this resulting permutation, we see that

it cycles three edge cubelets and also cycles two different sets of corner cubelets.

In particular, the down-right, up-right, and up-left cubelets will cycle amongst

themselves.

 6

2 2 2()R U

If we cube 2 2R U , however, then we’ll get rid of the 3-cycles and we’ll be left with

only a couple of 2-cycles. Algebraically, the result is

() ()()()()()

() () () () ()
()()

3 32 2

3 3 3 3 3

.

R U UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UB UF BR FR

⎡ ⎤= ⎣ ⎦

=

=

2 2 3()R U

 7

This final result looks particularly useful because essentially we are just

swapping two back cubelets for two front cublelets, and if you try this move, then

you’ll you get a very nice and elegant pattern. And lastly, since 2 2R U results in a

combination of 2-cycles and 3-cycles, it follows that if we perform this operation

six times, then all the cubelets will be restored to their original positions. When

we try it, that is indeed what happens, and fortunately the orientations of the

cubelets are also restored. Thus, the order of the cyclic group generated by
2 2R U is six. In symbols, we write 2 2 6R U = . One of the very important lessons

from this example, however, is that looking at the cycle structure of a permutation

can help us determine not only the order of the corresponding cyclic group, but

also what powers of this permutation might result in moving only a minimum

number of cubelets in our Rubik’s cube.

And finally, if we look at not only the cyclic group generated by 2 2R U , but also the

group generated by 2R and 2U (denoted by 2 2,R U) acting either together or

independently, then it turns out that this group has order 12 and is isomorphic to

6D , the symmetries of a regular hexagon. This is also an example of what on the

cube we call a two-squares group.

Another subgroup of the Rubik’s cube group that is both elegant and interesting

is called the slice group. This subgroup is generated by rotating only the center

slices, and as such, it will leave the corners of the cube untouched.

Consequently, this group can be used to create some pretty patterns. Also,

since it is not always easy to rotate a middle slice, we can accomplish the same

effect by performing 1RL− , 1FB− , and 1UD− . Thus, the slice group is generated by

these elements, 1 1 1, ,RL FB UD− − − and 1 1 1, , 768RL FB UD− − − = .

 8

1 1 1, ,RL FB UD− − −

Also interesting and mathematically less complicated is the slice-squared group,

1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2() ,() ,() , , , ,RL FB UD R L F B U D R L F B U D− − − − − −= = .

2 2 2 2 2 2, ,R L F B U D

This subgroup consists of eight elements, and it’s abelian. And that means, by

the Fundamental Theorem of Finite Abelian Groups, there are only three

possibilities for the structure of the slice-squared group. It has to be isomorphic

to either 8 , 4 2× , or 2 2 2× × . See if you can figure out what the correct

answer is!

And finally, I want to talk about just one more subgroup that I can associate with

Rubik’s cube. This is going to be the subgroup generated by rotating the whole

 9

cube clockwise with respect to either the up face, the right face, or the front face.

I’ll represent quarter turns in each of these directions by U, R, and F. Since

these moves create a permutation of the six faces of the cube, the group

generated has to be some subgroup of 6S which has order 6 5 4 3 2 1 720⋅ ⋅ ⋅ ⋅ ⋅ = .

However, we won’t get 6S in its entirety. In fact, I claim that our subgroup will

only have order 24. To see this, notice that we have six choices we could make

regarding which colored face to have at the top of our cube. However, once we

have picked a top color, then we have four choices for the front color, and once

we have made these two choices, then we’re done. Those two choices will

establish a particular arrangement for the six faces of the cube. Thus, the total

number of arrangements we can have is 6 4 24⋅ = . Another way to look at this is

to construct the four possible diagonals that can go from a bottom corner of the

cube to a top corner of the cube, and let’s suppose we give each diagonal a

different color, such as red, blue, orange, or magenta.

Then every turn of the cube by U, R, or F will produce some permutation of these

four diagonals, and the total number of permutations possible is 4! 4 3 2 1 24= ⋅ ⋅ ⋅ = .

Furthermore, notice that U-1RU is equivalent to F. Thus, we could generate this

group using only U and R, but it’s conceptually easier to think of it as being

generated by U, R, and F. Also, since all of the pictures below represent solved

 10

cubes, we don’t really consider this group to be a subgroup of the Rubik’s cube

group.

24 Different Orientations for the Solved Rubik’s Cube

 11

CONJUGATES, COMMUTATORS, centers, and

orbits

Recall that if G is a group, and ,x a G∈ , then the element 1a xa− is called a

conjugate of x. Similarly, 1axa− is also a conjugate of x since 1a G− ∈ and
1 1 1 1()a xa axa− − − −= . Additionally, if H is a subgroup of G, H G≤ , then we can define

the conjugate by a of the whole subgroup as { }1 1 |aHa axa x H− −= ∈ . And now

recall that if H is a subgroup of G, then so is 1aHa− . We’ll prove this is the case

just for finite groups since that is our primary interest. (Note that this is the first

time that we are introducing you to a formal proof. Many more proofs will be

done and explained in Parts 9 and 10 of this work.)

Theorem: If G is a finite group, H is a subgroup of G, and a G∈ , then 1aHa− is

also a subgroup of G.

Proof: Since G is a finite group, it suffices to show that 1aHa− is closed under

multiplication. Thus, suppose that 1,b c aHa−∈ . Then there exist x and y in H such

that 1b axa−= and 1c aya−= . Hence, 1 1 1 1()() ()bc axa aya a xy a aHa− − − −= = ∈ since xy H∈ .

Therefore, 1aHa− is a subgroup of G.

We’ve mentioned previously that some subgroups have the special property that
1aHa H− = for all a G∈ , and when this happens, we say that the subgroup is a

normal subgroup and write H G . What our theorem above shows is that even if
1aHa H− ≠ , then 1aHa− will still be a subgroup of G. Also, remember that if the

only normal subgroups of a group G are G and { }e , then we call G a simple

group.

 12

Recall now our earlier discussion of Sylow p-subgroups where our theorem said

that if np is the highest power of a prime p that divides into the order of our group

G, then G will have a subgroup of order np , a Sylow p-subgroup. We’ll now state

our second and third Sylow Theorems. Also, we’ll defer proofs of these

theorems until part 10.

The Second Sylow Theorem: Let G be a finite group, and let p be a prime that

divides the order of G. Then all Sylow p-subgroups of G are conjugate to one

another.

The Third Sylow Theorem: The number of Sylow p-subgroups of a finite group G

is a divisor of the order of G. (More specifically, if nG p m= ⋅ , then the number of

Sylow p-subgroups is a divisor of m.)

Hence, from this it follows that if our Sylow p-subgroup is not normal, then we

can find all find all of the Sylow p-subgroups just by taking conjugates of a single

Sylow p-subgroup. If we go back to our multiplication table for 3S , we can easily

verify that all the subgroups of order 2 are conjugate.

()()() () () () () ()
()()() ()()() () () () () ()
() () ()()() () () () ()
() () () ()()() () () ()
() () () () ()()() () ()

() () () () () () ()()()
() () () () () ()()() ()

1 2 3 1 2 1 3 2 3 1 2 3 1 3 2
1 2 3 1 2 3 1 2 1 3 2 3 1 2 3 1 3 2

1 2 1 2 1 2 3 1 2 3 1 3 2 1 3 2 3
1 3 1 3 1 3 2 1 2 3 1 2 3 2 3 1 2
2 3 2 3 1 2 3 1 3 2 1 2 3 1 2 1 3

1 2 3 1 2 3 2 3 1 2 1 3 1 3 2 1 2 3
1 3 2 1 3 2 1 3 2 3 1 2 1 2 3 1 2 3

For example, we have three subgroups of order 2. Namely, ()
(1)(2)(3)

1 2
⎧ ⎫
⎨ ⎬
⎩ ⎭

, ()
(1)(2)(3)

1 3
⎧ ⎫
⎨ ⎬
⎩ ⎭

,

and ()
(1)(2)(3)

2 3
⎧ ⎫
⎨ ⎬
⎩ ⎭

. If we now create some conjugates by multiplying ()
(1)(2)(3)

1 2
⎧ ⎫
⎨ ⎬
⎩ ⎭

 by

 13

()1 3 and ()2 3 [Note that each of these elements is its own inverse], then we

obtain: () () () ()
(1)(2)(3) (1)(2)(3)

1 3 1 3
1 2 2 3

⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
 and () () () ()

(1)(2)(3) (1)(2)(3)
2 3 2 3

1 2 1 3
⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

.

Thus, the other two groups are conjugate to the first, and hence, they are all

conjugate to each other.

The second concept we want to look at again is that of a commutator. Recall

from Part 2 that if ,x y G∈ , then the commutator of x and y is the product 1 1xyx y− − .

(Additionally, 1 1x y xy− − , 1 1yxy x− − , and 1 1y x yx− − are also commutators that can be

constructed from x and y.) Notice that if G is an abelian group or if x and y

commute with one another, then 1 1 1 1xyx y xx yy e− − − −= = , the identity element in G.

On the other hand, if x and y don’t commute with one another, but if their

corresponding permutations don’t have much in common, then their commutator

probably won’t result in too many changes. For example, let’s suppose that

()()1 2 3 4 5 6x = and ()()6 7 8 9 10y = . Then ()()1 6 5 4 3 2 1x− = and

()()1 10 9 8 7 6y− = . The only item both x and y permute is 6, and their

commutator is,

()()()()()()()()
()

1 1 1 2 3 4 5 6 6 7 8 9 10 6 5 4 3 2 1 10 9 8 7 6

5 6 8

xyx y− − =

=

Thus, even though our permutations don’t commute, the commutator still undoes

quite a bit of what gets moved around. Similarly, when we form a conjugate such

as 1a xa− , there is a good chance that the last multiplication by a will undo some

of the scrambling done by multiplication of a permutation x by 1a− . Consequently,

as we’ll see in the next chapter, both conjugates and commutators can be very

helpful in developing a solution to Rubik’s cube since there is a good chance that

we can find some that move just a few elements of the cube while leaving the

rest undisturbed.

 14

Now let’s suppose that we take all the commutators in our group and form all

possible, finite products with them. This will generate a subgroup of G that we

call the commutator or derived subgroup. Again, if G is abelian, then this

commutator subgroup will simply be the identity. However, if G is not abelian,

then we can think of the commutator subgroup as measuring how far from being

abelian it actually is. Thus, in general, we might say that the more abelian the

group is, the smaller its commutator subgroup, and the less abelian it is, the

larger its commutator subgroup. For 3S , the commutator subgroup is the same

as its single Sylow 3-subgroup,
()

()
()
1 2 3
1 3 2

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

. Also, the derived or commutator

subgroup of a group G is always a normal subgroup of G, and the corresponding

quotient group is always abelian.

In a chapter coming up soon we will see more specifically how conjugates and

commutators apply to Rubik’s cube, but first we want to remind you of the

definition of the center and also introduce the notion of the orbit of an element

that is acted upon by a group. First, we’ll define the center of a group G as the

subset of all elements of G that commute with every other element of G. This

subgroup will always be a normal subgroup of G, and for 3S , the group of all

permutations of the set { }1,2,3 , the center consists of just the identity element,

() . Thus, this is the only element in 3S that commutes with every other element

in 3S .

We’ll also use 3S to explain what we mean by the orbit of an element that is

being acted upon by a group. Thus, once again, let’s let our set of elements be

{ }1,2,3 and let’s let 3S be the group that is creating permutations of these

elements. In this case, any element that, for example, the number 1 can be

changed into is thought of as being in the same orbit as 1. Furthermore, since

repeated application of the permutation (1,2,3) can change 1 into 2 or 1 into 3, it

 15

follows that the orbit of 1 under 3S is the entire set { }1,2,3 . In particular, the

group 3S results in only a single orbit for this set. In the next chapter, we’ll

examine both the center and the orbits of the facelets of Rubik’s cube that are

permuted by the Rubik’s cube group, and we’ll see how to compute these things

and more using GAP software.

 16

How to use gap (part 8)

We will begin as usual by repeating all the GAP commands with learned up to

this point so that you don’t have to reference earlier parts of this work, and then

at the end we’ll introduce in red a few GAP commands that are useful for

exploring oribits on Rubik’s cube.

1. How can I redisplay the previous command in order to edit it?

Press down on the control key and then also press p. In other words, “Ctrl p”.

2. If the program gets in a loop and shows you the prompt “brk>” instead of

“gap>”, how can I exit the loop?

Press down on the control key and then also press d. In other words, “Ctrl d”.

3. How can I exit the program?

Either click on the “close” box for the window, or type “quit;” and press

“Enter.”

4. How do I find the inverse of a permutation?

gap> a:=(1,2,3,4);

(1,2,3,4)

gap> a^-1;

 17

(1,4,3,2)

5. How can I multiply permutations and raise permutations to powers?

gap> (1,2)*(1,2,3);

(1,3)

gap> (1,2,3)^2;

(1,3,2)

gap> (1,2,3)^-1;

(1,3,2)

gap> (1,2,3)^-2;

(1,2,3)

gap> a:=(1,2,3);

(1,2,3)

gap> b:=(1,2);

(1,2)

gap> a*b;

(2,3)

gap> a^2;

(1,3,2)

gap> a^-2;

(1,2,3)

 18

gap> a^3;

()

gap> a^-3;

()

gap> (a*b)^2;

()

gap> (a*b)^3;

(2,3)

6. How can I create a group from permutations, find the size of the group, and

find the elements in the group?

gap> a:=(1,2);

(1,2)

gap> b:=(1,2,3);

(1,2,3)

gap> g1:=Group(a,b);

Group([(1,2), (1,2,3)])

gap> Size(g1);

6

gap> Elements(g1);

[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> g2:=Group([(1,2),(1,2,3)]);

 19

Group([(1,2), (1,2,3)])

gap> g3:=Group((1,2),(2,3,4));

Group([(1,2), (2,3,4)])

7. How can I create a cyclic group of order 3?

gap> a:=(1,2,3);

(1,2,3)

gap> g1:=Group(a);

Group([(1,2,3)])

gap> Size(g1);

3

gap> Elements(g1);

[(), (1,2,3), (1,3,2)]

gap> g2:=Group((1,2,3));

Group([(1,2,3)])

gap> g3:=CyclicGroup(IsPermGroup,3);

Group([(1,2,3)])

 20

8. How can I create a multiplication table for the cyclic group of order 3 that I just

created?

gap> ShowMultiplicationTable(g1);

* | () (1,2,3) (1,3,2)

--------+---------------------------------

() | () (1,2,3) (1,3,2)

(1,2,3) | (1,2,3) (1,3,2) ()

(1,3,2) | (1,3,2) () 1,2,3)

9. How do I determine if a group is abelian?

gap> g1:=Group((1,2,3));
Group([(1,2,3)])

gap> IsAbelian(g1);
true

gap> g2:=Group((1,2),(1,2,3));
Group([(1,2), (1,2,3)])

gap> IsAbelian(g2);
false

10. What do I type in order to get help for a command like “Elements?”

gap> ?Elements

11. How do I find all subgroups of a group?

 21

gap> a:=(1,2,3);
(1,2,3)
gap> b:=(2,3);
(2,3)

gap> g:=Group(a,b);
Group([(1,2,3), (2,3)])

gap> Size(g);
6

gap> Elements(g);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> h:=AllSubgroups(g);
[Group(()), Group([(2,3)]), Group([(1,2)]), Group([(1,3)]),
Group([(1,2,3)]), Group([(1,2,3), (2,3)])]

gap> List(h,i->Elements(i));
[[()], [(), (2,3)], [(), (1,2)], [(), (1,3)], [(), (1,2,3),
(1,3,2)], [(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]]

gap> Elements(h[1]);
[()]

gap> Elements(h[2]);
[(), (2,3)]

gap> Elements(h[3]);
[(), (1,2)]

gap> Elements(h[4]);
[(), (1,3)]

gap> Elements(h[5]);
[(), (1,2,3), (1,3,2)]

gap> Elements(h[6]);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

12. How do I find the subgroup generated by particular permutations?

gap> g:=Group((1,2),(1,2,3));
Group([(1,2), (1,2,3)])

gap> Elements(g);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> h:=Subgroup(g,[(1,2)]);
Group([(1,2)])

gap> Elements(h);
[(), (1,2)]

13. How do I determine if a subgroup is normal?

gap> g:=Group((1,2),(1,2,3));
Group([(1,2), (1,2,3)])

 22

gap> h1:=Group((1,2));
Group([(1,2)])
gap> IsNormal(g,h1);

gap> h2:=Group((1,2,3));
Group([(1,2,3)])

gap> IsNormal(g,h2);
true

14. How do I find all normal subgroups of a group?

gap> g:=Group((1,2),(1,2,3));
Group([(1,2), (1,2,3)])

gap> Elements(g);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> n:=NormalSubgroups(g);
[Group([(1,2), (1,2,3)]), Group([(1,3,2)]), Group(())]

gap> Elements(n[1]);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> Elements(n[2]);
[(), (1,2,3), (1,3,2)]

gap> Elements(n[3]);
[()]

15. How do I determine if a group is simple?

gap> g:=Group((1,2),(1,2,3));
Group([(1,2), (1,2,3)])

gap> Elements(g);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> IsSimple(g);
false

gap> h:=Group((1,2));
Group([(1,2)])

gap> Elements(h);
[(), (1,2)]

gap> IsSimple(h);
true

 23

16. How do I find the right cosets of a subset H of G?

gap> g:=Group([(1,2,3),(1,2)]);
Group([(1,2,3), (1,2)])

gap> Elements(g);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> h:=Subgroup(g,[(1,2)]);
Group([(1,2)])

gap> Elements(h);
[(), (1,2)]

gap> c:=RightCosets(g,h);
[RightCoset(Group([(1,2)]),()), RightCoset(Group([(1,2)]),(1,3,2)),
RightCoset(Group([(1,2)]),(1,2,3))]

gap> List(c,i->Elements(i));
[[(), (1,2)], [(2,3), (1,3,2)], [(1,2,3), (1,3)]]
gap> Elements(c[1]);
[(), (1,2)]

gap> Elements(c[2]);
[(2,3), (1,3,2)]

gap> Elements(c[3]);
[(1,2,3), (1,3)]

gap> rc:=RightCoset(h,(1,2,3));
RightCoset(Group([(1,2)]),(1,2,3))

gap> Elements(rc);
[(1,2,3), (1,3)]

gap> rc:=h*(1,2,3);
RightCoset(Group([(1,2)]),(1,2,3))

gap> Elements(rc);
[(1,2,3), (1,3)]

17. How can I create a quotient (factor) group?

gap> g:=Group([(1,2,3),(1,2)]);
Group([(1,2,3), (1,2)])

gap> Elements(g);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> n:=Group((1,2,3));
Group([(1,2,3)])

gap> Elements(n);
[(), (1,2,3), (1,3,2)]

gap> IsNormal(g,n);
true

 24

gap> c:=RightCosets(g,n);
[RightCoset(Group([(1,2,3)]),()), RightCoset(Group([(1,2,3)]),(2,3))]

gap> Elements(c[1]);
[(), (1,2,3), (1,3,2)]

gap> Elements(c[2]);
[(2,3), (1,2), (1,3)]

gap> f:=FactorGroup(g,n);
Group([f1])

gap> Elements(f);
[<identity> of ..., f1]

gap> ShowMultiplicationTable(f);
* | <identity> of ... f1
------------------+------------------------------------
<identity> of ... | <identity> of ... f1
f1 | f1 <identity> of ...

18. How do I find the center of a group?

gap> a:=(1,2,3);
(1,2,3)

gap> b:=(2,3);
(2,3)

gap> g:=Group(a,b);
Group([(1,2,3), (2,3)])

gap> Center(g);
Group(())

gap> c:=Center(g);
Group(())

gap> Elements(c);
[()]

gap> a:=(1,2,3,4);
(1,2,3,4)

gap> b:=(1,3);
(1,3)

gap> g:=Group(a,b);
Group([(1,2,3,4), (1,3)])

gap> c:=Center(g);
Group([(1,3)(2,4)])

gap> Elements(c);
[(), (1,3)(2,4)]

19. How do I find the commutator (derived) subgroup of a group?

 25

gap> a:=(1,2,3);
(1,2,3)

gap> b:=(2,3);
(2,3)

gap> g:=Group(a,b);
Group([(1,2,3), (2,3)])

gap> d:=DerivedSubgroup(g);
Group([(1,3,2)])

gap> Elements(d);
[(), (1,2,3), (1,3,2)]

gap> a:=(1,2,3,4);
(1,2,3,4)

gap> b:=(1,3);
(1,3)

gap> g:=Group(a,b);
Group([(1,2,3,4), (1,3)])

gap> d:=DerivedSubgroup(g);
Group([(1,3)(2,4)])

gap> Elements(d);
[(), (1,3)(2,4)]

20. How do I find all Sylow p-subgroups for a given group?

gap> a:=(1,2,3);
(1,2,3)

gap> b:=(2,3);
(2,3)

gap> g:=Group(a,b);
Group([(1,2,3), (2,3)])

gap> Size(g);
6

gap> FactorsInt(6);
[2, 3]

gap> sylow2:=SylowSubgroup(g,2);
Group([(2,3)])

gap> IsNormal(g,sylow2);
false

gap> c:=ConjugateSubgroups(g,sylow2);
[Group([(2,3)]), Group([(1,3)]), Group([(1,2)])]

gap> Elements(c[1]);
[(), (2,3)]

gap> Elements(c[2]);
[(), (1,3)]

gap> Elements(c[3]);

 26

[(), (1,2)]

gap> sylow3:=SylowSubgroup(g,3);
Group([(1,2,3)])

gap> IsNormal(g,sylow3);
true

gap> Elements(sylow3);
[(), (1,2,3), (1,3,2)]

21. How can I create the Rubik’s cube group using GAP?

First you need to save the following permutations as a pure text file with the

name rubik.txt to your C-drive before you can import it into GAP.

r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);

And now you can read the file into GAP and begin exploring.

gap> Read("C:/rubik.txt");

gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>

gap> Size(rubik);
43252003274489856000

22. How can I find the center of the Rubik’s cube group?

gap> c:=Center(rubik);
Group([(2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47)])

gap> Size(c);
2

gap> Elements(c);
[(), (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45)
(39,47)]

 27

23. How can I find the commutator (derived) subgroup of the Rubik’s cube group?

gap> d:=DerivedSubgroup(rubik);
<permutation group with 5 generators>

gap> Size(d);
21626001637244928000

gap> IsNormal(rubik,d);
true

24. How can I find the quotient (factor) group of the Rubik’s cube group by its

commutator (derived) subgroup?

gap> d:=DerivedSubgroup(rubik);
<permutation group of size 21626001637244928000 with 5 generators>

gap> f:=FactorGroup(rubik,d);
Group([f1])

gap> Size(f);
2

25. How can I find some Sylow p-subgroups of the Rubik’s cube group?

gap> Read("C:/rubik.txt");

gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>

gap> Size(rubik);
43252003274489856000

gap> FactorsInt(43252003274489856000);
[2,
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11]

gap> sylow2:=SylowSubgroup(rubik,2);
<permutation group of size 134217728 with 27 generators>

gap> sylow3:=SylowSubgroup(rubik,3);
<permutation group of size 4782969 with 14 generators>

gap> sylow5:=SylowSubgroup(rubik,5);
<permutation group of size 125 with 3 generators>

gap> sylow7:=SylowSubgroup(rubik,7);
<permutation group of size 49 with 2 generators>

gap> sylow11:=SylowSubgroup(rubik,11);

 28

Group([(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18)])

gap> Elements(sylow11);
[(), (4,5,36,21,31,15,39,13,42,7,12)(10,26,29,28,45,44,47,20,23,18,37),
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29),
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26),
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45),
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47),
(4,21,39,7,5,31,13,12,36,15,42)(10,28,47,18,26,45,20,37,29,44,23),
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20),
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18),
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44),
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28)]

gap> IsNormal(rubik,sylow2);
false

gap> IsNormal(rubik,sylow3);
false

gap> IsNormal(rubik,sylow5);
false

gap> IsNormal(rubik,sylow7);
false

gap> IsNormal(rubik,sylow11);
false

NOTE: All of the Sylow p-subgroups found above have conjugates, but the
sheer size of the Rubik’s cube group makes it too difficult to pursue them on a
typical desktop computer.

26. How do I determine if a group is cyclic?

gap> a:=(1,2,3)*(4,5,6,7);
(1,2,3)(4,5,6,7)

gap> g:=Group(a);
Group([(1,2,3)(4,5,6,7)])

gap> Size(g);
12

gap> IsCyclic(g);
true

27. How do I create a dihedral group with 2n elements for an n-sided regular

polygon?

 29

gap> d4:=DihedralGroup(IsPermGroup,8);
Group([(1,2,3,4), (2,4)])

gap> Elements(d4);
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3)]

28. How can I express the elements of a dihedral group as rotations and flips
rather than as permutations?

gap> d3:=DihedralGroup(6);
<pc group of size 6 with 2 generators>

gap> Elements(d3);
[<identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2]

gap> ShowMultiplicationTable(d3);
* | <identity> of ... f1 f2 f1*f2 f2^2 f1*f2^2
------------------+---\

<identity> of ... | <identity> of ... f1 f2 f1*f2 f2^2 f1*f2^2
f1 | f1 <identity> of ... f1*f2 f2 f1*f2^2 f2^2
f2 | f2 f1*f2^2 f2^2 f1 <identity> of ... f1*f2
f1*f2 | f1*f2 f2^2 f1*f2^2 <identity> of ... f1 f2
f2^2 | f2^2 f1*f2 <identity> of ... f1*f2^2 f2 f1
f1*f2^2 | f1*f2^2 f2 f1 f2^2 f1*f2
<identity> of ...

29. How do I create a symmetric group of degree n with n! elements?

gap> s4:=SymmetricGroup(4);
Sym([1 .. 4])

gap> Size(s4);
24

gap> Elements(s4);
[(), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3),
(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2),
 (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3),
(1,4), (1,4,2,3), (1,4)(2,3)]

30. How do I create an alternating group of degree n with !
2
n elements?

gap> a4:=AlternatingGroup(4);
Alt([1 .. 4])

gap> Size(a4);
12
gap> Elements(a4);
[(), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4),
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3)]

 30

31. How do I create a direct product of two or more groups?

gap> g1:=Group((1,2,3));
Group([(1,2,3)])

gap> g2:=Group((4,5));
Group([(4,5)])

gap> dp:=DirectProduct(g1,g2);
Group([(1,2,3), (4,5)])

gap> Size(dp);
6
gap> Elements(dp);
[(), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5)]

gap> ShowMultiplicationTable(dp);
* | () (4,5) (1,2,3) (1,2,3)(4,5) (1,3,2)
(1,3,2)(4,5)
-------------+---

() | () (4,5) (1,2,3) (1,2,3)(4,5) (1,3,2)
(1,3,2)(4,5)
(4,5) | (4,5) () (1,2,3)(4,5) (1,2,3) (1,3,2)(4,5) (1,3,2)
(1,2,3) | (1,2,3) (1,2,3)(4,5) (1,3,2) (1,3,2)(4,5) () (4,5)
(1,2,3)(4,5) | (1,2,3)(4,5) (1,2,3) (1,3,2)(4,5) (1,3,2) (4,5) ()
(1,3,2) | (1,3,2) (1,3,2)(4,5) () (4,5) (1,2,3)
(1,2,3)(4,5)
(1,3,2)(4,5) | (1,3,2)(4,5) (1,3,2) (4,5) () (1,2,3)(4,5) (1,2,3)

32. How can I create the Quaternion group?

gap> a:=(1,2,5,6)*(3,8,7,4);
(1,2,5,6)(3,8,7,4)

gap> b:=(1,4,5,8)*(2,7,6,3);
(1,4,5,8)(2,7,6,3)

gap> q:=Group(a,b);
Group([(1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3)])

gap> Size(q);
8

gap> IsAbelian(q);
false

gap> Elements(q);
[(), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3),
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8),
 (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7)]

gap> q:=QuaternionGroup(IsPermGroup,8);
Group([(1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8)])

gap> Size(q);
8

gap> IsAbelian(q);
false

gap> Elements(q);
[(), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6),
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7),
 (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5)]

 31

33. How can I find a set of independent generators for a group?

gap> c6:=CyclicGroup(IsPermGroup,6);
Group([(1,2,3,4,5,6)])

gap> Size(c6);
6

gap> GeneratorsOfGroup(c6);
[(1,2,3,4,5,6)]

gap> d4:=DihedralGroup(IsPermGroup,8);
Group([(1,2,3,4), (2,4)])

gap> Size(d4);
8

gap> GeneratorsOfGroup(d4);
[(1,2,3,4), (2,4)]

gap> s5:=SymmetricGroup(5);
Sym([1 .. 5])

gap> Size(s5);
120

gap> GeneratorsOfGroup(s5);
[(1,2,3,4,5), (1,2)]

gap> a5:=AlternatingGroup(5);
Alt([1 .. 5])

gap> Size(a5);
60

gap> GeneratorsOfGroup(a5);
[(1,2,3,4,5), (3,4,5)]

gap> q:=QuaternionGroup(IsPermGroup,8);
Group([(1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8)])

gap> Size(q);
8

gap> GeneratorsOfGroup(q);
[(1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8)]

34. How do I find the conjugate of a permutation in the form 1ba b ab−= ?

gap> a:=(1,2,3,4,5);
(1,2,3,4,5)

 32

gap> b:=(2,4,5);
(2,4,5)

gap> a^b;
(1,4,3,5,2)

gap> b^-1*a*b;
(1,4,3,5,2)

35. How do I divide up a group into classes of elements that are conjugate to one another?

(Note that “conjugacy” is an equivalence relation on our group G. That means that
G can be separated into nonintersecting subsets that contain only elements that are
conjugate to one another.)

gap> d3:=DihedralGroup(IsPermGroup,6);
Group([(1,2,3), (2,3)])

gap> Size(d3);
6

gap> Elements(d3);
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> cc:=ConjugacyClasses(d3);
[()^G, (2,3)^G, (1,2,3)^G]

gap> Elements(cc[1]);
[()]

gap> Elements(cc[2]);
[(2,3), (1,2), (1,3)]

gap> Elements(cc[3]);
[(1,2,3), (1,3,2)]

36. How do I input a 3x3 matrix in GAP and display in its usual rectangular format?

gap> x:=[[1,2,3],[4,5,6],[7,8,9]];
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

gap> PrintArray(x);
[[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

 33

37. How do I do arithmetic with matrices?

gap> x:=[[1,2],[3,4]];
[[1, 2], [3, 4]]

gap> y:=[[5,6],[7,8]];
[[5, 6], [7, 8]]

gap> PrintArray(x+y);
[[6, 8],
 [10, 12]]

gap> PrintArray(x-y);
[[-4, -4],
 [-4, -4]]

gap> PrintArray(x*y);
[[19, 22],
 [43, 50]]

38. How do I multiply a matrix by a number (scalar)?

gap> x:=[[1,2],[3,4]];
[[1, 2], [3, 4]]

gap> PrintArray(x);
[[1, 2],
 [3, 4]]

gap> PrintArray(2*x);
[[2, 4],
 [6, 8]]

gap> PrintArray(x/2);
[[1/2, 1],
 [3/2, 2]]

39. How do I find the inverse of a matrix?

gap> x:=[[1,2],[3,4]];
[[1, 2], [3, 4]]

gap> PrintArray(x);
[[1, 2],
 [3, 4]]

gap> xinverse:=x^-1;
[[-2, 1], [3/2, -1/2]]

 34

gap> PrintArray(xinverse);
[[-2, 1],
 [3/2, -1/2]]

gap> xinverse:=1/x;
[[-2, 1], [3/2, -1/2]]

gap> PrintArray(xinverse);
[[-2, 1],
 [3/2, -1/2]]

gap> PrintArray(x*xinverse);
[[1, 0],
 [0, 1]]

40. How do I find the transpose of a matrix?

gap> x:=[[1,2],[3,4]];
[[1, 2], [3, 4]]

gap> PrintArray(x);
[[1, 2],
 [3, 4]]

gap> xtranspose:=TransposedMat(x);
[[1, 3], [2, 4]]

gap> PrintArray(xtranspose);
[[1, 3],
 [2, 4]]

41. How do I find the determinant of a matrix?

gap> x:=[[1,2],[3,4]];
[[1, 2], [3, 4]]

gap> PrintArray(x);
[[1, 2],
 [3, 4]]

gap> DeterminantMat(x);
-2

 35

42. How do I find the orbits that the Rubik’s cube group creates on the set

{ }1,2,3, ,48… ?

In Windows, use Notepad to type the following file, and save it to your C-drive.

r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);

Now enter the following commands.

gap> Read("C:/rubik.txt");
gap>

gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>

gap> Orbit(rubik,1);
[1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 16,
35, 25, 32]

gap> Orbit(rubik,2);
[2, 5, 13, 18, 36, 37, 42, 39, 34, 12, 10, 31, 15, 7, 4, 26, 20, 45, 21, 44,
47, 28, 29, 23]

gap> o:=Orbits(rubik);
[[1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27,
16, 35, 25, 32],
[2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15,
31, 23, 18, 39]]

gap> Size(o);
2

gap> Elements(o);
[[1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27,
16, 35, 25, 32],
[2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15,
31, 23, 18, 39]]

 36

CONJUGATES, COMMUTATORS, centers, and

orbits IN RUBIK’S CUBE

Many people have either written or talked about how the cube can mostly be

solved using either conjugates or commutators, and so let’s look at a few ways in

which we are already using them. First, at the very beginning when I am trying to

correctly place the corners on the top face of the cube, I often do the move
1R DR− which is a conjugate. Thus, let’s think about what this move does for us.

My goal with this move is to place something in the up-front-right ()UFR corner.

To do this, I position the cubelet that I want to move there in the down-front-left

()DFL corner. Then I do 1R− . That moves the up-front-right ()UFR corner

cubelet to the down-front-right ()DFR position. Next, I do D , and this moves my

cubelet from DFL to DFR . And finally, I do R , and that rotates my cublet from

the down-front-right ()DFR position back into the up-front-right ()UFR corner that

was my goal. In a nutshell, you can say that we shifted things from the top face

to a workspace down below, moved something into the workspace, and then

moved it back to the top row.

1R DR−

When we do a commutator on Rubik’s cube, the idea is that we are, most of the

time, partially undoing what we have previously done. In particular, what

happens when we do a commutator like 1 1R D RD− − on the cube is that some of

 37

the cubelets get moved around, but others stay right where they are, and anytime

we move just a few cubelets, that gives us a tool we can use for easily solving

the cube.

Now let’s examine some more of the algorithms we have used for solving Rubik’s

cube. When solving the middle layer of the cube, we used 1 1 1 1URU R U F UF− − − −

and 1 1 1 1U F UFURU R− − − − . Notice that both of these are products of commutators.

The first part of 1 1 1 1URU R U F UF− − − − is the commutator 1 1URU R− − , and the second

part is the commutator 1 1U F UF− − . Likewise with 1 1 1 1U F UFURU R− − − − the first part

is the commutator 1 1U F UF− − and the second part is the commutator 1 1URU R− − .

When we move on to the top layer of the cube, we apply the algorithm
1 1 1FRUR U F− − − . And now if we look at this algorithm more closely, we can see that

we are really just taking the conjugate of a commutator. In other words, the inner

part of this algorithm is the commutator 1 1RUR U− − , and then we conjugate this by

F to get ()1 1 1F RUR U F− − − .

The next algorithm we apply to the top layer is 1 1 1 1URU L UR U L− − − − . If we split this

up into 1URU − and 1 1 1 1 1 1 1 1 1 1() () () ()L UR U L L U R U L U L R U L− − − − − − − − − −= = , then we can

easily see that both of these movements are conjugates. Also, if we were to

remove the rotations of the top face from 1 1 1 1URU L UR U L− − − − , then we would be left

with the commutator 1 1RL R L− − .

And now, let’s examine our final algorithm ()21 1R D RD− − in greater detail. At the

core of this particular algorithm is the commutator 1 1R D RD− − , and ()21 1R D RD− − is

the move that we usually use at the end to get our final corner cubelets turned

correctly. If we do this move just once, then we’ll transpose two sets of corner

cubelets, and we’ll cycle three edge cubelets,

 38

()()()DB DR FR DRF UFR DBR DLB .

Thus, if we repeat this operation a second time, then we’ll restore the corner

cubelets and just cycle the edge cubelets. However, when I do this, my corner

cubelets, while being in the right corners, have also been twisted clockwise

through an angle of 120° . And as you might suspect from the presence of the 3 &

2-cycles that we have above for 1 1R D RD− − , repeating this move 6 times, the least

common multiple of 2 and 3, will finally restore everything back to its starting

point. And now you can see why this is our finishing move for the cube. At the

end, we have all the cubelets in their correct positions, but some of the corner

cubelets on top are usually twisted. To untwist them, we apply the algorithm
1 1 2()R D RD− − until we get one corner untwisted. Then we rotate the top to move

another twisted corner into position, and we repeat with 1 1 2()R D RD− − until that one

is untwisted. However, take my word for now that the one thing that we are

mathematically guaranteed is that the number of times we have to do
1 1 2()R D RD− − is always going to be some multiple of 3. Thus, suppose we have to

do 1 1 2()R D RD− − just three times. Then 1 1 2 3 1 1 6[()] ()R D RD R D RD e− − − −= = . In other

words, since our algorithm has order 6, by the time we are done untwisting the

cubelets, everything has been returned to its proper position and orientation.

1 1 2 1 1 4 1 1 6() ,() , ()R D RD R D RD R D RD− − − − − −

Using GAP software, we can easily explore facets of Rubik’s cube that would be

hard to examine just by hand. For example, we can easily find information about

 39

what we call the center of the Rubik’s cube group as well as the orbits of the

facelets on the cube that it permutes. First, though, let’s recall how to initially set

up GAP for exploring Rubik’s cube. The initial step is to give each facelet of the

cube a number so that we can express moves in terms of permutations of those

numbers. Back in Part 2 of this work we did it as follows, and from that we were

able to define the moves for right, left, up, down, front, and back as permutations.

1 2 3
4 UP 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 LEFT 13 20 FRONT 21 28 RIGHT 29 36 BACK 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 DOWN 45
46 47 48

r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);

The next step is to copy the permutations above and save them as a text file, not

to your documents folder, but to your C-drive as a file named rubik.txt. Also, in

my old version of Windows, for this to work correctly I have to create the file

using Notepad instead of Wordpad. It appears that if you try to save this as a

text file using Wordpad, then some extra structure is also saved that interferes

with reading the file into GAP. However, once you have correctly saved your file,

then you can open it in GAP by typing the following command.

gap> Read("C:/rubik.txt");
gap>

And now you can create the group rubik by typing in the following.

gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>

 40

gap> Size(rubik);
43252003274489856000

And now, to find the center of the Rubik’s cube group, just type in the following.

gap> c:=Center(rubik);
Group([(2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47)])

gap> Size(c);
2

gap> Elements(c);
[(),
(2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45)(39,47
)]

From this we can see that there are just two elements in the Rubik’s cube group

that commute with every other element in the group. One of these elements is

the identity, and the other is a long chain of transpositions,

(2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45)(39,47)

And by the way, the permutation above is called the superflip. Its effect is that it

flips the colors of each edge cublet on the cube. Thus, if an edge cublet is

colored green-white in the cube’s solved state, then those two colors are flipped

so that green becomes white and white becomes green. Below is a picture of the

cube illustrating the superflip, and this is followed by two different algorithms for

creating the superflip.

 41

2 2 2 2 1 1 2 1 2 2 2UR FBRB RU LB RU D R FR LB U F− − −

or

1 1 1 1 1 1 1 2 1 1 2 2 2 1 1FLULB U D LF U B RL BF U D F B R U D− − − − − − − − − − −

The center is a normal subgroup of a group, and if we look at the corresponding

quotient group, then the center of the quotient will consist of only the identity

element of that group. Also, since the size of the Rubik’s cube group is

43,252,003,274,489,856,000

and since the size of the center of the Rubik’s cube group is 2, it follows that the

size of resulting quotient group is exactly half the size of the complete Rubik’s

cube group.

43,252,003,274,489,856,000/2 = 21,626,001,637,244,928,000

Now let’s examine the orbits associated with the Rubik’s cube group. First,

notice from our diagram above where we assigned a number to each facelet that

the Rubik’s cube group creates permutations of the facelets that we have

numbered 1 through 48. In other words, the Rubik’s cube group acts upon the

set { }1,2,3, ,48… . Also, notice that half of the numbers in this set correspond to

facelets on corner cublets, and the other half correspond to facelts on edge

cubelets. To find the orbit of any of these numbers, just enter the following into

GAP.

gap> Orbit(rubik,1);
[1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 16,
35, 25, 32]

gap> Orbit(rubik,2);
[2, 5, 13, 18, 36, 37, 42, 39, 34, 12, 10, 31, 15, 7, 4, 26, 20, 45, 21, 44,
47, 28, 29, 23]

 42

And to find all the orbits that the Rubik’s cube group creates in our set

{ }1,2,3, ,48… , type in the following.

gap> o:=Orbits(rubik);
[[1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27,
16, 35, 25, 32], [2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26,
37, 20, 42, 15, 31, 23, 18, 39]]

gap> Size(o);
2

gap> Elements(o);
[[1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27,
16, 35, 25, 32], [2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26,
37, 20, 42, 15, 31, 23, 18, 39]]

From the above we see that our set has just two orbits, and if we examine them

more closely, then we see that the numbers in the first orbit correspond to

facelets on corner cublets while the numbers in the second orbit correspond to

facelets on edge cublets.

And now since we have talked above about commutators with regard to the

solution for Rubik’s cube, let’s use GAP to find the commutator or derived

subgroup and also the corresponding quotient group. To find the derived

subgroup, type in the following.

gap> d:=DerivedSubgroup(rubik);
<permutation group with 5 generators>

gap> Size(d);
21626001637244928000

Since the size of the derived or commutator subgroup is half the size of the

Rubik’s cube group, it follows that the corresponding quotient group (also known

as a factor group) has size 2, and hence, the quotient group is isomorphic to 2C ,

the cyclic group of order 2. Also, GAP has a single command for finding this

factor group.

 43

gap> q:=CommutatorFactorGroup(rubik);
Group([f1])

gap> Size(q);
2

gap> Elements(q);
[<identity> of ..., f1]

gap> ShowMultiplicationTable(q);
* | <identity> of ... f1
------------------+------------------------------------
<identity> of ... | <identity> of ... f1
f1 | f1 <identity> of ...

 44

PATTERNS ON RUBIK’S CUBE

We now just want to examine a few interesting patterns you can create on the

surface of Rubik’s cube. However, our interest goes beyond just art. There are

certainly many places where one can go and instantly find algorithms for all sorts

of patterns for the cube, but we want to do more than that. As usual, we want to

explain some of the math that comes with these patterns.

1. This first pattern is one of my favorites. In this case, the algorithm simply

switches two front edge cubelets with the corresponding back edge cubelets.

It’s simple, but elegant. Also, this algorithm generates a cyclic group of order

2, 2C , and that means that the algorithm is its own inverse.

()32 2R U

2. This next pattern is created using elements of the slice group. The slice

group can be thought of as generated by moving only the center slices of the

cube, and thus, the corner cubelets stay fixed. Consequently, a lot of nice

patterns can be created using only slices. Also, even though we

conceptualize this group in terms of moving center slices, moves such as
1UD− , 1RL− , and 1FB− accomplish the same thing. In the pattern below we

 45

have 6 dots centered on backgrounds of different colors. Notice that this

algorithm has order 3 and so the cyclic group generated is isomorphic to 3C .

1 1 1 1UD RL FB UD− − − −

 46

3. This next pattern of six checkerboards comes from the slice squared group

that is generated by 2 2U D , 2 2R L , and 2 2F B . Also, recall that this group is

abelian. Consequently, the above three moves may be done in any order.

Furthermore, the slice squared group has order 8 and is isomorphic to

2 2 2C C C× × , while the cyclic group generated by 2 2 2 2 2 2U D R L F B is a subgroup

of the slice squared group that has order 2 and is, consequently, isomorphic

to 2C .

2 2 2 2 2 2U D R L F B

 47

4. In this pattern, we’ve taken the previous pattern and created a conjugate of

the form 1xyx− , and with luck, this will also transform one interesting pattern

into another. In this case, we see our previous pattern of six checkerboards

transformed into one of four checkerboards. Furthermore, this algorithm

generates a cyclic group of order 2 which is isomorphic to 2C .

() ()3 32 2 2 2 2 2 2 2 2 2R U U D R L F B R U

 48

5. The next four pictures are going to be based on patterns from the slice

squared group. We’ll first look at a pattern from this group, and then we’ll

form a conjugate of that pattern using ()32 2R U . Also, both algorithms below

generated cyclic groups of order 2, 2C . (Recall that () ()3 32 2 2 2R U R U
−

= .)

2 2F B

() ()3 32 2 2 2 2 2R U F B R U

 49

6. This time we’ll start with 2 2 2 2R L F B and then, again, form a conjugate with

()32 2R U , in other words, () ()3 32 2 2 2 2 2 2 2R U R L F B R U . Also, once again both of

these algorithms will generate cyclic groups that are isomorphic to 2C .

2 2 2 2R L F B

() ()3 32 2 2 2 2 2 2 2R U R L F B R U

 50

7. This one is one of my favorites. It creates a center dot on two of the faces, a

checkerboard on two, and stripes on the remaining two. And once again the

cyclic groups generated are isomorphic to 2C .

() ()3 32 2 2 2 2 2 2 2R U R L F B L U

 51

8. If you start with the red face in front and the white face to the right, then this

will create 4 crosses with one of them a red Templar cross on a white

background. I like this one because a few of my ancestors on my dad’s side

were Knights Templar. Also, the algorithm below generates a cyclic group of

order 4, 4C , and both the square and the cube of the algorithm generate

similar cross patterns.

1 1 1 1 1 1 1 1 1LUFLULDLDU F U F D F L D F− − − − − − − − −

 52

9. Again start with the red face in front and the white fact to the right. This

algorithm will produce 6 crosses with one of them a red Templar cross on a

white background. This algorithm has order 3, 3C , and the square of the

algorithm also results in 6 crosses.

2 1 2 1 1 1 1 2 1 2L R FD L F RL FB LFU L F B− − − − − −

 53

10. One thing I like to do is to see what new patterns I can create by combining

1 1 1 1UD RL FB UD− − − − with ()32 2R U . See what interesting things you can come up

with!

Start with 1 1 1 1UD RL FB UD− − − − , rotate the whole cube, and do 1 1 1 1UD RL FB UD− − − −

again to get a pattern of four dots.

Take the 4-dot pattern above, rotate the cube so the white face is front with red

on top, and add ()32 2R U . Rotate the whole cube again, and then do ()32 2R U

again. You should now have a 4-dot pattern combined with a checkerboard

pattern!

 54

11. A favorite pattern of many cube enthusiasts is the cube within a cube. The

lengthy algorithm below generates a cyclic group of order 3, 3C . Additionally,

if you do the algorithm a second time, then you get another cube within a

cube, and if you do it three times, then the cube is restored to the solved state.

1 2 2 1 1 1 1 2FLFU RUF L U L BD B L U− − − − −

 55

12. And finally, this algorithm creates an incredible pattern called the superflip.

Basically, every cubelet is in its home position, but every single edge cubelet

has been flipped. It’s pretty easy to see that the group generated by this

move has order 2, 2C , but what is not so obvious is that this element of the

Rubik’s cube group commutes with every other element of that group. In fact,

the only other element in the group that does that is the identity. In group

theory, the set of all elements of a group that commute with every other

element is called the center of the group, and the center of the Rubik’s cube

group consists of only the identity and the superflip.

2 2 2 2 1 1 2 1 2 2 2UR FBRB RU LB RU D R FR LB U F− − −

or
1 1 1 1 1 1 1 2 1 1 2 2 2 1 1FLULB U D LF U B RL BF U D F B R U D− − − − − − − − − − −

 56

COUNTING THE NUMBER OF PERMUTATIONS IN

RUBIK’S CUBE

Below is a picture of Rubik’s cube. The surface reveals 26 smaller cubes that

we’ll call “cubelets1” and 54 smaller faces that we’ll call “facelets.”

At first glance, you might think that the total number of permutations we can

make of the facelets on Rubik’s cube is 7154! 2.3 10≈ × , the number of permutations

we can make of 54 things, but this is going to give us a number that is way too

large. It’s too large because we can’t take a single facelet and just move it

anywhere. There are going to be some restrictions on where facelets can wind

up. For example, suppose we number a couple of the facelets as below.

1 Many people also refer to “cubelets” as “cubies.”

 57

Then there is no way that we can rotate the sides of the cube to make these

numbers wind up in the following positions.

And why can’t we do this? It’s because we have three types of cubelets – center

cubelets, edge cubelets, and corner cubelets. Furthermore, every time we rotate

 58

a face of the cube, the center cubelet stays where it is, an edge cubelet just gets

moved to the position of another edge cubelet, and a corner cubelet gets moved

to another corner. Thus, since our original numbers 1 & 2 begin on an edge and

a center cubelet, respectively, they can never wind up on corner cubelets.

Additionally, we’ll sometimes us notations like UF and UFR to refer, respectively,

to the edge cubelet in the up-front position and the corner cubelet in the up-front-

right position.

At this point, you might notice that the facelets of a single cubelet always have to

stay together, and thus, maybe the total number of possible permutations of the

facelets of Rubik’s cube will just be equal to the number of permutations of the 26

cubelets or 2626! 4.03 10≈ × . Well, this is still going to be too large a number

because, again, there are restrictions on where you can move center, edge, and

corner cubelets. As we just mentioned, every time we rotate a face, the center

cubelet stays where it is, a corner cubelet replaces another corner cubelet and

an edge cubelet replaces an edge cubelet. Thus, to count the actual number of

possible permutations, perhaps we need to begin by multiplying the number of

permutations you can make from the 8 corner cubelets times the number of

permutations you can make from the 12 edge cubelets. This gives us

()() 138! 12! 1.9 10≈ × . However, there are a couple of things we haven’t taken into

consideration yet. One is that each corner cubelet can be rotated among three

different positions, and the other is each edge cubelet can be flipped back and

forth from one position to another. These rotations and flips are illustrated by the

pictures below.

 59

Rotations of a corner cubelet

Flipping an edge cubelet

Thus, each of the eight corner cubelets could be in any of three rotational states,

and so we should multiply our previous number by 83 . Similarly, since each of

the twelve edge cubelets could be in either of two states, flipped or not flipped,

we should also multiply our previous estimate by 122 . This will give us
8 12 20(8!)(12!)(3)(2) 5.2 10≈ × . This is smaller than our previous estimate of

2626! 4.03 10≈ × , but still too large, and so let’s see what we can do to reduce it.

First off, let’s number the corner cubelets 1 through 4 on the right face of the

cube, and then let’s see what kind of permutation results when we rotate the right

face a quarter-turn clockwise.

 60

We can express this permutation as () ()()()1 2 3 4 1 2 1 3 1 4= , and thus, we

see that it is an odd permutation since it can written as a product of three

transpositions.

Now let’s number the edge cubelets 5 through 8 and do the same clockwise

rotation of the right face.

 61

We can express this result as () ()()()5 6 7 8 5 6 5 7 5 8= , and once again we

get an odd permutation. However, if we now consider the permutations of the

corner and edge cubelets together, then the final result of our clockwise quarter-

turn is an even permutation consisting of six transpositions.

()() ()()()()()()1 2 3 4 5 6 7 8 1 2 1 3 1 4 5 6 5 7 5 8=

At this point, what this means is that every turn of a face of a cube results in an

even permutation, and, hence, any combination of turns will also result in an

even permutation. Thus, the number of possible permutations of the cubelets in

Rubik’s cube is not 8 12(8!)(12!)(3)(2) . Instead, it is no more than half of this,

8 12(8!)(12!)(3)(2)
2

, since only half of the permutations represented by the number

8 12(8!)(12!)(3)(2) are even. However, this is still not our final answer. There are

more things to consider!

To see what else we need to take into account, let’s begin with a typical

representation of the coordinate axes in three dimensional space using what is

known as a right-handed coordinate system.

 62

In the diagram above, the axes are labeled on the positive side. Now let’s

suppose that we attach arrows to the edge cubelets on a side of Rubik’s cube

such that the arrows are pointing either in the direction of positive x or positive z.

And finally, let’s once again rotate the right face of our cube a quarter-turn in the

clockwise direction, and let’s see what happens to our arrows.

The end result is that two of the arrows are now pointing in the direction of

negative x. However, we could also say that the overall orientation is still positive

x y

z

x y

z

 63

since the product (positive)(negative)(positive)(negative) = positive. In particular,

we can never wind up, after turning the face of a cube a quarter-turn, with an

orientation such as (positive)(positive)(positive)(negative) = negative. Notice that

this orientation would also correspond to a single edge cubelet being flipped.

Flipping an edge cubelet changes its orientation

Thus, since every quarter-turn of a face leaves us with a positive orientation, so

will any combination of turns of the faces of Rubik’s cube. In particular, the

number of “flipped” edge cubelets always has to be even. And as far as our

problem of counting the number of permutations of Rubik’s cube goes, this

means that we have to divide our last number by 2 again since only half of that

number will correspond to the positive orientations of edge cubelets that we have

just defined. Thus, the number of permutations that we can achieve is now no

more than
8 12

20(8!)(12!)(3)(2) 1.30 10
2 2

≈ ×
⋅

.

There’s just one more thing we have to consider, and then we’ll be done. In

particular, we need to consider how rotating a face of the cube might twist or

rotate a corner cubelet. For example, below I’ve attached an arrow to the top

facelet of the red-yellow-blue corner cublet. If I now do a sequence of rotations

 64

of the faces of the cube such that when I’m done the cubelet is either on the top

face with arrow is pointing up or on the bottom face with the arrow pointing down,

then I’ll consider the cubelet to have not been rotated.

.

On the other hand, if I wind up with something like the image below, then I’ll say

that the cubelet has been rotated clockwise through an angle of 120° .

And finally, if I wind up with the following image, then I’ll say that my red-yellow-

blue cubelet has been rotated clockwise through an angle of 240°

 65

And now we’re good to go! First, it should be evident that if all I do is rotate the

top face or the bottom face of the cube, then none of the corner cubelets will

undergo any rotation whatsoever. However, if we rotate any of the side faces

(right, left, front, or back), then it’s a different story. Below I’ve placed some

arrows on the corner cubelets of the right face and then rotated the right face a

quarter-turn clockwise.

 66

If we look at the corner cubelet that I’ve labeled 1, then it has not only been

moved to a new position, it has also been rotated through an angle of 120° . In

particular, the blue facelet is now on top instead of the red. Likewise, the corner

cubelet labeled 2 has been moved from the top face to the bottom face, but

instead of having the red facelet on the bottom, the cubelet appears to have been

rotated clockwise through an angle of 240° . And similarly, we could say that the

cubelet labeled 3 has been rotated clockwise through an angle of 120° , and the

cubelet labeled 4 has been rotated clockwise through an angle of 240° 2. If we

now add up total number of degrees of rotation for each of the corner cublets, it’s

clear that the sum has to be either a whole number multiple of 360° or a multiple

of 360° plus an additional 120° or a multiple of 360° plus an additional 240° . In

the first instance, we’ll say that the cube has orientation 1, in the second case

that it has orientation 2, and in the third case that it has orientation 3.

Well, when we rotate the right face a quarter-turn clockwise as we did above, the

sum of the angles of rotation for the corner cubelets is

120 240 120 240 720 2 360° + ° + ° + ° = ° = ⋅ ° . Thus, the cube is left in orientation 1.

Furthermore, the sum of the sum of the angles of rotation along each side is 360° .

And now, a moment’s reflection or experimentation should convince you that if

you rotate any other face of the cube or any combination of faces of the cube,

then the final orientation is still going to be 1. However, since there are three

conceivable orientations that the cube could be left in, orientation 1 represents

only a third of them, and that means that only one-third of the corner cubelet

configurations that I had previously counted are actually attainable. Thus, if we

divide our previous calculation by 3, then we will obtain the true number of

permutations that can be made of the facelets on Rubik’s cube. The result is

slightly more than forty-three quintillion.

2 Since cubelet 4 is now on top, a rotation of 0° would correspond to the arrow pointing up, but instead,
it’s pointing in the direction corresponding to a 240° rotation.

 67

8 12
27 14 3 2(8!)(12!)(3)(2) 43,252,003,274,489,856,000 2 3 5 7 11

2 2 3
= =

⋅ ⋅

Notice that if we could move any corner cubelet to any corner position and any

edge cubelet to any edge position, then the correct number of possible

permutations would be 8 12(8!)(12!)(3)(2) . However, what we have just shown is

that only a twelfth of these permutations are actually attainable. Thus, if you take

your cube apart and start randomly reassembling it, then you have only a 1 in 12

chance of creating a cube that can be restored to its original configuration. And

finally, how do we know that we still haven’t overcounted the number of

permutations? Simple. Because Chuck Norris has actually done all

43,252,003,274,489,856,000 permutations!3

3 Chuck Norris has also counted to infinity twice, and Chuck Norris CAN divide by zero. I, on the other
hand, have only counted to infinity once, but I did start at infinity and count down.

 68

REVISITING THE SOLUTION TO RUBIK’S CUBE

Now that we know a lot about the mathematics behind Rubik’s cube, it’s time to

take a closer at the solution we use. The first part, of course, is pretty easy.

When I’m trying to solve Rubik’s cube, I always begin with the green center

cubelet on top so that I can finish the green face first. I begin with the goal of

initially completing the green cross on top, and that is really very easy. I simply

rotate faces until I get the green facelet of an edge cube positioned on the down

face of the cube. I then rotate the down face until the other color on the edge

cube matches the center cube. And finally, I rotate the appropriate face 180° to

bring the green facelet to the up face. I then repeat until I’ve finished my green

cross, and I don’t really have to formalize the procedure too much since I’m not

that worried, yet, about what’s going on with the rest of the cube.

Once I’ve completed the green cross on the up face, I still improvise quite a bit to

get the corners positioned. However, I do usually make use of the maneuvers
1R DR− and 1 1FD F− − in order to get my corner cubelet placed with the right

orientation. Sometimes, though, the green facelet of a corner cubelet is on the

down face of the cube, and when this happens I may do something like
1 1 1 1DFD F R D R− − − − to rotate it in the bottom layer.

 69

1R DR−

Once the green face is completed, I turn the cube over so that green is on the

down face, and then I proceed in a systematic way to place the edge cubelets in

the middle layer. The two algorithms that are used in our solution are
1 1 1 1URU R U F UF− − − − and 1 1 1 1U F UFURU R− − − − . What should be clear at this point is

that both algorithms are products of commutators which means that they belong

to the commutator subgroup of the Rubik’s cube group. Also, as we have seen

previously, commutators have a tendency to move only a few elements. Given

that, let’s look at the first algorithm in a bit more detail. If we perform only the first

part, 1 1URU R− − , then the resulting permutation given as a product of cycles can

be written as ()()()UB UR FR DRF UFR UBL URB where a notation like UB

refers to the up-back edge cubelet and notation like UBL refers to the up-back-

left corner cubelet. Also, we can now see the promise of this permutation. It

contains a 3-cycle that involves two edge cubelets on the up face and the edge

cubelet in the front-right position. Just what we want! It also involves a couple of

2-cycles that move corner cubelets, and one of them only switches corner

cubelets on the up face. Unfortunately, the other one switches the up-front-right

corner cubelet with the down-right-front corner cublet, and that will mess up the

green face that we just completed. However, if we perform our algorithm twice,

()21 1URU R− − , then the result is just the 3-cycle ()FR UR UB , and that looks

promising except for the fact that this also twists the down-right-front corner

cublet into a different orientation. Thus, let’s see how the permutation 1 1U F UF− −

might fix things for us. If we do this algorithm, then the resulting cycle structure is

 70

()()()UL UF FR DRF UFR ULF UBL . What we immediately see is that our

algorithm will once again permute two edge cubelets in the up face with the front-

right edge cubelet and it will also switch the down-right-front corner cubelet with

the up-front-right corner cubelet. Exactly what we need! Furthermore, when we

multiply the two permutations together we get:

 ()()()UB UR FR DRF UFR UBL URB ()()()UL UF FR DRF UFR ULF UBL

()()UB UR UL UF FR UBL URB ULF= . From this result we can see that the

up-front edge cubelet moves into the front-right position, and everything else that

happens is basically a permutation of cubelets on the up face. Absolutely perfect!

Furthermore, when we try it out, we see that the facelet on the front of the up-

front edge cubelet remains on the front face when it is moved to the front-right

position. This means that our algorithm will work fine just so long as the cubelet

that we want to move to the middle layer has the right facelet on the front face,

but if its orientation is flipped, then that’s why we need our second algorithm,
1 1 1 1U F UFURU R− − − − . If we look at the cycle structure for this one, then we get

()()UL UF UB UR FR ULF URB UBL . For this one, we need to first get the

cubelet we want to place moved into the up-right position, and then our algorithm

will move it to the front-right position with the proper orientation. Well, this

argument may be a little hard to follow, and consequently, I recommend going

through these algorithms yourself using either a Rubik’s cube or free Rubik’s

cube software that can generally be found online.

 71

1 1 1 1URU R U F UF− − − −

The next step in our solution to Rubik’s cube is to get the blue facelets on the up

face for all of the edge cublets on our top layer, and we can achieve this with the

help of the commutator 1 1RUR U− − . However, when we look at the corresponding

cycle structure, we see that this commutator moves an edge cubelet on the up

face to the front-right position, ()()()FR UR UB DRF UFR UBL URB . Fortunately,

there’s an easy fix for this. Simply begin by turning the front face clockwise (F)

before doing your commutator, and then turn it back again counterclockwise

()1F − when you are done. In other words, do 1 1 1FRUR U F− − − . This maneuver will

constrain all the movement to the top face, ()()()UB UF UR ULF UFR UBL URB .

When we perform this algorithm, we’ll also see that the up-left cubelet never

moves, and that two of our edge cubelets get flipped as we go from up-back to

up-front and up-front to up-right. Consequently, often all we have to do is to

simply repeat this algorithm until all the edge cubelets have the proper facelet on

the up face, and if that doesn’t work, then you may have to throw in a rotation of

the up face in between applications of the algorithm. Something else to notice is

that if we perform this algorithm three times, then the resulting cycle structure is

going to be ()()ULF UFR UBL URB . In other words, we switch the two front

corner cubelets on top with each other and we also switch the two back corner

cubelets. Additionally, when we actually perform this maneuver, we see that the

 72

corner cubelets also get rotated in the process. This is a move that could be

useful in creating an alternate solution to Rubik’s cube.

1 1 1FRUR U F− − −

Now that we have the edge facelets on the up face properly oriented, we just

need to permute the up face edge cubelets until they are all in their proper

positions. The algorithm we use for this is 1 2 1RUR URU R− − . Let’s break this down

a bit. First, perform this algorithm, and keep track of the up-front edge cubelet.

What you should notice is that as you do U , U , and 2U , the up-front edge

cubelet basically just winds up right back where it started. No change. However,

notice also the presence of the conjugates 1RUR− and 2 1RU R− in our algorithm.

Basically what we are doing with these conjugates is that we are moving an edge

cubelet out of the up-right position, rotating the up face, and then moving our

edge cublet back into the up-right position, and the end result of 1 2 1RUR URU R− − is

that we permute three of the edge cubelets on the up face with one another.

Also, fortunately, nothing below the top layer is disturbed once we complete our
1 2 1RUR URU R− − algorithm, and the cycle structure for this algorithm is

()()()UL UR UB UBL UFR ULF URB . When I apply this algorithm, I usually

begin with my red-blue edge cubelet in its proper position, and then I repeat the

 73

algorithm until the yellow-blue edge cubelet is properly placed. Then, if I need to,

I rotate the whole cube so that I’m looking at the white face, I repeat the

algorithm one more time from that position, and then I rotate the up face 90°

clockwise, and I’m done. Notice, too, that if we did this algorithm three times,

then the result would be ()()UBL UFR ULF URB which means that we are just

switching, on the up face, two back corner cubelets diagonally with two front

corner cubelets. Again, this, in itself, could be a useful algorithm for an alternate

solution to Rubik’s cube.

1 2 1RUR URU R− − done twice

At this point, we just need to permute our corner cubelets using the algorithm
1 1 1 1URU L UR U L− − − − . Embedded in this algorithm we can see the conjugates 1URU −

and 1 1 1() ()L U R U L− − − . Also, if we removed all the turns of the up face from this

algorithm, then we would be left with the commutator 1 1RL R L− − , but by itself this

algorithm equals the identity since R and L commute with one another. Hence,

we need the rotations of the up face thrown in order to achieve something

meaningful. And all that this algorithm wonderfully does is to permute three

corner cubelets on the up face, ()ULF URB UBL . Usually, you want to turn your

cube so that the corner cubelet in the up-right-front position is already properly

placed. If none of the corner cubelets are in their correct position, then just

 74

perform this algorithm once, and you should be able to find one that you can

make the up-right-front cubelet just by turning the whole cube. And from there,

just keep repeating the algorithm until all the corner cubelets on the up face are

in their correct positions. As before, if you perform these algorithms step by step

in a software program, then it’s a lot easier to see what’s going on!

1 1 1 1URU L UR U L− − − − done twice

Our final move is to simply rotate the corner cubelets on the up face until they get

the proper orientation and the cube is solved. To do this, we use the algorithm

()21 1R D RD− − . Notice that the core of this algorithm is the commutator 1 1R D RD− − ,

and the cycle structure for this algorithm is ()DB DR FR . The good news is

that this algorithm leaves the up-right-front cubelet right where it is, and when we

perform it, we also see that it rotates the up-right-front cubelet 120°

counterclockwise which is equivalent to a clockwise rotation of 240° . The bad

news, of course, is that it messes up the rest of the cube. However, since we

have a cycle of length 3, that means that if we perform the algorithm three times,

then nothing is left messed up. Now here’s the cool part. Remember that in our

previous chapter on counting the number of permutations in Rubik’s cube we

saw that every turn of a face would collectively rotate our corner cubelets some

multiple of 360° . Well, that means that when we get down to this final point in

solving the cube, our last four corner cubelets are collectively going to be rotated

 75

by some multiple of 360° , and since each application of ()21 1R D RD− − results in a

rotation of a the up-right-front corner cubelet by 120° counterclockwise, the

number of times we’re going to have to perform this algorithm is going to be

some multiple of three, and thus, in the end none of the rest of the cube will be

disturbed. Hence, we position a corner cubelet that needs to be rotated in the

up-right-front position and apply ()21 1R D RD− − until its right, and then we move

another corner cubelet on the up face into that position and apply ()21 1R D RD− −

again until it’s correctly oriented. And the end result is that our cube is solved.

And it’s just that simple!

()21 1R D RD− −

 76

Rotate the up face and apply ()21 1R D RD− − twice

Stick a fork in it, it’s done!

 77

Summary (part 8)

As promised, in part 8 we’ve covered:

• Conjugates applied to Rubik’s cube.

• Commutators applied to Rubik’s cube.

• The commutator or derived subgroup.

• The center of a group.

• The orbit of an element of a set acted upon by a group.

• Special subgroups of the Rubik’s cube group.

• Additional ways to use GAP to study Rubik’s cube.

• A deeper analysis of the solution to Rubik’s cube.

• How to count the number of possible permutations of Rubik’s cube.

 78

practice (part 8)

For each group below, use GAP to find the center and the commutator (derived)

subgroup, and show the size and a list of elements of each. Also find the

commutator factor group and show its multiplication table. And finally, find the

orbits for each group.

1. 3 3D S≅ with generators (1,2,3) and (2,3) .

2. 4D with generators (1,2,3,4) and (2,4) .

3. 8Q with generators (1,2,5,6)(3,8,7,4) and (1,4,5,8)(2,7,6,3) .

4. 5A , the alternating group of degree 5.

5. The subgroup of the Rubik’s cube group generated by r and u. NOTE: Do not

attempt to show the elements in this commutator (derived) subgroup. It is too

large. Also, remember to first save the following into a text file called rubik.txt

on your C-drive. Additionally, recall our number scheme for the facelets on

Rubik’s cube.

r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);

 79

1 2 3
4 UP 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 LEFT 13 20 FRONT 21 28 RIGHT 29 36 BACK 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 DOWN 45
46 47 48

 80

practice (part 8) - answers

For each group below, use GAP to find the center and the commutator (derived)

subgroup, and show the size and a list of elements of each. Also find the

commutator factor group and show its size and multiplication table and state the

abelian group that this quotient (factor) group is isomorphic to.

1. 3 3D S≅ with generators (1,2,3) and (2,3) .

gap> d3:=Group((1,2,3),(2,3));
Group([(1,2,3), (2,3)])

gap> Size(d3);
6

gap> c:=Center(d3);
Group(())

gap> Size(c);
1

gap> Elements(c);
[()]

gap> d:=DerivedSubgroup(d3);
Group([(1,3,2)])

gap> Size(d);
3

gap> Elements(d);
[(), (1,2,3), (1,3,2)]

gap> q:=CommutatorFactorGroup(d3);
Group([f1])

gap> Size(q);
2

gap> ShowMultiplicationTable(q);
* | <identity> of ... f1
------------------+------------------------------------
<identity> of ... | <identity> of ... f1
f1 | f1 <identity> of ...

Isomorphic to 2C
gap> o:=Orbits(d3);
[[1, 2, 3]]

gap> Size(o);
1

 81

2. 4D with generators (1,2,3,4) and (2,4) .

gap> d4:=Group((1,2,3,4),(2,4));
Group([(1,2,3,4), (2,4)])

gap> Size(d4);
8

gap> c:=Center(d4);
Group([(1,3)(2,4)])

gap> Size(c);
2

gap> Elements(c);
[(), (1,3)(2,4)]

gap> d:=DerivedSubgroup(d4);
Group([(1,3)(2,4)])

gap> Size(d);
2

gap> Elements(d);
[(), (1,3)(2,4)]

gap> q:=CommutatorFactorGroup(d4);
<pc group with 2 generators>

gap> Size(q);
4

gap> ShowMultiplicationTable(q);
* | <identity> of ... f1 f2 f1*f2
------------------+--

<identity> of ... | <identity> of ... f1 f2 f1*f2
f1 | f1 <identity> of ... f1*f2 f2
f2 | f2 f1*f2 <identity> of ... f1
f1*f2 | f1*f2 f2 f1
<identity> of ...

Isomorphic to 2 2C C× .
gap> o:=Orbits(d4);
[[1, 2, 3, 4]]

gap> Size(o);
1

3. 8Q with generators (1,2,5,6)(3,8,7,4) and (1,4,5,8)(2,7,6,3) .

gap> q8:=Group((1,2,5,6)*(3,8,7,4),(1,4,5,8)*(2,7,6,3));
Group([(1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3)])

gap> Size(q8);
8

 82

gap> c:=Center(q8);
Group([(1,5)(2,6)(3,7)(4,8)])

gap> Size(c);
2

gap> Elements(c);
[(), (1,5)(2,6)(3,7)(4,8)]

gap> d:=DerivedSubgroup(q8);
Group([(1,5)(2,6)(3,7)(4,8)])

gap> Size(d);
2

gap> Elements(d);
[(), (1,5)(2,6)(3,7)(4,8)]

gap> q:=CommutatorFactorGroup(q8);
<pc group with 2 generators>

gap> Size(q);
4

gap> ShowMultiplicationTable(q);
* | <identity> of ... f1 f2 f1*f2
------------------+--

<identity> of ... | <identity> of ... f1 f2 f1*f2
f1 | f1 <identity> of ... f1*f2 f2
f2 | f2 f1*f2 <identity> of ... f1
f1*f2 | f1*f2 f2 f1
<identity> of ...

Isomorphic to 2 2C C× .
gap> o:=Orbits(q8);
[[1, 2, 4, 5, 7, 3, 6, 8]]

gap> Size(o);
1

4. 5A , the alternating group of degree 5.

gap> a5:=AlternatingGroup(5);
Alt([1 .. 5])

gap> Size(a5);
60

gap> Center(a5);
Group(())

gap> c:=Center(a5);
Group(())

gap> Size(c);
1

gap> Elements(c);
[()]

 83

gap> d:=DerivedSubgroup(a5);
Alt([1 .. 5])

gap> Size(d);
60

gap> Elements(d);
[(), (3,4,5), (3,5,4), (2,3)(4,5), (2,3,4), (2,3,5), (2,4,3), (2,4,5),
(2,4)(3,5), (2,5,3), (2,5,4), (2,5)(3,4),
 (1,2)(4,5), (1,2)(3,4), (1,2)(3,5), (1,2,3), (1,2,3,4,5), (1,2,3,5,4),
(1,2,4,5,3), (1,2,4), (1,2,4,3,5),
 (1,2,5,4,3), (1,2,5), (1,2,5,3,4), (1,3,2), (1,3,4,5,2), (1,3,5,4,2),
(1,3)(4,5), (1,3,4), (1,3,5), (1,3)(2,4),
 (1,3,2,4,5), (1,3,5,2,4), (1,3)(2,5), (1,3,2,5,4), (1,3,4,2,5), (1,4,5,3,2),
(1,4,2), (1,4,3,5,2), (1,4,3),
 (1,4,5), (1,4)(3,5), (1,4,5,2,3), (1,4)(2,3), (1,4,2,3,5), (1,4,2,5,3),
(1,4,3,2,5), (1,4)(2,5), (1,5,4,3,2),
 (1,5,2), (1,5,3,4,2), (1,5,3), (1,5,4), (1,5)(3,4), (1,5,4,2,3), (1,5)(2,3),
(1,5,2,3,4), (1,5,2,4,3), (1,5,3,2,4),
 (1,5)(2,4)]

gap> q:=CommutatorFactorGroup(a5);
Group(())

gap> Size(q);
1

gap> ShowMultiplicationTable(q);
* | ()
---+---
() | ()

Isomorphic to (){ } , the identity.

gap> o:=Orbits(a5);
[[1, 2, 3, 4, 5]]

gap> Size(o);
1

5. The subgroup of the Rubik’s cube group generated by r and u. NOTE: Do not

attempt to show the elements in this commutator (derived) subgroup. It is too

large. Also, remember to first save the following into a text file called rubik.txt

on your C-drive. Additionally, recall our number scheme for the facelets on

Rubik’s cube.

r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);

 84

1 2 3
4 UP 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 LEFT 13 20 FRONT 21 28 RIGHT 29 36 BACK 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 DOWN 45
46 47 48

gap> Read("C:/rubik.txt");

gap> r:= (3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28);
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28)

gap> u:= (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)

gap> g:=Group(r,u);
<permutation group with 2 generators>

gap> Size(g);
73483200

gap> c:=Center(g);
Group([(1,9,35)(3,33,27)(6,17,11)(8,25,19)(24,30,43)(32,38,48)])

gap> Size(c);
3

gap> Elements(c);
[(), (1,9,35)(3,33,27)(6,17,11)(8,25,19)(24,30,43)(32,38,48),
(1,35,9)(3,27,33)(6,11,17)(8,19,25)(24,43,30)(32,48,

38)]

gap> d:=DerivedSubgroup(g);
<permutation group with 3 generators>

gap> Size(d);
36741600

gap> q:=CommutatorFactorGroup(g);
<pc group with 1 generators>

gap> Size(q);
2

gap> ShowMultiplicationTable(q);
* | <identity> of ... f1
------------------+------------------------------------
<identity> of ... | <identity> of ... f1
f1 | f1 <identity> of ...

Isomorphic to 2C
gap> o:=Orbits(g);
[[1, 3, 38, 8, 43, 33, 6, 19, 48, 25, 11, 24, 27, 17, 35, 32, 9, 30], [2, 5,
36, 7, 45, 4, 21],[10, 34, 26, 29, 18, 31, 28]]

gap> Size(o);
3

knowledge of the
universe is

contained within the
rubik’s cube of space!

