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INTRODUCTION (part 8) 
 
 

 
Part 8 of this work contains an amazing amount of stuff!  The focus is on group 

theory as applied to Rubik’s cube, but we’ll also learn in more depth about 

conjugates and commutators and how they apply to Rubik’s cube, the 

commutator or derived subgroup, centers and orbits, special subgroups of the 

Rubik’s cube group, an update on how to use GAP to study Rubik’s cube, a 

deeper analysis of the solution to Rubik’s cube, and an explanation of how to 

correctly count just how many permutations are possible of the facelets of 

Rubik’s cube. 
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RUBIK’S CUBE SUBGROUPS 
 

Some of the tools that we introduced in Part 2 and other parts of this book can 

now give us more information about the kinds of subgroups that exist within all 

the permutations that may be reached on Rubik’s cube.  For example, we 

previously stated that the total number of attainable permutations on Rubik’s 

cube is 43,252,003,274,489,856,000 .  This rather large number factors into 
27 14 3 243,252,003,274,489,856,000 2 3 5 7 11= ⋅ ⋅ ⋅ ⋅ .  Now recall that we also mentioned in 

Part 2 that there is an advanced theorem called the Sylow Theorem tells us that 

if a prime number raised to a power divides the order of a group G, then our 

group contains a subgroup composed of that many elements.  In particular, there 

is a subgroup of order np  where p is prime and np  is the largest power of that 

prime number that divides the order of our group G.  In this case, we call the 

subgroup of order np  a Sylow p-subgroup, and G will also have subgroups of 

order mp  where m is any nonnegative integer less than n.  For instance, in our 

Rubik’s cube group there will be Sylow p-subgroups with orders of 272 , 143 , 35 , 27 , 

and 11 .  In fact, here is a generator for one of the Sylow 11-subgroups.  

Interesting, isn’t it! 

   
1 1 1 1 1 1 1 1 1U FBU F DBUDB U RRD LLU LLD LLU R− − − − − − − − −  

 

There will be additional subgroups of orders 2, 3, 5, and 7 raised to all the 

various powers between 1 and the power of the corresponding Sylow p-subgroup.  

And then there will undoubtedly be a whole lot of other subgroups whose orders 

are not simply a prime raised to a power.  However, we know immediately that 

there is no subgroup of order 13.  And how do we know this?  Simple!  It’s 

because 13 doesn’t divide the order of the group. 
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The Rubik’s cube group itself is generated by the operations of R, L, U, D, F, and 

B being applied to the cube, and each individual operation generates a cyclic 

group of order 4.  For example, { }2 3, , ,R e R R R=  is the subgroup that we 

generate by rotating the right face of the cube a quarter turn each time, and this 

subgroup is isomorphic to 4 .  Likewise, L , U , D , F , and B  are all 

isomorphic to 4 .   

 

 
Rotating the right face a quarter-turn four times 

 

However, if we look at the subgroup that is generated by both R and L, i.e. by 

twisting the right and left faces separately, then since these operations commute 

with one another we get 4 4,R L ≅ ⊕ .  In other words, we can think of the 

group that is generated by R and L as simply consisting of ordered pairs where 

the elements of R might occupy the first coordinate, and then the elements of L 

can occupy the second coordinate.  It’s a nice, uncomplicated, abelian group.  

However, if we perform the move RU on the cube, then we are working with 

cycles that overlap, and the result is far from abelian, or, to put it another way, 

RU UR≠ .  Furthermore, if we keep repeating this move RU, then we eventually 

generate a cyclic group of order 105! 



 4

 
RU UR≠  

 

Things work out a little differently, though, if we repeatedly do the operation 2 2R U .  

For one thing, if we look at the cycle structure of just the permuted cublets and 

ignore any rotations or flips that might occur along the way, then we can describe 

the permutation created by this operation as:  

 

( )( )( )( )( )UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF . 

 

 
2 2R U  
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In this notation, UB is used to identify the edge cublet shared by the up face and 

the back face while UFR, for example, identifies the corner cublet at the up-front-

right position. 

 

Notice, though, that in the cycle structure given above that we have two cycles of 

length 2 and three cycles of length 3.  This means that if we do this operation 

twice, ( )22 2R U , then we will undo the 2-cycles and just be left with some 3-cycles.  

In fact, the resulting permutation is 

 

( )( )( )DR UR UL DBR UFR UBL DRF URB ULF . 

 

To see this algebraically, let’s just raise our first permutation to the second power.  

If we do, then we’ll get 

 

( )( )( )( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( )( )( )

2

2 2 2 2 2

2 2 2

.

UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UL UR DR UBL UFR DBR ULF URB DRF

DR UR UL DBR UFR UBL DRF URB ULF

⎡ ⎤⎣ ⎦

=

=

=

 

 

Any questions?  If we look more closely at this resulting permutation, we see that 

it cycles three edge cubelets and also cycles two different sets of corner cubelets.  

In particular, the down-right, up-right, and up-left cubelets will cycle amongst 

themselves.   
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2 2 2( )R U  

 

If we cube 2 2R U , however, then we’ll get rid of the 3-cycles and we’ll be left with 

only a couple of 2-cycles.  Algebraically, the result is  

 

( ) ( )( )( )( )( )

( ) ( ) ( ) ( ) ( )
( )( )

3 32 2

3 3 3 3 3

.

R U UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UB UF BR FR UL UR DR UBL UFR DBR ULF URB DRF

UB UF BR FR

⎡ ⎤= ⎣ ⎦

=

=

 

 

 
2 2 3( )R U  
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This final result looks particularly useful because essentially we are just 

swapping two back cubelets for two front cublelets, and if you try this move, then 

you’ll you get a very nice and elegant pattern.  And lastly, since 2 2R U  results in a 

combination of 2-cycles and 3-cycles, it follows that if we perform this operation 

six times, then all the cubelets will be restored to their original positions.  When 

we try it, that is indeed what happens, and fortunately the orientations of the 

cubelets are also restored.  Thus, the order of the cyclic group generated by 
2 2R U  is six.  In symbols, we write 2 2 6R U = .  One of the very important lessons 

from this example, however, is that looking at the cycle structure of a permutation 

can help us determine not only the order of the corresponding cyclic group, but 

also what powers of this permutation might result in moving only a minimum 

number of cubelets in our Rubik’s cube.   

 

And finally, if we look at not only the cyclic group generated by 2 2R U , but also the 

group generated by 2R  and 2U  (denoted by 2 2,R U ) acting either together or 

independently, then it turns out that this group has order 12 and is isomorphic to 

6D , the symmetries of a regular hexagon.  This is also an example of what on the 

cube we call a two-squares group. 

 

Another subgroup of the Rubik’s cube group that is both elegant and interesting 

is called the slice group.  This subgroup is generated by rotating only the center 

slices, and as such, it will leave the corners of the cube untouched.  

Consequently, this group can be used to create some pretty patterns.  Also, 

since it is not always easy to rotate a middle slice, we can accomplish the same 

effect by performing 1RL− , 1FB− , and 1UD− .  Thus, the slice group is generated by 

these elements, 1 1 1, ,RL FB UD− − −  and 1 1 1, , 768RL FB UD− − − = .   
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1 1 1, ,RL FB UD− − −  

 

Also interesting and mathematically less complicated is the slice-squared group,  

 
1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2( ) ,( ) ,( ) , , , ,RL FB UD R L F B U D R L F B U D− − − − − −= = . 

 

 
2 2 2 2 2 2, ,R L F B U D  

 

This subgroup consists of eight elements, and it’s abelian.  And that means, by 

the Fundamental Theorem of Finite Abelian Groups, there are only three 

possibilities for the structure of the slice-squared group.  It has to be isomorphic 

to either 8 , 4 2× , or 2 2 2× × .  See if you can figure out what the correct 

answer is! 

 

And finally, I want to talk about just one more subgroup that I can associate with 

Rubik’s cube.  This is going to be the subgroup generated by rotating the whole 



 9

cube clockwise with respect to either the up face, the right face, or the front face.  

I’ll represent quarter turns in each of these directions by U, R, and F.  Since 

these moves create a permutation of the six faces of the cube, the group 

generated has to be some subgroup of 6S  which has order 6 5 4 3 2 1 720⋅ ⋅ ⋅ ⋅ ⋅ = .  

However, we won’t get 6S  in its entirety.  In fact, I claim that our subgroup will 

only have order 24.  To see this, notice that we have six choices we could make 

regarding which colored face to have at the top of our cube.  However, once we 

have picked a top color, then we have four choices for the front color, and once 

we have made these two choices, then we’re done.  Those two choices will 

establish a particular arrangement for the six faces of the cube.  Thus, the total 

number of arrangements we can have is 6 4 24⋅ = .  Another way to look at this is 

to construct the four possible diagonals that can go from a bottom corner of the 

cube to a top corner of the cube, and let’s suppose we give each diagonal a 

different color, such as red, blue, orange, or magenta.   

 

 
 

Then every turn of the cube by U, R, or F will produce some permutation of these 

four diagonals, and the total number of permutations possible is 4! 4 3 2 1 24= ⋅ ⋅ ⋅ = .  

Furthermore, notice that U-1RU is equivalent to F.  Thus, we could generate this 

group using only U and R, but it’s conceptually easier to think of it as being 

generated by U, R, and F.  Also, since all of the pictures below represent solved 
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cubes, we don’t really consider this group to be a subgroup of the Rubik’s cube 

group. 

 
24 Different Orientations for the Solved Rubik’s Cube 
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CONJUGATES, COMMUTATORS, centers, and 

orbits 
 

Recall that if G is a group, and ,x a G∈ , then the element 1a xa−  is called a 

conjugate of x.  Similarly, 1axa−  is also a conjugate of x since 1a G− ∈  and 
1 1 1 1( )a xa axa− − − −= .  Additionally, if H is a subgroup of G, H G≤ , then we can define 

the conjugate by a of the whole subgroup as { }1 1 |aHa axa x H− −= ∈ .  And now 

recall that if H is a subgroup of G, then so is 1aHa− .  We’ll prove this is the case 

just for finite groups since that is our primary interest.  (Note that this is the first 

time that we are introducing you to a formal proof.  Many more proofs will be 

done and explained in Parts 9 and 10 of this work.) 

 

Theorem:  If G is a finite group, H is a subgroup of G, and a G∈ , then 1aHa−  is 

also a subgroup of G. 

 

Proof:  Since G is a finite group, it suffices to show that 1aHa−  is closed under 

multiplication.  Thus, suppose that 1,b c aHa−∈ .  Then there exist x and y in H such 

that 1b axa−=  and 1c aya−= .  Hence, 1 1 1 1( )( ) ( )bc axa aya a xy a aHa− − − −= = ∈  since xy H∈ .  

Therefore, 1aHa−  is a subgroup of G.    

 

We’ve mentioned previously that some subgroups have the special property that 
1aHa H− =  for all a G∈ , and when this happens, we say that the subgroup is a 

normal subgroup and write H G .  What our theorem above shows is that even if 
1aHa H− ≠ , then 1aHa−  will still be a subgroup of G.  Also, remember that if the 

only normal subgroups of a group G are G and { }e , then we call G a simple 

group. 
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Recall now our earlier discussion of Sylow p-subgroups where our theorem said 

that if np  is the highest power of a prime p that divides into the order of our group 

G, then G will have a subgroup of order np , a Sylow p-subgroup.  We’ll now state 

our second and third Sylow Theorems.  Also, we’ll defer proofs of these 

theorems until part 10. 

 

The Second Sylow Theorem:  Let G be a finite group, and let p be a prime that 

divides the order of G.  Then all Sylow p-subgroups of G are conjugate to one 

another.   

 

The Third Sylow Theorem:  The number of Sylow p-subgroups of a finite group G 

is a divisor of the order of G.  (More specifically, if nG p m= ⋅ , then the number of 

Sylow p-subgroups is a divisor of m.) 

 

Hence, from this it follows that if our Sylow p-subgroup is not normal, then we 

can find all find all of the Sylow p-subgroups just by taking conjugates of a single 

Sylow p-subgroup.  If we go back to our multiplication table for 3S , we can easily 

verify that all the subgroups of order 2 are conjugate. 

 

( )( )( ) ( ) ( ) ( ) ( ) ( )
( )( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )

1 2 3 1 2 1 3 2 3 1 2 3 1 3 2
1 2 3 1 2 3 1 2 1 3 2 3 1 2 3 1 3 2

1 2 1 2 1 2 3 1 2 3 1 3 2 1 3 2 3
1 3 1 3 1 3 2 1 2 3 1 2 3 2 3 1 2
2 3 2 3 1 2 3 1 3 2 1 2 3 1 2 1 3

1 2 3 1 2 3 2 3 1 2 1 3 1 3 2 1 2 3
1 3 2 1 3 2 1 3 2 3 1 2 1 2 3 1 2 3

 

 

For example, we have three subgroups of order 2.  Namely, ( )
(1)(2)(3)

1 2
⎧ ⎫
⎨ ⎬
⎩ ⎭

, ( )
(1)(2)(3)

1 3
⎧ ⎫
⎨ ⎬
⎩ ⎭

, 

and ( )
(1)(2)(3)

2 3
⎧ ⎫
⎨ ⎬
⎩ ⎭

.  If we now create some conjugates by multiplying ( )
(1)(2)(3)

1 2
⎧ ⎫
⎨ ⎬
⎩ ⎭

 by 
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( )1 3  and ( )2 3  [Note that each of these elements is its own inverse], then we 

obtain:  ( ) ( ) ( ) ( )
(1)(2)(3) (1)(2)(3)

1 3 1 3
1 2 2 3

⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
 and ( ) ( ) ( ) ( )

(1)(2)(3) (1)(2)(3)
2 3 2 3

1 2 1 3
⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

.  

Thus, the other two groups are conjugate to the first, and hence, they are all 

conjugate to each other. 

 

The second concept we want to look at again is that of a commutator.  Recall 

from Part 2 that if ,x y G∈ , then the commutator of x and y is the product 1 1xyx y− − .  

(Additionally, 1 1x y xy− − , 1 1yxy x− − , and 1 1y x yx− −  are also commutators that can be 

constructed from x and y.)  Notice that if G is an abelian group or if x and y 

commute with one another, then 1 1 1 1xyx y xx yy e− − − −= = , the identity element in G.  

On the other hand, if x and y don’t commute with one another, but if their 

corresponding permutations don’t have much in common, then their commutator 

probably won’t result in too many changes.  For example, let’s suppose that 

( )( )1 2 3 4 5 6x =  and ( )( )6 7 8 9 10y = .  Then ( )( )1 6 5 4 3 2 1x− =  and 

( )( )1 10 9 8 7 6y− = .  The only item both x and y permute is 6, and their 

commutator is, 

 

( )( )( )( )( )( )( )( )
( )

1 1 1 2 3 4 5 6 6 7 8 9 10 6 5 4 3 2 1 10 9 8 7 6

5 6 8

xyx y− − =

=
 

 

Thus, even though our permutations don’t commute, the commutator still undoes 

quite a bit of what gets moved around.  Similarly, when we form a conjugate such 

as 1a xa− , there is a good chance that the last multiplication by a  will undo some 

of the scrambling done by multiplication of a permutation x by 1a− .  Consequently, 

as we’ll see in the next chapter, both conjugates and commutators can be very 

helpful in developing a solution to Rubik’s cube since there is a good chance that 

we can find some that move just a few elements of the cube while leaving the 

rest undisturbed. 
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Now let’s suppose that we take all the commutators in our group and form all 

possible, finite products with them.  This will generate a subgroup of G that we 

call the commutator or derived subgroup.  Again, if G is abelian, then this 

commutator subgroup will simply be the identity.  However, if G is not abelian, 

then we can think of the commutator subgroup as measuring how far from being 

abelian it actually is.  Thus, in general, we might say that the more abelian the 

group is, the smaller its commutator subgroup, and the less abelian it is, the 

larger its commutator subgroup.  For 3S , the commutator subgroup is the same 

as its single Sylow 3-subgroup, 
( )

( )
( )
1 2 3
1 3 2

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

.  Also, the derived or commutator 

subgroup of a group G is always a normal subgroup of G, and the corresponding 

quotient group is always abelian. 

 

In a chapter coming up soon we will see more specifically how conjugates and 

commutators apply to Rubik’s cube, but first we want to remind you of the 

definition of the center and also introduce the notion of the orbit of an element 

that is acted upon by a group.  First, we’ll define the center of a group G as the 

subset of all elements of G that commute with every other element of G.  This 

subgroup will always be a normal subgroup of G, and for 3S , the group of all 

permutations of the set { }1,2,3 , the center consists of just the identity element, 

( ) .  Thus, this is the only element in 3S  that commutes with every other element 

in 3S . 

 

We’ll also use 3S  to explain what we mean by the orbit of an element that is 

being acted upon by a group.  Thus, once again, let’s let our set of elements be 

{ }1,2,3  and let’s let 3S  be the group that is creating permutations of these 

elements.  In this case, any element that, for example, the number 1 can be 

changed into is thought of as being in the same orbit as 1.  Furthermore, since 

repeated application of the permutation (1,2,3)  can change 1 into 2 or 1 into 3, it 
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follows that the orbit of 1 under 3S  is the entire set { }1,2,3 .  In particular, the 

group 3S  results in only a single orbit for this set.  In the next chapter, we’ll 

examine both the center and the orbits of the facelets  of Rubik’s cube that are 

permuted by the Rubik’s cube group, and we’ll see how to compute these things 

and more using GAP software. 
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How to use gap (part 8) 

 

We will begin as usual by repeating all the GAP commands with learned up to 

this point so that you don’t have to reference earlier parts of this work, and then 

at the end we’ll introduce in red a few GAP commands that are useful for 

exploring oribits on Rubik’s cube.  

 

 

1. How can I redisplay the previous command in order to edit it? 

 

Press down on the control key and then also press p.  In other words, “Ctrl p”. 

 

 

2. If the program gets in a loop and shows you the prompt “brk>” instead of 

“gap>”, how can I exit the loop? 

 

Press down on the control key and then also press d.  In other words, “Ctrl d”. 

 

 

3. How can I exit the program? 

 

Either click on the “close” box for the window, or type “quit;” and press 

“Enter.” 

 

 

4. How do I find the inverse of a permutation? 

 

gap> a:=(1,2,3,4); 

(1,2,3,4) 

gap> a^-1; 
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(1,4,3,2) 

 

5. How can I multiply permutations and raise permutations to powers? 

 

gap> (1,2)*(1,2,3); 

(1,3) 

 

gap> (1,2,3)^2; 

(1,3,2) 

 

gap> (1,2,3)^-1; 

(1,3,2) 

 

gap> (1,2,3)^-2; 

(1,2,3) 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> b:=(1,2); 

(1,2) 

 

gap> a*b; 

(2,3) 

 

gap> a^2; 

(1,3,2) 

 

gap> a^-2; 

(1,2,3) 
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gap> a^3; 

() 

gap> a^-3; 

() 

 

gap> (a*b)^2; 

() 

 

gap> (a*b)^3; 

(2,3) 

 

 

6. How can I create a group from permutations, find the size of the group, and 

find the elements in the group? 

 

gap> a:=(1,2); 

(1,2) 

 

gap> b:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a,b); 

Group([ (1,2), (1,2,3) ]) 

 

gap> Size(g1); 

6 

 

gap> Elements(g1); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> g2:=Group([(1,2),(1,2,3)]); 
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Group([ (1,2), (1,2,3) ]) 

 

gap> g3:=Group((1,2),(2,3,4)); 

Group([ (1,2), (2,3,4) ]) 

 

 

7. How can I create a cyclic group of order 3? 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a); 

Group([ (1,2,3) ]) 

 

gap> Size(g1); 

3 

 

gap> Elements(g1); 

[ (), (1,2,3), (1,3,2) ] 

 

gap> g2:=Group((1,2,3)); 

Group([ (1,2,3) ]) 

 
gap> g3:=CyclicGroup(IsPermGroup,3); 

Group([ (1,2,3) ]) 
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8. How can I create a multiplication table for the cyclic group of order 3 that I just 

created? 

 

gap> ShowMultiplicationTable(g1); 

 

*          | ()          (1,2,3)     (1,3,2) 

--------+--------------------------------- 

()         | ()          (1,2,3)     (1,3,2) 

(1,2,3) | (1,2,3)  (1,3,2)     () 

(1,3,2) | (1,3,2)  ()             1,2,3) 

 

 

9. How do I determine if a group is abelian? 

 

gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> IsAbelian(g1); 
true 
 
gap> g2:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 
gap> IsAbelian(g2); 
false 

 

 

10. What do I type in order to get help for a command like “Elements?” 

 

gap> ?Elements 

 

 

11. How do I find all subgroups of a group? 
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gap> a:=(1,2,3); 
(1,2,3) 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=AllSubgroups(g); 
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]), 
Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ] 
 
gap> List(h,i->Elements(i)); 
[ [ () ], [ (), (2,3) ], [ (), (1,2) ], [ (), (1,3) ], [ (), (1,2,3), 
(1,3,2) ], [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] ] 
 
gap> Elements(h[1]); 
[ () ] 
 
gap> Elements(h[2]); 
[ (), (2,3) ] 
 
gap> Elements(h[3]); 
[ (), (1,2) ] 
 
gap> Elements(h[4]); 
[ (), (1,3) ] 
 
 
gap> Elements(h[5]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(h[6]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

 

12. How do I find the subgroup generated by particular permutations? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 

 

 

13. How do I determine if a subgroup is normal? 
 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
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gap> h1:=Group((1,2)); 
Group([ (1,2) ]) 
gap> IsNormal(g,h1); 
 
gap> h2:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
 
gap> IsNormal(g,h2); 
true 

 

 
 
 
14. How do I find all normal subgroups of a group? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 

gap> n:=NormalSubgroups(g); 
[ Group([ (1,2), (1,2,3) ]), Group([ (1,3,2) ]), Group(()) ] 
 

gap> Elements(n[1]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> Elements(n[2]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(n[3]); 
[ () ] 

 

 

15. How do I determine if a group is simple? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> IsSimple(g); 
false 

 
gap> h:=Group((1,2)); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> IsSimple(h); 
true 

 



 23

 

 

16. How do I find the right cosets of a subset H of G? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> c:=RightCosets(g,h); 
[ RightCoset(Group( [ (1,2) ] ),()), RightCoset(Group( [ (1,2) ] ),(1,3,2)), 
RightCoset(Group( [ (1,2) ] ),(1,2,3)) ] 
 
gap> List(c,i->Elements(i)); 
[ [ (), (1,2) ], [ (2,3), (1,3,2) ], [ (1,2,3), (1,3) ] ] 
gap> Elements(c[1]); 
[ (), (1,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,3,2) ] 
 
 
gap> Elements(c[3]); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=RightCoset(h,(1,2,3)); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=h*(1,2,3); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 

 
 

17. How can I create a quotient (factor) group? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> n:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> Elements(n); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> IsNormal(g,n); 
true 
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gap> c:=RightCosets(g,n); 
[ RightCoset(Group([ (1,2,3) ]),()), RightCoset(Group([ (1,2,3) ]),(2,3)) ] 
 
 
gap> Elements(c[1]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,2), (1,3) ] 
 
gap> f:=FactorGroup(g,n); 
Group([ f1 ]) 
 
gap> Elements(f); 
[ <identity> of ..., f1 ] 
 
gap> ShowMultiplicationTable(f); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
 
 
 

 

18. How do I find the center of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Center(g); 
Group(()) 
 
gap> c:=Center(g); 
Group(()) 
 
gap> Elements(c); 
[ () ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> c:=Center(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 

 
 
19. How do I find the commutator (derived) subgroup of a group? 



 25

 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3,2) ]) 
 
gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(d); 
[ (), (1,3)(2,4) ] 
 

 
20. How do I find all Sylow p-subgroups for a given group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> FactorsInt(6); 
[ 2, 3 ] 
 
gap> sylow2:=SylowSubgroup(g,2); 
Group([ (2,3) ]) 
 
gap> IsNormal(g,sylow2); 
false 
 
gap> c:=ConjugateSubgroups(g,sylow2); 
[ Group([ (2,3) ]), Group([ (1,3) ]), Group([ (1,2) ]) ] 
 
gap> Elements(c[1]); 
[ (), (2,3) ] 
 
gap> Elements(c[2]); 
[ (), (1,3) ] 
 
gap> Elements(c[3]); 
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[ (), (1,2) ] 
 
gap> sylow3:=SylowSubgroup(g,3); 
Group([ (1,2,3) ]) 
 
 
gap> IsNormal(g,sylow3); 
true 
 
gap> Elements(sylow3); 
[ (), (1,2,3), (1,3,2) ] 
 

 
 
21. How can I create the Rubik’s cube group using GAP? 

 

First you need to save the following permutations as a pure text file with the 

name rubik.txt to your C-drive before you can import it into GAP. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 

 

And now you can read the file into GAP and begin exploring. 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
 
 
22. How can I find the center of the Rubik’s cube group? 
 
 
gap> c:=Center(rubik); 
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45) 
(39,47) ] 
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23. How can I find the commutator (derived) subgroup of the Rubik’s cube group? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group with 5 generators> 
 
gap> Size(d); 
21626001637244928000 
 
gap> IsNormal(rubik,d); 
true 

 

 

24. How can I find the quotient (factor) group of the Rubik’s cube group by its 

commutator (derived) subgroup? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group of size 21626001637244928000 with 5 generators> 
 
gap> f:=FactorGroup(rubik,d); 
Group([ f1 ]) 
 
gap> Size(f); 
2 
 

 

25. How can I find some Sylow p-subgroups of the Rubik’s cube group? 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
gap> FactorsInt(43252003274489856000); 
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11 ] 
 
gap> sylow2:=SylowSubgroup(rubik,2); 
<permutation group of size 134217728 with 27 generators> 
 
gap> sylow3:=SylowSubgroup(rubik,3); 
<permutation group of size 4782969 with 14 generators> 
 
gap> sylow5:=SylowSubgroup(rubik,5); 
<permutation group of size 125 with 3 generators> 
 
gap> sylow7:=SylowSubgroup(rubik,7); 
<permutation group of size 49 with 2 generators> 
 
gap> sylow11:=SylowSubgroup(rubik,11); 
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Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ]) 
 
 
 
 
 
 
gap> Elements(sylow11); 
[ (), (4,5,36,21,31,15,39,13,42,7,12)(10,26,29,28,45,44,47,20,23,18,37), 
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29), 
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26), 
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45), 
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47), 
(4,21,39,7,5,31,13,12,36,15,42)(10,28,47,18,26,45,20,37,29,44,23), 
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20), 
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18), 
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44), 
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ] 
 
gap> IsNormal(rubik,sylow2); 
false 
 
gap> IsNormal(rubik,sylow3); 
false 
 
 
gap> IsNormal(rubik,sylow5); 
false 
 
gap> IsNormal(rubik,sylow7); 
false 
 
gap> IsNormal(rubik,sylow11); 
false 
 
NOTE:  All of the Sylow p-subgroups found above have conjugates, but the 
sheer size of the Rubik’s cube group makes it too difficult to pursue them on a 
typical desktop computer. 
 

 

26. How do I determine if a group is cyclic? 

 
gap> a:=(1,2,3)*(4,5,6,7); 
(1,2,3)(4,5,6,7) 
 
gap> g:=Group(a); 
Group([ (1,2,3)(4,5,6,7) ]) 
 
gap> Size(g); 
12 
 
gap> IsCyclic(g); 
true 

 

 

27. How do I create a dihedral group with 2n elements for an n-sided regular 

polygon? 
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gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
 
 
 
 
 
gap> Elements(d4); 
[ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ] 
 

 

28. How can I express the elements of a dihedral group as rotations and flips 
rather than as permutations? 

 
 
gap> d3:=DihedralGroup(6); 
<pc group of size 6 with 2 generators> 
 
gap> Elements(d3); 
[ <identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2 ] 
 
gap> ShowMultiplicationTable(d3); 
*                 | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
------------------+---------------------------------------------------------------------------------------------------\ 
--------- 
<identity> of ... | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
f1                | f1                <identity> of ... f1*f2             f2                f1*f2^2           f2^2       
f2                | f2                f1*f2^2           f2^2              f1                <identity> of ... f1*f2      
f1*f2             | f1*f2             f2^2              f1*f2^2           <identity> of ... f1                f2         
f2^2              | f2^2              f1*f2             <identity> of ... f1*f2^2           f2                f1         
f1*f2^2           | f1*f2^2           f2                f1                f2^2              f1*f2             
<identity> of ... 

29. How do I create a symmetric group of degree n with n! elements? 
 
gap> s4:=SymmetricGroup(4); 
Sym( [ 1 .. 4 ] ) 
 
gap> Size(s4); 
24 
 
gap> Elements(s4); 
[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), 
(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), 
  (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), 
(1,4), (1,4,2,3), (1,4)(2,3) ] 

 
 
 

30. How do I create an alternating group of degree n with !
2
n  elements? 

 
gap> a4:=AlternatingGroup(4); 
Alt( [ 1 .. 4 ] ) 

 
gap> Size(a4); 
12 
gap> Elements(a4); 
[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), 
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ] 
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31. How do I create a direct product of two or more groups? 
 
gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
 
gap> g2:=Group((4,5)); 
Group([ (4,5) ]) 
 
gap> dp:=DirectProduct(g1,g2); 
Group([ (1,2,3), (4,5) ]) 
 
gap> Size(dp); 
6 
gap> Elements(dp); 
[ (), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) ] 
 
gap> ShowMultiplicationTable(dp); 
*            | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
-------------+---------------------------------------------------------------------------
--- 
()           | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
(4,5)        | (4,5)        ()           (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2) 
(1,2,3)      | (1,2,3)      (1,2,3)(4,5) (1,3,2)      (1,3,2)(4,5) ()           (4,5) 
(1,2,3)(4,5) | (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2)      (4,5)        () 
(1,3,2)      | (1,3,2)      (1,3,2)(4,5) ()           (4,5)        (1,2,3)      
(1,2,3)(4,5) 
(1,3,2)(4,5) | (1,3,2)(4,5) (1,3,2)      (4,5)        ()           (1,2,3)(4,5) (1,2,3) 

 
 

 
 

32. How can I create the Quaternion group? 
 
gap> a:=(1,2,5,6)*(3,8,7,4); 
(1,2,5,6)(3,8,7,4) 
 
gap> b:=(1,4,5,8)*(2,7,6,3); 
(1,4,5,8)(2,7,6,3) 
 
gap> q:=Group(a,b); 
Group([ (1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ]) 
 
gap> Size(q); 
8 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3), 
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8), 
  (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ] 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6), 
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7), 
  (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ] 
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33. How can I find a set of independent generators for a group? 
 
 
gap> c6:=CyclicGroup(IsPermGroup,6); 
Group([ (1,2,3,4,5,6) ]) 
 
gap> Size(c6); 
6 
 
gap> GeneratorsOfGroup(c6); 
[ (1,2,3,4,5,6) ] 

 
 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
 
gap> Size(d4); 
8 
 
gap> GeneratorsOfGroup(d4); 
[ (1,2,3,4), (2,4) ] 

 
 
gap> s5:=SymmetricGroup(5); 
Sym( [ 1 .. 5 ] ) 
 
 
gap> Size(s5); 
120 
 
gap> GeneratorsOfGroup(s5); 
[ (1,2,3,4,5), (1,2) ] 
 
 
gap> a5:=AlternatingGroup(5); 
Alt( [ 1 .. 5 ] ) 
 
gap> Size(a5); 
60 
 
gap> GeneratorsOfGroup(a5); 
[ (1,2,3,4,5), (3,4,5) ] 
 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
gap> GeneratorsOfGroup(q); 
[ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ] 
 
 
 

34. How do I find the conjugate of a permutation in the form 1ba b ab−= ? 
 
gap> a:=(1,2,3,4,5); 
(1,2,3,4,5) 
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gap> b:=(2,4,5); 
(2,4,5) 

 
 
gap> a^b; 
(1,4,3,5,2) 

 
gap> b^-1*a*b; 
(1,4,3,5,2) 
 
 
 
35. How do I divide up a group into classes of elements that are conjugate to one another?  

(Note that “conjugacy” is an equivalence relation on our group G.  That means that 
G can be separated into nonintersecting subsets that contain only elements that are 
conjugate to one another.) 

 
gap> d3:=DihedralGroup(IsPermGroup,6); 
Group([ (1,2,3), (2,3) ]) 

 
gap> Size(d3); 
6 

 
gap> Elements(d3); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 
gap> cc:=ConjugacyClasses(d3); 
[ ()^G, (2,3)^G, (1,2,3)^G ] 

 
gap> Elements(cc[1]); 
[ () ] 

 
gap> Elements(cc[2]); 
[ (2,3), (1,2), (1,3) ] 

 
gap> Elements(cc[3]); 
[ (1,2,3), (1,3,2) ] 
 

 

36. How do I input a 3x3 matrix in GAP and display in its usual rectangular format? 

 
gap> x:=[[1,2,3],[4,5,6],[7,8,9]]; 
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2,  3 ], 
  [  4,  5,  6 ], 
  [  7,  8,  9 ] ] 
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37. How do I do arithmetic with matrices? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> y:=[[5,6],[7,8]]; 
[ [ 5, 6 ], [ 7, 8 ] ] 

 
gap> PrintArray(x+y); 
[ [   6,   8 ], 
  [  10,  12 ] ] 

 
gap> PrintArray(x-y); 
[ [  -4,  -4 ], 
  [  -4,  -4 ] ] 

 
gap> PrintArray(x*y); 
[ [  19,  22 ], 
  [  43,  50 ] ] 

 

 

38. How do I multiply a matrix by a number (scalar)? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> PrintArray(2*x); 
[ [  2,  4 ], 
  [  6,  8 ] ] 

 
gap> PrintArray(x/2); 
[ [  1/2,    1 ], 
  [  3/2,    2 ] ] 

39. How do I find the inverse of a matrix? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> xinverse:=x^-1; 
[ [ -2, 1 ], [ 3/2, -1/2 ] ] 
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gap> PrintArray(xinverse); 
[ [    -2,     1 ], 
  [   3/2,  -1/2 ] ] 

 
gap> xinverse:=1/x; 
[ [ -2, 1 ], [ 3/2, -1/2 ] ] 

 
gap> PrintArray(xinverse); 
[ [    -2,     1 ], 
  [   3/2,  -1/2 ] ] 

 
gap> PrintArray(x*xinverse); 
[ [  1,  0 ], 
  [  0,  1 ] ] 

 

 

40. How do I find the transpose of a matrix? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> xtranspose:=TransposedMat(x); 
[ [ 1, 3 ], [ 2, 4 ] ] 

 

gap> PrintArray(xtranspose); 
[ [  1,  3 ], 
  [  2,  4 ] ] 

 

 

 

41. How do I find the determinant of a matrix? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> DeterminantMat(x); 
-2 
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42.  How do I find the orbits that the Rubik’s cube group creates on the set 

{ }1,2,3, ,48… ? 

 

In Windows, use Notepad to type the following file, and save it to your C-drive. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 
 

Now enter the following commands. 

 
gap> Read("C:/rubik.txt"); 
gap> 

 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 

 
gap> Orbit(rubik,1); 
[ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 16, 
35, 25, 32 ] 

 
gap> Orbit(rubik,2); 
[ 2, 5, 13, 18, 36, 37, 42, 39, 34, 12, 10, 31, 15, 7, 4, 26, 20, 45, 21, 44, 
47, 28, 29, 23 ] 

 
gap> o:=Orbits(rubik); 
[ [ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 
16, 35, 25, 32 ], 
[ 2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15, 
31, 23, 18, 39 ] ] 

 
gap> Size(o); 
2 

 
gap> Elements(o); 
[ [ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 
16, 35, 25, 32 ], 
[ 2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15, 
31, 23, 18, 39 ] ] 
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CONJUGATES, COMMUTATORS, centers, and 

orbits IN RUBIK’S CUBE 
 

Many people have either written or talked about how the cube can mostly be 

solved using either conjugates or commutators, and so let’s look at a few ways in 

which we are already using them.  First, at the very beginning when I am trying to 

correctly place the corners on the top face of the cube, I often do the move 
1R DR−  which is a conjugate.  Thus, let’s think about what this move does for us.  

My goal with this move is to place something in the up-front-right ( )UFR  corner.  

To do this, I position the cubelet that I want to move there in the down-front-left 

( )DFL  corner.  Then I do 1R− .  That moves the up-front-right ( )UFR  corner 

cubelet to the down-front-right ( )DFR  position.  Next, I do D , and this moves my 

cubelet from DFL  to DFR .  And finally, I do R , and that rotates my cublet from 

the down-front-right ( )DFR  position back into the up-front-right ( )UFR  corner that 

was my goal.  In a nutshell, you can say that we shifted things from the top face 

to a workspace down below, moved something into the workspace, and then 

moved it back to the top row. 

 

 
1R DR−  

 

When we do a commutator on Rubik’s cube, the idea is that we are, most of the 

time, partially undoing what we have previously done.  In particular, what 

happens when we do a commutator like 1 1R D RD− −  on the cube is that some of 
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the cubelets get moved around, but others stay right where they are, and anytime 

we move just a few cubelets, that gives us a tool we can use for easily solving 

the cube.   

 

Now let’s examine some more of the algorithms we have used for solving Rubik’s 

cube.  When solving the middle layer of the cube, we used 1 1 1 1URU R U F UF− − − −  

and 1 1 1 1U F UFURU R− − − − .  Notice that both of these are products of commutators.  

The first part of 1 1 1 1URU R U F UF− − − −  is the commutator 1 1URU R− − , and the second 

part is the commutator 1 1U F UF− − .  Likewise with 1 1 1 1U F UFURU R− − − −  the first part 

is the commutator 1 1U F UF− −  and the second part is the commutator 1 1URU R− − . 

 

When we move on to the top layer of the cube, we apply the algorithm 
1 1 1FRUR U F− − − .  And now if we look at this algorithm more closely, we can see that 

we are really just taking the conjugate of a commutator.  In other words, the inner 

part of this algorithm is the commutator 1 1RUR U− − , and then we conjugate this by 

F to get ( )1 1 1F RUR U F− − − . 

 

The next algorithm we apply to the top layer is 1 1 1 1URU L UR U L− − − − .  If we split this 

up into 1URU −  and 1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( )L UR U L L U R U L U L R U L− − − − − − − − − −= = , then we can 

easily see that both of these movements are conjugates.  Also, if we were to 

remove the rotations of the top face from 1 1 1 1URU L UR U L− − − − , then we would be left 

with the commutator 1 1RL R L− − .   

 

And now, let’s examine our final algorithm ( )21 1R D RD− −  in greater detail.  At the 

core of this particular algorithm is the commutator 1 1R D RD− − , and ( )21 1R D RD− −  is 

the move that we usually use at the end to get our final corner cubelets turned 

correctly.  If we do this move just once, then we’ll transpose two sets of corner 

cubelets, and we’ll cycle three edge cubelets,  
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( )( )( )DB DR FR DRF UFR DBR DLB . 

 

Thus, if we repeat this operation a second time, then we’ll restore the corner 

cubelets and just cycle the edge cubelets.  However, when I do this, my corner 

cubelets, while being in the right corners, have also been twisted clockwise 

through an angle of 120° .  And as you might suspect from the presence of the 3 & 

2-cycles that we have above for 1 1R D RD− − , repeating this move 6 times, the least 

common multiple of 2 and 3, will finally restore everything back to its starting 

point.  And now you can see why this is our finishing move for the cube.  At the 

end, we have all the cubelets in their correct positions, but some of the corner 

cubelets on top are usually twisted.  To untwist them, we apply the algorithm 
1 1 2( )R D RD− −  until we get one corner untwisted.  Then we rotate the top to move 

another twisted corner into position, and we repeat with 1 1 2( )R D RD− −  until that one 

is untwisted.  However, take my word for now that the one thing that we are 

mathematically guaranteed is that the number of times we have to do 
1 1 2( )R D RD− −  is always going to be some multiple of 3.  Thus, suppose we have to 

do 1 1 2( )R D RD− −  just three times.  Then 1 1 2 3 1 1 6[( ) ] ( )R D RD R D RD e− − − −= = .  In other 

words, since our algorithm has order 6, by the time we are done untwisting the 

cubelets, everything has been returned to its proper position and orientation. 

 

 
1 1 2 1 1 4 1 1 6( ) ,( ) , ( )R D RD R D RD R D RD− − − − − −  

 

Using GAP software, we can easily explore facets of Rubik’s cube that would be 

hard to examine just by hand.  For example, we can easily find information about 
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what we call the center of the Rubik’s cube group as well as the orbits of the 

facelets on the cube that it permutes.  First, though, let’s recall how to initially set 

up GAP for exploring Rubik’s cube.  The initial step is to give each facelet of the 

cube a number so that we can express moves in terms of permutations of those 

numbers.  Back in Part 2 of this work we did it as follows, and from that we were 

able to define the moves for right, left, up, down, front, and back as permutations. 

 
1 2 3
4 UP 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 LEFT 13 20 FRONT 21 28 RIGHT 29 36 BACK 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 DOWN 45
46 47 48  

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 
 

The next step is to copy the permutations above and save them as a text file, not 

to your documents folder, but to your C-drive as a file named rubik.txt.  Also, in 

my old version of Windows, for this to work correctly I have to create the file 

using Notepad instead of Wordpad.  It appears that if you try to save this as a 

text file using Wordpad, then some extra structure is also saved that interferes 

with reading the file into GAP.  However, once you have correctly saved your file, 

then you can open it in GAP by typing the following command. 

 
gap> Read("C:/rubik.txt"); 
gap> 

 

And now you can create the group rubik by typing in the following. 

 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
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gap> Size(rubik); 
43252003274489856000 

 

And now, to find the center of the Rubik’s cube group, just type in the following. 

 
gap> c:=Center(rubik); 
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), 
(2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45)(39,47
) ] 

 

From this we can see that there are just two elements in the Rubik’s cube group 

that commute with every other element in the group.  One of these elements is 

the identity, and the other is a long chain of transpositions, 

 
(2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45)(39,47) 

 

And by the way, the permutation above is called the superflip.  Its effect is that it 

flips the colors of each edge cublet on the cube.  Thus, if an edge cublet is 

colored green-white in the cube’s solved state, then those two colors are flipped 

so that green becomes white and white becomes green.  Below is a picture of the 

cube illustrating the superflip, and this is followed by two different algorithms for 

creating the superflip. 

 

 



 41

2 2 2 2 1 1 2 1 2 2 2UR FBRB RU LB RU D R FR LB U F− − −  

or 

1 1 1 1 1 1 1 2 1 1 2 2 2 1 1FLULB U D LF U B RL BF U D F B R U D− − − − − − − − − − −  

 

The center is a normal subgroup of a group, and if we look at the corresponding 

quotient group, then the center of the quotient will consist of only the identity 

element of that group.  Also, since the size of the Rubik’s cube group is  

 
43,252,003,274,489,856,000 

 

and since the size of the center of the Rubik’s cube group is 2, it follows that the 

size of resulting quotient group is exactly half the size of the complete Rubik’s 

cube group. 

 
43,252,003,274,489,856,000/2 = 21,626,001,637,244,928,000 

 

Now let’s examine the orbits associated with the Rubik’s cube group.  First, 

notice from our diagram above where we assigned a number to each facelet that 

the Rubik’s cube group creates permutations of the facelets that we have 

numbered 1 through 48.  In other words, the Rubik’s cube group acts upon the 

set { }1,2,3, ,48… .  Also, notice that half of the numbers in this set correspond to 

facelets on corner cublets, and the other half correspond to facelts on edge 

cubelets.  To find the orbit of any of these numbers, just enter the following into 

GAP. 

 
gap> Orbit(rubik,1); 
[ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 16, 
35, 25, 32 ] 

 
gap> Orbit(rubik,2); 
[ 2, 5, 13, 18, 36, 37, 42, 39, 34, 12, 10, 31, 15, 7, 4, 26, 20, 45, 21, 44, 
47, 28, 29, 23 ] 
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And to find all the orbits that the Rubik’s cube group creates in our set 

{ }1,2,3, ,48… , type in the following. 

 
gap> o:=Orbits(rubik); 
[ [ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 
16, 35, 25, 32 ], [ 2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 
37, 20, 42, 15, 31, 23, 18, 39 ] ] 

 
gap> Size(o); 
2 

 
gap> Elements(o); 
[ [ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 
16, 35, 25, 32 ], [ 2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 
37, 20, 42, 15, 31, 23, 18, 39 ] ] 

 

From the above we see that our set has just two orbits, and if we examine them 

more closely, then we see that the numbers in the first orbit correspond to 

facelets on corner cublets while the numbers in the second orbit correspond to 

facelets on edge cublets.   

 

And now since we have talked above about commutators with regard to the 

solution for Rubik’s cube, let’s use GAP to find the commutator or derived 

subgroup and also the corresponding quotient group.  To find the derived 

subgroup, type in the following. 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group with 5 generators> 

 
gap> Size(d); 
21626001637244928000 

 

Since the size of the derived or commutator subgroup is half the size of the 

Rubik’s cube group, it follows that the corresponding quotient group (also known 

as a factor group) has size 2, and hence, the quotient group is isomorphic to 2C , 

the cyclic group of order 2.  Also, GAP has a single command for finding this 

factor group. 
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gap> q:=CommutatorFactorGroup(rubik); 
Group([ f1 ]) 

 
gap> Size(q); 
2 

 
gap> Elements(q); 
[ <identity> of ..., f1 ] 

 
gap> ShowMultiplicationTable(q); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
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PATTERNS ON RUBIK’S CUBE 
 

We now just want to examine a few interesting patterns you can create on the 

surface of Rubik’s cube.  However, our interest goes beyond just art.  There are 

certainly many places where one can go and instantly find algorithms for all sorts 

of patterns for the cube, but we want to do more than that.  As usual, we want to 

explain some of the math that comes with these patterns. 

 

1. This first pattern is one of my favorites.  In this case, the algorithm simply 

switches two front edge cubelets with the corresponding back edge cubelets.  

It’s simple, but elegant.  Also, this algorithm generates a cyclic group of order 

2, 2C , and that means that the algorithm is its own inverse. 

 

 

( )32 2R U  

 

2. This next pattern is created using elements of the slice group.  The slice 

group can be thought of as generated by moving only the center slices of the 

cube, and thus, the corner cubelets stay fixed.  Consequently, a lot of nice 

patterns can be created using only slices.  Also, even though we 

conceptualize this group in terms of moving center slices, moves such as 
1UD− , 1RL− , and 1FB−  accomplish the same thing.  In the pattern below we 
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have 6 dots centered on backgrounds of different colors.  Notice that this 

algorithm has order 3 and so the cyclic group generated is isomorphic to 3C . 

 

 
1 1 1 1UD RL FB UD− − − −  
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3. This next pattern of six checkerboards comes from the slice squared group 

that is generated by 2 2U D , 2 2R L , and 2 2F B .  Also, recall that this group is 

abelian.  Consequently, the above three moves may be done in any order.   

Furthermore, the slice squared group has order 8 and is isomorphic to 

2 2 2C C C× × , while the cyclic group generated by 2 2 2 2 2 2U D R L F B  is a subgroup 

of the slice squared group that has order 2 and is, consequently, isomorphic 

to 2C . 

 

 
2 2 2 2 2 2U D R L F B  
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4. In this pattern, we’ve taken the previous pattern and created a conjugate of 

the form 1xyx− , and with luck, this will also transform one interesting pattern 

into another.  In this case, we see our previous pattern of six checkerboards 

transformed into one of four checkerboards.  Furthermore, this algorithm 

generates a cyclic group of order 2 which is isomorphic to 2C . 

 

 

( ) ( )3 32 2 2 2 2 2 2 2 2 2R U U D R L F B R U  
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5. The next four pictures are going to be based on patterns from the slice 

squared group.  We’ll first look at a pattern from this group, and then we’ll 

form a conjugate of that pattern using ( )32 2R U .  Also, both algorithms below 

generated cyclic groups of order 2, 2C .   (Recall that ( ) ( )3 32 2 2 2R U R U
−

= .) 

 
2 2F B  

 

( ) ( )3 32 2 2 2 2 2R U F B R U  
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6. This time we’ll start with 2 2 2 2R L F B   and then, again, form a conjugate with 

( )32 2R U , in other words, ( ) ( )3 32 2 2 2 2 2 2 2R U R L F B R U .  Also, once again both of 

these algorithms will generate cyclic groups that are isomorphic to 2C . 

 
2 2 2 2R L F B  

 

 

( ) ( )3 32 2 2 2 2 2 2 2R U R L F B R U  
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7. This one is one of my favorites.  It creates a center dot on two of the faces, a 

checkerboard on two, and stripes on the remaining two.  And once again the 

cyclic groups generated are isomorphic to 2C .  

 

( ) ( )3 32 2 2 2 2 2 2 2R U R L F B L U  
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8. If you start with the red face in front and the white face to the right, then this 

will create 4 crosses with one of them a red Templar cross on a white 

background.  I like this one because a few of my ancestors on my dad’s side 

were Knights Templar.  Also, the algorithm below generates a cyclic group of 

order 4, 4C ,  and both the square and the cube of the algorithm generate 

similar cross patterns. 

 

 
1 1 1 1 1 1 1 1 1LUFLULDLDU F U F D F L D F− − − − − − − − −  
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9. Again start with the red face in front and the white fact to the right.  This 

algorithm will produce 6 crosses with one of them a red Templar cross on a 

white background.  This algorithm has order 3, 3C , and the square of the 

algorithm also results in 6 crosses. 

 

 
2 1 2 1 1 1 1 2 1 2L R FD L F RL FB LFU L F B− − − − − −  
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10. One thing I like to do is to see what new patterns I can create by combining 

1 1 1 1UD RL FB UD− − − −  with ( )32 2R U .  See what interesting things you can come up 

with! 

 

 
Start with 1 1 1 1UD RL FB UD− − − − , rotate the whole cube, and do 1 1 1 1UD RL FB UD− − − −  

again to get a pattern of four dots. 

 

 
Take the 4-dot pattern above, rotate the cube so the white face is front with red 

on top, and add ( )32 2R U .  Rotate the whole cube again, and then do ( )32 2R U  

again.  You should now have a 4-dot pattern combined with a checkerboard 

pattern! 
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11.  A favorite pattern of many cube enthusiasts is the cube within a cube.  The 

lengthy algorithm below generates a cyclic group of order 3, 3C .  Additionally, 

if you do the algorithm a second time, then you get another cube within a 

cube, and if you do it three times, then the cube is restored to the solved state. 

 

 
1 2 2 1 1 1 1 2FLFU RUF L U L BD B L U− − − − −  
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12. And finally, this algorithm creates an incredible pattern called the superflip.  

Basically, every cubelet is in its home position, but every single edge cubelet 

has been flipped.  It’s pretty easy to see that the group generated by this 

move has order 2, 2C , but what is not so obvious is that this element of the 

Rubik’s cube group commutes with every other element of that group.  In fact, 

the only other element in the group that does that is the identity.  In group 

theory, the set of all elements of a group that commute with every other 

element is called the center of the group, and the center of the Rubik’s cube 

group consists of only the identity and the superflip.  

 

 
2 2 2 2 1 1 2 1 2 2 2UR FBRB RU LB RU D R FR LB U F− − −  

or 
1 1 1 1 1 1 1 2 1 1 2 2 2 1 1FLULB U D LF U B RL BF U D F B R U D− − − − − − − − − − −  
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COUNTING THE NUMBER OF PERMUTATIONS IN 

RUBIK’S CUBE 
 

Below is a picture of Rubik’s cube.  The surface reveals 26 smaller cubes that 

we’ll call “cubelets1” and 54 smaller faces that we’ll call “facelets.” 

 

 
 

At first glance, you might think that the total number of permutations we can 

make of the facelets on Rubik’s cube is 7154! 2.3 10≈ × , the number of permutations 

we can make of 54 things, but this is going to give us a number that is way too 

large.  It’s too large because we can’t take a single facelet and just move it 

anywhere.  There are going to be some restrictions on where facelets can wind 

up.  For example, suppose we number a couple of the facelets as below. 

                                                 
1 Many people also refer to “cubelets” as “cubies.” 
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Then there is no way that we can rotate the sides of the cube to make these 

numbers wind up in the following positions. 

 

 
And why can’t we do this?  It’s because we have three types of cubelets – center 

cubelets, edge cubelets, and corner cubelets.  Furthermore, every time we rotate 
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a face of the cube, the center cubelet stays where it is, an edge cubelet just gets 

moved to the position of another edge cubelet, and a corner cubelet gets moved 

to another corner.  Thus, since our original numbers 1 & 2 begin on an edge and 

a center cubelet, respectively, they can never wind up on corner cubelets.  

Additionally, we’ll sometimes us notations like UF  and UFR  to refer, respectively, 

to the edge cubelet in the up-front position and the corner cubelet in the up-front-

right position. 

 

At this point, you might notice that the facelets of a single cubelet always have to 

stay together, and thus, maybe the total number of possible permutations of the 

facelets of Rubik’s cube will just be equal to the number of permutations of the 26 

cubelets or 2626! 4.03 10≈ × .  Well, this is still going to be too large a number 

because, again, there are restrictions on where you can move center, edge, and 

corner cubelets.  As we just mentioned, every time we rotate a face, the center 

cubelet stays where it is, a corner cubelet replaces another corner cubelet and 

an edge cubelet replaces an edge cubelet.  Thus, to count the actual number of 

possible permutations, perhaps we need to begin by multiplying the number of 

permutations you can make from the 8 corner cubelets times the number of 

permutations you can make from the 12 edge cubelets.  This gives us 

( )( ) 138! 12! 1.9 10≈ × .  However, there are a couple of things we haven’t taken into 

consideration yet.  One is that each corner cubelet can be rotated among three 

different positions, and the other is each edge cubelet can be flipped back and 

forth from one position to another.  These rotations and flips are illustrated by the 

pictures below. 
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Rotations of a corner cubelet 

 

 
Flipping an edge cubelet 

 

Thus, each of the eight corner cubelets could be in any of three rotational states, 

and so we should multiply our previous number by 83 .  Similarly, since each of 

the twelve edge cubelets could be in either of two states, flipped or not flipped, 

we should also multiply our previous estimate by 122 .  This will give us 
8 12 20(8!)(12!)(3 )(2 ) 5.2 10≈ × .  This is smaller than our previous estimate of 

2626! 4.03 10≈ × , but still too large, and so let’s see what we can do to reduce it. 

 

First off, let’s number the corner cubelets 1 through 4 on the right face of the 

cube, and then let’s see what kind of permutation results when we rotate the right 

face a quarter-turn clockwise. 
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We can express this permutation as ( ) ( )( )( )1 2 3 4 1 2 1 3 1 4= , and thus, we 

see that it is an odd permutation since it can written as a product of three 

transpositions. 

 

Now let’s number the edge cubelets 5 through 8 and do the same clockwise 

rotation of the right face. 
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We can express this result as ( ) ( )( )( )5 6 7 8 5 6 5 7 5 8= , and once again we 

get an odd permutation.  However, if we now consider the permutations of the 

corner and edge cubelets together, then the final result of our clockwise quarter-

turn is an even permutation consisting of six transpositions. 

 

 
( )( ) ( )( )( )( )( )( )1 2 3 4 5 6 7 8 1 2 1 3 1 4 5 6 5 7 5 8=  

At this point, what this means is that every turn of a face of a cube results in an 

even permutation, and, hence, any combination of turns will also result in an 

even permutation.  Thus, the number of possible permutations of the cubelets in 

Rubik’s cube is not 8 12(8!)(12!)(3 )(2 ) .  Instead, it is no more than half of this, 

8 12(8!)(12!)(3 )(2 )
2

, since only half of the permutations represented by the number 

8 12(8!)(12!)(3 )(2 )  are even.  However, this is still not our final answer.  There are 

more things to consider! 

 

To see what else we need to take into account, let’s begin with a typical 

representation of the coordinate axes in three dimensional space using what is 

known as a right-handed coordinate system. 
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In the diagram above, the axes are labeled on the positive side.  Now let’s 

suppose that we attach arrows to the edge cubelets on a side of Rubik’s cube 

such that the arrows are pointing either in the direction of positive x or positive z.  

And finally, let’s once again rotate the right face of our cube a quarter-turn in the 

clockwise direction, and let’s see what happens to our arrows. 

 

 
 

The end result is that two of the arrows are now pointing in the direction of 

negative x. However, we could also say that the overall orientation is still positive 

 

x y

z

x y

z
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since the product (positive)(negative)(positive)(negative) = positive.  In particular, 

we can never wind up, after turning the face of a cube a quarter-turn, with an 

orientation such as (positive)(positive)(positive)(negative) = negative.  Notice that 

this orientation would also correspond to a single edge cubelet being flipped.   

 

 
Flipping an edge cubelet changes its orientation 

 

Thus, since every quarter-turn of a face leaves us with a positive orientation, so 

will any combination of turns of the faces of Rubik’s cube.  In particular, the 

number of “flipped” edge cubelets always has to be even. And as far as our 

problem of counting the number of permutations of Rubik’s cube goes, this 

means that we have to divide our last number by 2 again since only half of that 

number will correspond to the positive orientations of edge cubelets that we have 

just defined.  Thus, the number of permutations that we can achieve is now no 

more than 
8 12

20(8!)(12!)(3 )(2 ) 1.30 10
2 2

≈ ×
⋅

. 

 

There’s just one more thing we have to consider, and then we’ll be done.  In 

particular, we need to consider how rotating a face of the cube might twist or 

rotate a corner cubelet.  For example, below I’ve attached an arrow to the top 

facelet of the red-yellow-blue corner cublet.  If I now do a sequence of rotations 
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of the faces of the cube such that when I’m done the cubelet is either on the top 

face with arrow is pointing up or on the bottom face with the arrow pointing down, 

then I’ll consider the cubelet to have not been rotated. 

 

.  

 

On the other hand, if I wind up with something like the image below, then I’ll say 

that the cubelet has been rotated clockwise through an angle of 120° . 

 

 
And finally, if I wind up with the following image, then I’ll say that my red-yellow-

blue cubelet has been rotated clockwise through an angle of 240°  
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And now we’re good to go!  First, it should be evident that if all I do is rotate the 

top face or the bottom face of the cube, then none of the corner cubelets will 

undergo any rotation whatsoever.  However, if we rotate any of the side faces 

(right, left, front, or back), then it’s a different story.  Below I’ve placed some 

arrows on the corner cubelets of the right face and then rotated the right face a 

quarter-turn clockwise. 
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If we look at the corner cubelet that I’ve labeled 1, then it has not only been 

moved to a new position, it has also been rotated through an angle of 120° .  In 

particular, the blue facelet is now on top instead of the red.  Likewise, the corner 

cubelet labeled 2 has been moved from the top face to the bottom face, but 

instead of having the red facelet on the bottom, the cubelet appears to have been 

rotated clockwise through an angle of 240° .  And similarly, we could say that the 

cubelet labeled 3 has been rotated clockwise through an angle of 120° , and the 

cubelet labeled 4 has been rotated clockwise through an angle of 240° 2.  If we 

now add up total number of degrees of rotation for each of the corner cublets, it’s 

clear that the sum has to be either a whole number multiple of 360°  or a multiple 

of 360°  plus an additional 120°  or a multiple of 360°  plus an additional 240° .  In 

the first instance, we’ll say that the cube has orientation 1, in the second case 

that it has orientation 2, and in the third case that it has orientation 3. 

 

Well, when we rotate the right face a quarter-turn clockwise as we did above, the 

sum of the angles of rotation for the corner cubelets is 

120 240 120 240 720 2 360° + ° + ° + ° = ° = ⋅ ° .  Thus, the cube is left in orientation 1.  

Furthermore, the sum of the sum of the angles of rotation along each side is 360° .  

And now, a moment’s reflection or experimentation should convince you that if 

you rotate any other face of the cube or any combination of faces of the cube, 

then the final orientation is still going to be 1.  However, since there are three 

conceivable orientations that the cube could be left in, orientation 1 represents 

only a third of them, and that means that only one-third of the corner cubelet 

configurations that I had previously counted are actually attainable.  Thus, if we 

divide our previous calculation by 3, then we will obtain the true number of 

permutations that can be made of the facelets on Rubik’s cube.  The result is 

slightly more than forty-three quintillion.   

 

                                                 
2 Since cubelet 4 is now on top, a rotation of 0°  would correspond to the arrow pointing up, but instead, 
it’s pointing in the direction corresponding to a 240°  rotation. 
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8 12
27 14 3 2(8!)(12!)(3 )(2 ) 43,252,003,274,489,856,000 2 3 5 7 11

2 2 3
= =

⋅ ⋅
 

 

Notice that if we could move any corner cubelet to any corner position and any 

edge cubelet to any edge position, then the correct number of possible 

permutations would be 8 12(8!)(12!)(3 )(2 ) .  However, what we have just shown is 

that only a twelfth of these permutations are actually attainable.  Thus, if you take 

your cube apart and start randomly reassembling it, then you have only a 1 in 12 

chance of creating a cube that can be restored to its original configuration.  And 

finally, how do we know that we still haven’t overcounted the number of 

permutations?  Simple.  Because Chuck Norris has actually done all 

43,252,003,274,489,856,000  permutations!3 

 

 
 

                                                 
3 Chuck Norris has also counted to infinity twice, and Chuck Norris CAN divide by zero.  I, on the other 
hand, have only counted to infinity once, but I did start at infinity and count down. 



 68

REVISITING THE SOLUTION TO RUBIK’S CUBE 
 

Now that we know a lot about the mathematics behind Rubik’s cube, it’s time to 

take a closer at the solution we use.  The first part, of course, is pretty easy.  

When I’m trying to solve Rubik’s cube, I always begin with the green center 

cubelet on top so that I can finish the green face first.  I begin with the goal of 

initially completing the green cross on top, and that is really very easy.  I simply 

rotate faces until I get the green facelet of an edge cube positioned on the down 

face of the cube.  I then rotate the down face until the other color on the edge 

cube matches the center cube.  And finally, I rotate the appropriate face 180°  to 

bring the green facelet to the up face.  I then repeat until I’ve finished my green 

cross, and I don’t really have to formalize the procedure too much since I’m not 

that worried, yet, about what’s going on with the rest of the cube. 

 

 
 

Once I’ve completed the green cross on the up face, I still improvise quite a bit to 

get the corners positioned.  However, I do usually make use of the maneuvers 
1R DR−  and 1 1FD F− −  in order to get my corner cubelet placed with the right 

orientation.  Sometimes, though, the green facelet of a corner cubelet is on the 

down face of the cube, and when this happens I may do something like 
1 1 1 1DFD F R D R− − − −  to rotate it in the bottom layer. 
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1R DR−  

 

Once the green face is completed, I turn the cube over so that green is on the 

down face, and then I proceed in a systematic way to place the edge cubelets in 

the middle layer.  The two algorithms that are used in our solution are 
1 1 1 1URU R U F UF− − − −  and 1 1 1 1U F UFURU R− − − − .  What should be clear at this point is 

that both algorithms are products of commutators which means that they belong 

to the commutator subgroup of the Rubik’s cube group.  Also, as we have seen 

previously, commutators have a tendency to move only a few elements.  Given 

that, let’s look at the first algorithm in a bit more detail.  If we perform only the first 

part, 1 1URU R− − , then the resulting permutation given as a product of cycles can 

be written as ( )( )( )UB UR FR DRF UFR UBL URB  where a notation like UB 

refers to the up-back edge cubelet and notation like UBL refers to the up-back-

left corner cubelet.  Also, we can now see the promise of this permutation.  It 

contains a 3-cycle that involves two edge cubelets on the up face and the edge 

cubelet in the front-right position.  Just what we want!  It also involves a couple of 

2-cycles that move corner cubelets, and one of them only switches corner 

cubelets on the up face.  Unfortunately, the other one switches the up-front-right 

corner cubelet with the down-right-front corner cublet, and that will mess up the 

green face that we just completed.  However, if we perform our algorithm twice, 

( )21 1URU R− − , then the result is just the 3-cycle ( )FR UR UB , and that looks 

promising except for the fact that this also twists the down-right-front corner 

cublet into a different orientation.  Thus, let’s see how the permutation 1 1U F UF− −  

might fix things for us.  If we do this algorithm, then the resulting cycle structure is 
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( )( )( )UL UF FR DRF UFR ULF UBL .  What we immediately see is that our 

algorithm will once again permute two edge cubelets in the up face with the front-

right edge cubelet and it will also switch the down-right-front corner cubelet with 

the up-front-right corner cubelet.  Exactly what we need!  Furthermore, when we 

multiply the two permutations together we get: 

 ( )( )( )UB UR FR DRF UFR UBL URB ( )( )( )UL UF FR DRF UFR ULF UBL  

( )( )UB UR UL UF FR UBL URB ULF= .  From this result we can see that the 

up-front edge cubelet moves into the front-right position, and everything else that 

happens is basically a permutation of cubelets on the up face.  Absolutely perfect!  

Furthermore, when we try it out, we see that the facelet on the front of the up-

front edge cubelet remains on the front face when it is moved to the front-right 

position.  This means that our algorithm will work fine just so long as the cubelet 

that we want to move to the middle layer has the right facelet on the front face, 

but if its orientation is flipped, then that’s why we need our second algorithm, 
1 1 1 1U F UFURU R− − − − .  If we look at the cycle structure for this one, then we get 

( )( )UL UF UB UR FR ULF URB UBL .  For this one, we need to first get the 

cubelet we want to place moved into the up-right position, and then our algorithm 

will move it to the front-right position with the proper orientation.  Well, this 

argument may be a little hard to follow, and consequently, I recommend going 

through these algorithms yourself using either a Rubik’s cube or free Rubik’s 

cube software that can generally be found online. 
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1 1 1 1URU R U F UF− − − −  

 

The next step in our solution to Rubik’s cube is to get the blue facelets on the up 

face for all of the edge cublets on our top layer, and we can achieve this with the 

help of the commutator 1 1RUR U− − .  However, when we look at the corresponding 

cycle structure, we see that this commutator moves an edge cubelet on the up 

face to the front-right position, ( )( )( )FR UR UB DRF UFR UBL URB .  Fortunately, 

there’s an easy fix for this.  Simply begin by turning the front face clockwise (F) 

before doing your commutator, and then turn it back again counterclockwise 

( )1F −  when you are done.  In other words, do 1 1 1FRUR U F− − − .  This maneuver will 

constrain all the movement to the top face, ( )( )( )UB UF UR ULF UFR UBL URB .  

When we perform this algorithm, we’ll also see that the up-left cubelet never 

moves, and that two of our edge cubelets get flipped as we go from up-back to 

up-front and up-front to up-right.  Consequently, often all we have to do is to 

simply repeat this algorithm until all the edge cubelets have the proper facelet on 

the up face, and if that doesn’t work, then you may have to throw in a rotation of 

the up face in between applications of the algorithm.  Something else to notice is 

that if we perform this algorithm three times, then the resulting cycle structure is 

going to be ( )( )ULF UFR UBL URB .  In other words, we switch the two front 

corner cubelets on top with each other and we also switch the two back corner 

cubelets.  Additionally, when we actually perform this maneuver, we see that the 
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corner cubelets also get rotated in the process.  This is a move that could be 

useful in creating an alternate solution to Rubik’s cube. 

 

 

 
1 1 1FRUR U F− − −  

 

Now that we have the edge facelets on the up face properly oriented, we just 

need to permute the up face edge cubelets until they are all in their proper 

positions.  The algorithm we use for this is 1 2 1RUR URU R− − .  Let’s break this down 

a bit.  First, perform this algorithm, and keep track of the up-front edge cubelet.  

What you should notice is that as you do U , U , and 2U , the up-front edge 

cubelet basically just winds up right back where it started.  No change.  However, 

notice also the presence of the conjugates 1RUR−  and 2 1RU R−  in our algorithm.  

Basically what we are doing with these conjugates is that we are moving an edge 

cubelet out of the up-right position, rotating the up face, and then moving our 

edge cublet back into the up-right position, and the end result of 1 2 1RUR URU R− −  is 

that we permute three of the edge cubelets on the up face with one another.  

Also, fortunately, nothing below the top layer is disturbed once we complete our 
1 2 1RUR URU R− −  algorithm, and the cycle structure for this algorithm is 

( )( )( )UL UR UB UBL UFR ULF URB .  When I apply this algorithm, I usually 

begin with my red-blue edge cubelet in its proper position, and then I repeat the 
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algorithm until the yellow-blue edge cubelet is properly placed.  Then, if I need to, 

I rotate the whole cube so that I’m looking at the white face, I repeat the 

algorithm one more time from that position, and then I rotate the up face 90°  

clockwise, and I’m done.  Notice, too, that if we did this algorithm three times, 

then the result would be ( )( )UBL UFR ULF URB  which means that we are just 

switching, on the up face, two back corner cubelets diagonally with two front 

corner cubelets.  Again, this, in itself, could be a useful algorithm for an alternate 

solution to Rubik’s cube. 

 

 
1 2 1RUR URU R− −  done twice 

 

At this point, we just need to permute our corner cubelets using the algorithm 
1 1 1 1URU L UR U L− − − − .  Embedded in this algorithm we can see the conjugates 1URU −  

and 1 1 1( ) ( )L U R U L− − − .  Also, if we removed all the turns of the up face from this 

algorithm, then we would be left with the commutator 1 1RL R L− − , but by itself this 

algorithm equals the identity since R and L commute with one another.  Hence, 

we need the rotations of the up face thrown in order to achieve something 

meaningful.  And all that this algorithm wonderfully does is to permute three 

corner cubelets on the up face, ( )ULF URB UBL .  Usually, you want to turn your 

cube so that the corner cubelet in the up-right-front position is already properly 

placed.  If none of the corner cubelets are in their correct position, then just 
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perform this algorithm once, and you should be able to find one that you can 

make the up-right-front cubelet just by turning the whole cube.  And from there, 

just keep repeating the algorithm until all the corner cubelets on the up face are 

in their correct positions.  As before, if you perform these algorithms step by step 

in a software program, then it’s a lot easier to see what’s going on! 

 
1 1 1 1URU L UR U L− − − −  done twice 

 

Our final move is to simply rotate the corner cubelets on the up face until they get 

the proper orientation and the cube is solved.  To do this, we use the algorithm 

( )21 1R D RD− − .  Notice that the core of this algorithm is the commutator 1 1R D RD− − , 

and the cycle structure for this algorithm is ( )DB DR FR .  The good news is 

that this algorithm leaves the up-right-front cubelet right where it is, and when we 

perform it, we also see that it rotates the up-right-front cubelet 120°  

counterclockwise which is equivalent to a clockwise rotation of 240° .  The bad 

news, of course, is that it messes up the rest of the cube.  However, since we 

have a cycle of length 3, that means that if we perform the algorithm three times, 

then nothing is left messed up.  Now here’s the cool part.  Remember that in our 

previous chapter on counting the number of permutations in Rubik’s cube we 

saw that every turn of a face would collectively rotate our corner cubelets some 

multiple of 360° .  Well, that means that when we get down to this final point in 

solving the cube, our last four corner cubelets are collectively going to be rotated 
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by some multiple of 360° , and since each application of ( )21 1R D RD− −  results in a 

rotation of a the up-right-front corner cubelet by 120°  counterclockwise, the 

number of times we’re going to have to perform this algorithm is going to be 

some multiple of three, and thus, in the end none of the rest of the cube will be 

disturbed.  Hence, we position a corner cubelet that needs to be rotated in the 

up-right-front position and apply ( )21 1R D RD− −  until its right, and then we move 

another corner cubelet on the up face into that position and apply ( )21 1R D RD− −  

again until it’s correctly oriented.  And the end result is that our cube is solved.  

And it’s just that simple! 

 

 

( )21 1R D RD− −  
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Rotate the up face and apply ( )21 1R D RD− −  twice 

 

 
Stick a fork in it, it’s done! 
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Summary (part 8) 

 

As promised, in part 8 we’ve covered: 

• Conjugates applied to Rubik’s cube. 

• Commutators applied to Rubik’s cube. 

• The commutator or derived subgroup. 

• The center of a group. 

• The orbit of an element of a set acted upon by a group. 

• Special subgroups of the Rubik’s cube group. 

• Additional ways to use GAP to study Rubik’s cube. 

• A deeper analysis of the solution to Rubik’s cube. 

• How to count the number of possible permutations of Rubik’s cube. 
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practice (part 8) 

 

For each group below, use GAP to find the center and the commutator (derived) 

subgroup, and show the size and a list of elements of each.  Also find the 

commutator factor group and show its multiplication table.  And finally, find the 

orbits for each group. 

 

 

1. 3 3D S≅  with generators (1,2,3)  and (2,3) . 

 

 

2. 4D  with generators (1,2,3,4)  and (2,4) . 

 

 

3. 8Q  with generators (1,2,5,6)(3,8,7,4)  and (1,4,5,8)(2,7,6,3) . 

 

 

4. 5A , the alternating group of degree 5. 

 

 

5. The subgroup of the Rubik’s cube group generated by r and u.  NOTE: Do not 

attempt to show the elements in this commutator (derived) subgroup.  It is too 

large.  Also, remember to first save the following into a text file called rubik.txt 

on your C-drive. Additionally, recall our number scheme for the facelets on 

Rubik’s cube. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 
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1 2 3
4 UP 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 LEFT 13 20 FRONT 21 28 RIGHT 29 36 BACK 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 DOWN 45
46 47 48  
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practice (part 8) - answers 

 

For each group below, use GAP to find the center and the commutator (derived) 

subgroup, and show the size and a list of elements of each.  Also find the 

commutator factor group and show its size and multiplication table and state the 

abelian group that this quotient (factor) group is isomorphic to. 

 

 

1. 3 3D S≅  with generators (1,2,3)  and (2,3) . 

 
gap> d3:=Group((1,2,3),(2,3)); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(d3); 
6 
 
gap> c:=Center(d3); 
Group(()) 
 
gap> Size(c); 
1 
 
gap> Elements(c); 
[ () ] 
 
gap> d:=DerivedSubgroup(d3); 
Group([ (1,3,2) ]) 
 
gap> Size(d); 
3 
 
gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> q:=CommutatorFactorGroup(d3); 
Group([ f1 ]) 
 
gap> Size(q); 
2 
 
gap> ShowMultiplicationTable(q); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 

 

Isomorphic to 2C  
gap> o:=Orbits(d3); 
[ [ 1, 2, 3 ] ] 
 
gap> Size(o); 
1 
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2. 4D  with generators (1,2,3,4)  and (2,4) . 

 
gap> d4:=Group((1,2,3,4),(2,4)); 
Group([ (1,2,3,4), (2,4) ]) 
 
 
gap> Size(d4); 
8 
 
gap> c:=Center(d4); 
Group([ (1,3)(2,4) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 
gap> d:=DerivedSubgroup(d4); 
Group([ (1,3)(2,4) ]) 
 
gap> Size(d); 
2 
 
gap> Elements(d); 
[ (), (1,3)(2,4) ] 
 
gap> q:=CommutatorFactorGroup(d4); 
<pc group with 2 generators> 
 
gap> Size(q); 
4 
 
gap> ShowMultiplicationTable(q); 
*                 | <identity> of ... f1                f2                f1*f2 
------------------+------------------------------------------------------------
------------ 
<identity> of ... | <identity> of ... f1                f2                f1*f2 
f1                | f1                <identity> of ... f1*f2             f2 
f2                | f2                f1*f2             <identity> of ... f1 
f1*f2             | f1*f2             f2                f1                
<identity> of ... 
 

 
Isomorphic to 2 2C C× . 
gap> o:=Orbits(d4); 
[ [ 1, 2, 3, 4 ] ] 
 
gap> Size(o); 
1 

 

 

3. 8Q  with generators (1,2,5,6)(3,8,7,4)  and (1,4,5,8)(2,7,6,3) . 

 
gap> q8:=Group((1,2,5,6)*(3,8,7,4),(1,4,5,8)*(2,7,6,3)); 
Group([ (1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ]) 
 
gap> Size(q8); 
8 
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gap> c:=Center(q8); 
Group([ (1,5)(2,6)(3,7)(4,8) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (1,5)(2,6)(3,7)(4,8) ] 
 
gap> d:=DerivedSubgroup(q8); 
Group([ (1,5)(2,6)(3,7)(4,8) ]) 
 
gap> Size(d); 
2 
 
gap> Elements(d); 
[ (), (1,5)(2,6)(3,7)(4,8) ] 
 
gap> q:=CommutatorFactorGroup(q8); 
<pc group with 2 generators> 
 
gap> Size(q); 
4 
 
gap> ShowMultiplicationTable(q); 
*                 | <identity> of ... f1                f2                f1*f2 
------------------+------------------------------------------------------------
------------ 
<identity> of ... | <identity> of ... f1                f2                f1*f2 
f1                | f1                <identity> of ... f1*f2             f2 
f2                | f2                f1*f2             <identity> of ... f1 
f1*f2             | f1*f2             f2                f1                
<identity> of ... 
 

 

Isomorphic to 2 2C C× . 
gap> o:=Orbits(q8); 
[ [ 1, 2, 4, 5, 7, 3, 6, 8 ] ] 
 
gap> Size(o); 
1 

 

 

4. 5A , the alternating group of degree 5. 

 
gap> a5:=AlternatingGroup(5); 
Alt( [ 1 .. 5 ] ) 
 
gap> Size(a5); 
60 
 
gap> Center(a5); 
Group(()) 
 
gap> c:=Center(a5); 
Group(()) 
 
gap> Size(c); 
1 
 
gap> Elements(c); 
[ () ] 
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gap> d:=DerivedSubgroup(a5); 
Alt( [ 1 .. 5 ] ) 
 
gap> Size(d); 
60 
 
gap> Elements(d); 
[ (), (3,4,5), (3,5,4), (2,3)(4,5), (2,3,4), (2,3,5), (2,4,3), (2,4,5), 
(2,4)(3,5), (2,5,3), (2,5,4), (2,5)(3,4), 
  (1,2)(4,5), (1,2)(3,4), (1,2)(3,5), (1,2,3), (1,2,3,4,5), (1,2,3,5,4), 
(1,2,4,5,3), (1,2,4), (1,2,4,3,5), 
  (1,2,5,4,3), (1,2,5), (1,2,5,3,4), (1,3,2), (1,3,4,5,2), (1,3,5,4,2), 
(1,3)(4,5), (1,3,4), (1,3,5), (1,3)(2,4), 
  (1,3,2,4,5), (1,3,5,2,4), (1,3)(2,5), (1,3,2,5,4), (1,3,4,2,5), (1,4,5,3,2), 
(1,4,2), (1,4,3,5,2), (1,4,3), 
  (1,4,5), (1,4)(3,5), (1,4,5,2,3), (1,4)(2,3), (1,4,2,3,5), (1,4,2,5,3), 
(1,4,3,2,5), (1,4)(2,5), (1,5,4,3,2), 
  (1,5,2), (1,5,3,4,2), (1,5,3), (1,5,4), (1,5)(3,4), (1,5,4,2,3), (1,5)(2,3), 
(1,5,2,3,4), (1,5,2,4,3), (1,5,3,2,4), 
  (1,5)(2,4) ] 
 
gap> q:=CommutatorFactorGroup(a5); 
Group(()) 
 
gap> Size(q); 
1 
 
gap> ShowMultiplicationTable(q); 
*  | () 
---+--- 
() | () 

 

Isomorphic to ( ){ } , the identity. 

gap> o:=Orbits(a5); 
[ [ 1, 2, 3, 4, 5 ] ] 
 
gap> Size(o); 
1 

 

 

5. The subgroup of the Rubik’s cube group generated by r and u.  NOTE: Do not 

attempt to show the elements in this commutator (derived) subgroup.  It is too 

large.  Also, remember to first save the following into a text file called rubik.txt 

on your C-drive. Additionally, recall our number scheme for the facelets on 

Rubik’s cube. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 



 

 84

1 2 3
4 UP 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 LEFT 13 20 FRONT 21 28 RIGHT 29 36 BACK 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 DOWN 45
46 47 48  

 
 
 
gap> Read("C:/rubik.txt"); 
 
gap> r:= (3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28); 
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28) 
 
gap> u:= (1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19) 
 
gap> g:=Group(r,u); 
<permutation group with 2 generators> 
 
gap> Size(g); 
73483200 
 
gap> c:=Center(g); 
Group([ (1,9,35)(3,33,27)(6,17,11)(8,25,19)(24,30,43)(32,38,48) ]) 
 
 
gap> Size(c); 
3 
 
gap> Elements(c); 
[ (), (1,9,35)(3,33,27)(6,17,11)(8,25,19)(24,30,43)(32,38,48), 
(1,35,9)(3,27,33)(6,11,17)(8,19,25)(24,43,30)(32,48, 

38) ] 
 

gap> d:=DerivedSubgroup(g); 
<permutation group with 3 generators> 
 
gap> Size(d); 
36741600 
 
gap> q:=CommutatorFactorGroup(g); 
<pc group with 1 generators> 
 
gap> Size(q); 
2 
 
gap> ShowMultiplicationTable(q); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
 
 

Isomorphic to 2C  
gap> o:=Orbits(g); 
[ [ 1, 3, 38, 8, 43, 33, 6, 19, 48, 25, 11, 24, 27, 17, 35, 32, 9, 30 ], [ 2, 5, 
36, 7, 45, 4, 21 ],[ 10, 34, 26, 29, 18, 31, 28 ] ] 
 
gap> Size(o); 
3 

 



 
 

knowledge of the 
universe is 

contained within the 
rubik’s cube of space! 




