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INTRODUCTION (part 6) 
 
 

 
In Part 6 we continue to explore some of the more visual aspects of group theory.  

In particular, some easy to use flowcharts are provided to help you identity the 

symmetries associated with friezes (the decorative patterns often found at the top 

of ancient Greek columns) and the symmetries associated with the various 

patterns found on wallpaper designs.  Additionally, I introduce you to a less rigid 

way of identifying and analyzing symmetry that I like to call free range symmetry.   

No new commands for GAP will be introduced in Part 6, but as we’ve done 

previously, we’ll include for reference all the GAP commands we’ve given up to 

this point. 
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FRIEZE GROUPS 

 

Early on we mentioned that groups measure symmetry and that wherever we find 

symmetry present, we also find a corresponding group.  We’ve also stated that 

symmetry is just the repetition of a pattern in some form or fashion and that the 

maneuvers that convert one instance of that pattern into another combine to form 

the elements of the associated group.  We’re now going to return to symmetry, 

and we begin with an introduction to frieze groups. 

 

A frieze is the decorative strip that may adorn the edge of a column or building, 

and it is most often associated with Greek architecture.   

 

 
 

 

Mathematicians have studied and classified the various types of symmetrical 

patterns that can occur in a frieze, and, as a result, seven different patterns have 

been identified, and they all involve a mixture of translations, reflections, and 

rotations.  In this lesson we are going to explain and give examples of each of 
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the seven patterns.  Also, the notation that was originally developed by 

mathematicians for these patterns was anything but intuitive.  Thus, I am going to 

use a more modern and self-explanatory notation introduced by the British 

mathematician, John Conway. 

 

F1-HOP:  The hop is a frieze pattern that is generated solely by translation 

without any reflections or rotations.  Below is a characterization of this pattern 

using a footstep along with a real world example. 

 

 
 

 
 

In classifying a frieze pattern, we need to be aware that they all contain 

symmetry or repetition based upon the horizontal movement or translation of a 

particular motif, and we also need to examine the image for reflections and 

rotational symmetries.  Additionally, we want to identify a smallest possible piece 

of our frieze that could be used to generate the whole image.  In the above 

example, it appears that the entire image can be translated by shifting the image 

in the cell below either left or right. 

 

 
 

In this case, the corresponding group is going to isomorphic to the integers under 

addition, ( , )+ .  In particular in this group, 0 corresponds to no movement at all, 
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1 corresponds to moving one unit to the right, and -1 represents moving the 

image one unit to the left. 

 

F2-STEP:  The step is also known as a glide reflection.  This is a type of 

reflection that begins with a translation that is immediately followed by a 

reflection, usually across a horizontal line. 

 

 
 

 
 

 

To generate the first image, we can think of taking a single foot print, , 

sliding it to the right, and then reflecting it to get our next foot print,     

.  The group created is also isomorphic to the integers under addition, 

( , )+ , where 1 means “move to the right and flip” while -1 means “move to the 

left and flip.”  But in spite of getting back the same group associated with F1, the 

patterns, F1 and F2, are still distinct since F1 involves only a translation while F2 

involves both a translation and a flip. 
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F3-SIDLE:  The word sidle can mean to walk sideways, and the image below 

looks like what would happen if you stood with your feet turned out and then tried 

to walk sideways. 

 

 
 

 
 

The sidle contains both a translation and a reflection about what is normally a 

vertical axis.  If you look at the first image above, you can see how to create F3, 

a sidle.  You can start with the imprint of a single right foot, and then reflect it 

about a vertical axis.  We usually think of using the same, fixed vertical axis for 

all reflections.  Next, just translate both foot prints left or right to complete the 

frieze.  The presence of both translations and vertical reflections in the second 

image is an immediate giveaway that the symmetry pattern is F3, the sidle.   

 

F4-SPINNING HOP:  The spinning hop combines a translation with a rotation 

through 180° .  Notice that you can also accomplish this half-turn by doing a 

reflection about a horizontal axis that is immediately followed by a reflection 

across a vertical axis.  In the image below, you can start with a single footprint 

with the toes on the left, reflect it about a horizontal and then a vertical axis to get 

a second footprint, and then translate both feet right or left to complete things.   
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To generate this image, I can start with a rectangle that extends from one center 

of rotation to the next. 

 

 
 

Next, we rotate this piece 180°  about the upper left corner. 

 

 
 

And now, we can begin to complete the image by doing translations right and left. 
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F5-SPINNING SIDLE:  This particular frieze pattern, the spinning sidle, exhibits 

translations, glide reflections, reflections about a vertical axis, and rotations 

through 180° . 

 

 
 

 
 

Even though this frieze pattern exhibits multiple symmetries, the whole frieze can 

be generated by taking an image representing the fundamental pattern and then 

applying reflections about a vertical axis and glide reflections as well.  For 

example, we can start with the following image. 

 

 
 

Now reflect this image about a vertical axis. 

 

 
 

And lastly, do glide reflections. 
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F6-JUMP:  This pattern, the jump, is exactly what you would get if you stood on 

two feet and hopped in a consistent direction.  The image consists of a 

translation coupled with a horizontal reflection. 

 

 
 

 
 

We can generate this type of frieze by starting first with a fundamental region. 

 

 
 

Next, we reflect this piece about a horizontal axis. 
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And to complete the image, we do a translation of this image right and left. 

 

 
 

 

F7-SPINNING JUMP:  The spinning jump combines all possible maneuvers.  In 

other words, it contains translations, glide reflections, vertical reflections, 

rotations, and horizontal reflections.  However, the image itself can be generated 

by applying just translations, vertical reflections, and horizontal reflections to a 

fundamental region. 
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So, let’s start with a fundamental image that can be used to generate the rest of 

the pattern. 

 

 
 

Do a flip about a vertical axis. 

 

 
 

Follow this with a flip about a horizontal axis. 

 

 
 

 

 

 

 

And finally, translate this image left and right to finish generating the frieze. 
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By the way, in the image below, you might have also noticed the presence of 

rotational symmetry through angles of 45° , and you can rightly wonder why this 

symmetry isn’t part of our analysis.  The answer is because in the symmetries 

that we associate with frieze groups, we restrict ourselves to rigid motions of the 

plan.  For example, if we rotated the entire image clockwise through angles that 

are integer multiples of 45° , then we could get something like the following which 

deviates considerably from our frieze pattern. 

 

 
 

And finally, below is a nice flowchart that can help you identify which of the seven 

types of frieze groups you are observing.  Enjoy! 
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Is there a vertical 
reflection? 

YES 
Is there a horizontal 

reflection? 

NO 
Is there a horizontal or 

glide reflection?

YES 
Is there a horizontal 

reflection?

NO 
Is there a half-turn? 

YES 
F7 

 

NO 
Is there a half-turn? 

YES 
F5 

NO 
F3 

YES 
F6 

NO 
F2 

YES 
F4 

NO 
F1 
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WALLPAPER GROUPS 
 

Related to frieze groups are wallpaper groups, and these are the groups that are 

defined by the symmetries found in many examples of wallpaper or floor tiles. 

 

 
 

These symmetries involve translations, reflections, glide reflections, and rotations 

through various angles.  Also, whereas there are only 7 distinct frieze groups, 

there are 17 distinct wallpaper groups, and if we extend ourselves into 3-

dimensional space, there are 230 different space groups!  We’ll stop our 

explorations, however, with wallpaper groups. 

 

As you might imagine, there are some restrictions regarding the angles that give 

rise to rotational symmetry in a wallpaper pattern.  This is because while you can 

tile a plane with shapes such as a rectangle, square, equilateral triangle, 

parallelogram, or regular hexagon, you can’t tile a plane with a regular pentagon.  

Hence, you won’t find rotations through angles of 360 / 5 72° = °  in a wallpaper or 

floor tile pattern.  Instead, the permissible rotations are 

0 (none), 60 , 90 , 120 , or 180° ° ° ° ° . 
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These shapes can be used as floor tiles 

   
 

 

This shape can’t be used as a floor tile 
 

 
 

Below is a flowchart for helping you classify a wallpaper group.  You begin by 

deciding what kind of rotational symmetry is present, and then you study the 

image for reflections.  If, for example, you see rotations through angles of 180° , 

then that means the order of the rotation is 2 since 360 2
180

° =
°

.  The notation for the 

different wallpaper patterns is not that intuitively obvious, but letters like m stand 

for mirror lines, g stands for glide reflection, and a number like 2 stands for 2-fold 

rotation.  For a fuller explanation of the notation for wallpaper groups, check out 

the article titled “Wallpaper Group” at the Wikipedia.  Also, many of these 

wallpaper patterns can be found within the intriguing art of M.C. Escher, and so 

we include pictures from ten of his prints for you to study in order to gain some 

facility in using the flowchart, and additional information on Escher and wallpaper 

patterns may be found at  

http://euler.slu.edu/escher/index.php/Wallpaper_Patterns.  Enjoy! 
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p1 

 

 
 

The simplest type of wallpaper pattern we can have is one in which there are no 

rotations, no reflections, and no glide reflections, and this is the p1 group that 

consists only of translations or repetitions of a basic pattern in two different 

directions.  That is the type of wallpaper group illustrated by the image above. 
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Since there are no rotations or (glide) reflections in the above image, we can 

define a fundamental region whose translations generate the design by doing 

what I’ve done above.  In other words, take a particular point such as the tip of 

the fishes snout, and connect that with other occurrences of that point in order to 

define your fundamental region that can generate the entire image through 

translations.  This gives us the following parallelogram. 
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Now observe how we can start with an image such as a rectangle and change it 

into a non-rectangular fundamental region by simply altering the left and right 

side or the top and bottom sides in similar ways. 
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For example, here I have altered just the left and right sides of the rectangle. 

 

 

 

 

 

 

 

 

 

 

And now I’ve altered both the left and the right sides and the top and the bottom 

sides in corresponding ways. 
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And now, copies of my last altered rectangle can be pieced together in order to 

generate the entire wallpaper pattern. 
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For example, if we apply this technique to one of the parallelograms below, then 

we can obtain a more recognizable “fish” motif that can be used to generate the 

entire wallpaper. 
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pg 

 

 
 

If there are no rotations and no reflections, but there is a glide reflection, then the 

corresponding wallpaper group is designated as pg and it is the glide reflection 

that distinguishes this wallpaper group from p1.  Below I’ve marked two sets of 

axes for glide reflections. One set is marked in red and the other in a shade of 

green, and I’ll always denote glide reflections by dashed rather than solid lines.  

There may be more glide reflections, but that’s all I’ve found! 
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pm 

 

 
 

The next simplest wallpaper group is designated by pm.  This pattern contains no 

rotations nor glide reflections, but it does contain at least one reflection.  Below 

I’ve used colored solid lines, red and blue, to denote the two reflections axes that 

I see.  Also, note that some of my reflection lines may be drawn slightly off target, 

and that is due to the limitations of the software program that I am using.  Deal 

with it! 
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Cm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next in complexity is a wallpaper design with no rotations, but both reflections 

and glide reflections.  This wallpaper group is designated by cm.  In the picture 

below I’ve marked the reflections I’ve found as solid lines and the glide 

reflections as dashed lines.  Notice, too, that axes for glide reflections tend to be 

found halfway between axes for reflections. 
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p2 

 

 
 

This wallpaper pattern has no reflections and no glide reflections, but it does 

contain rotations of order 2.  That is, rotations through angles of 180 degrees.  In 

the image below I’ve marked all the centers of rotation of order 2 that I’ve found, 

and I’ve color coded them.  Basically, I found centers of rotation where the heads 

touch, where the tail feathers touch, where the left wings touch, and where the 

right wings touch. 
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pgg 

 

 
 

This wallpaper pattern contains rotations are order 2, no mirror lines, but some 

glide reflections.  Below is the image marked with the centers of rotation and 

glide reflections that I found. 
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pmg  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This wallpaper pattern contains both mirror lines and rotations through 180 

degrees, i.e. rotations of order 2.  Also, the mirror lines are all parallel to one 

another.  Below I’ve marked the features I found in this design. 
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pmm 

 

 
 

This is the first of two remaining patterns with rotations of order 2.  This pattern 

also has mirror lines, but this time they do not all point in the same direction.  

Additionally, all centers of rotation will be found on the mirror lines. 
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cmm 
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This wallpaper design contains rotations of order 2, reflection or mirror lines that 

are not parallel, and centers of rotation that are not all located on mirror lines.  

Below I’ve first marked the locations of all mirror lines that I found. 
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Next, I’ve added all the centers of rotations of order 2 that I found on mirror or 

reflection lines. 
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And lastly, I’ve marked all the centers of rotation I’ve found that are not on mirror 

lines. 
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p3 

 

 

 

 

 

 

 

 

 

 

 

 

 

This wallpaper design has no reflections or glide reflections, but it does have 

rotations of order 3, i.e. rotations through angles of 120 degrees.  Below I’ve 

marked all the centers of rotation that I’ve found. 
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p3m1 

 

 
 

This wallpaper design has rotations of order 3 plus mirror lines, and all the 

centers of rotation are on the mirror lines.  Below is what I found. 
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p31m 

 

 
 

This wallpaper group has reflections and rotations of order 3.  However, unlike 

the previous design, not all of the centers of rotation fall upon mirror lines. 
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p4 

 

 
 

We now move on to wallpaper designs that have rotations of order 4, i.e. 90 

degree rotations.  This first design contains only rotations, but no reflections or 

glide reflections. 
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p4g 

 

 
 

In this design we find rotations of order 4 where the wings of the angels touch, 

rotations of order 2 where the feet of the angels touch, and mirror lines that do 

not intersect at 45 degree angles. 
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p4m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This particular wallpaper design has rotations of order 4, rotations of order 2, and 

some mirror lines that do intersect at 45 degrees. 
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p6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are only two wallpaper groups left!  This one, p6, has rotational symmetry 

of order 6 (rotations through 60 degree angles), but no reflection or glide 

reflection lines.  It also has some rotations of orders 2 and 3.  Once again, below 

are the centers of rotation that I’ve found. 
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p6m 

 

 
 

And now we arrive at our final wallpaper group!  As with the previous one, this 

pattern also has rotations of order6, but it additionally contains several mirror 

lines. 

 

 

 

 

 

6

3

2

6

3

2

6

3
2

6

66

6

6

2
2

2
2

2
2

222

2

2

2

2

2
333

333

333 6

3

2

6

3

2

6

3
2

6

66

6

6

2
2

2
2

2
2

222

2

2

2

2

2
333

333

333 66

33

22

66

33

22

66

33
22

66

6666

66

66

22
22

22
22

22
22

222222

22

22

22

22

22
333333

333333

333333



 

 56

Above I’ve given you examples of how to classify a wallpaper design by 

searching out reflections, glide reflections, and centers of rotation.  However, one 

topic I haven’t focused on that much (because it wasn’t needed for classification) 

is to find the corresponding lattice and a fundamental region that can generate 

the entire group through translations, reflections, glide reflections, and rotations.  

Thus, if you would like to explore this further, below is a repeat of some material I 

presented earlier, and you can use this to get started.  Enjoy! 
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FREE RANGE SYMMETRY 
 

As we’ve mentioned before, groups are related to symmetry, and symmetry is 

just the repetition of patterns.  Groups arise from these repetitions when we 

consider the maneuvers that are required to move a piece of some image from 

one location to a different one that displays the same pattern.  When we consider 

frieze groups and wallpaper groups, though, there is one very restrictive element.  

Namely, that our transformations be rigid ones where the entire plane is being 

shifted, rotated, or reflected at once.  However, I often find this restriction, well, 

very restrictive, and so I like to indulge in what I call “free range symmetry.”  By 

this I mean simply look for patterns in your life and your environment, and don’t 

worry about the transformations being rigid.  Instead, look for symmetry and see 

how many different kinds of groups you might identify.  And when you do this, 

you will gain a greater appreciation for how groups and symmetry are 

everywhere in our lives. 

 

Here’s an example.  Below is a picture from my living room.  Let’s see what some 

of the groups are that we can identify. 
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Surrounding the fireplace, we see 18 tiles that are almost identical, and this 

brings to mind the cyclic group of order 18, 18 18 2 9C ≅ ≅ × .  We could also 

construct from these 18 tiles the symmetric group of degree 18, i.e. the set of all 

permutations of 18 objects which yields a group of size 1518! 6.402374 10≈ × .  If we 

look at that tile floor and imagine those rows of square tiles extending to infinity, 

then the corresponding group is isomorphic to × .  If we now look at the front 

of the wooden beam above the fireplace, we see a rectangle that can be 

reflected about either a horizontal axis or a vertical axis.  This symmetry results 

in the Klein 4-group, 2 2× .  On top of the wooden beam, we see three copper 

bowls.  As we move from one to another, we see color and shape preserved, but 

not size.  However, if we ignore the change in size and just focus on the 

symmetry of shape and color, then these three bowls could suggest to us either 

the cyclic group of order 3 or the symmetric group of degree 3.  Again, symmetry 

doesn’t always have to mean repetitions of exact shape.  Symmetry can result 

from repetition of colors or general shape or even patterns that we repeat over 

time.  And finally, the guitar to the left of the fireplace exhibits bilateral symmetry.  

Hence, the group 2 2C ≅ .  Also, the six strings can suggest either the cyclic 

group of order 6, 6 6 2 3C ≅ ≅ × , or the symmetric group of degree 6 that 

contains 6! 720=  elements.   

 

Well, these are just a few examples, but hopefully they are enough to make you 

realize that symmetry and groups are all around us.  And this is no accident.  

Being able to recognize patterns is a mechanism by which our brain can 

efficiently organize information with a minimum of effort.  For example, if you 

have a hundred books in your office, then it is much easier for your brain to see 

all of these objects as examples of just one thing, i.e. books, rather than having 

to try and juggle a hundred different concepts at once.  Thus, patterns and 

symmetry help us condense a multitude of information down to a single concept, 

and that helps our brains more easily cope with what it perceives.  Hence, 

symmetry is natural.  Symmetry is a part of life, and we are designed to perceive 
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it.  And everywhere that there is symmetry, there are also groups.  Groups are 

everywhere.  Just go forth and let yourself be aware of that. 
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How to use gap (part 6) 

 

Once again, there is nothing in this file that was not contained in Part 5.  We are 

just repeating the information for easy reference. 

 

 

1. How can I redisplay the previous command in order to edit it? 

 

Press down on the control key and then also press p.  In other words, “Ctrl p”. 

 

 

2. If the program gets in a loop and shows you the prompt “brk>” instead of 

“gap>”, how can I exit the loop? 

 

Press down on the control key and then also press d.  In other words, “Ctrl d”. 

 

 

3. How can I exit the program? 

 

Either click on the “close” box for the window, or type “quit;” and press 

“Enter.” 

 

 

4. How do I find the inverse of a permutation? 

 

gap> a:=(1,2,3,4); 

(1,2,3,4) 

gap> a^-1; 

(1,4,3,2) 
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5. How can I multiply permutations and raise permutations to powers? 

 

gap> (1,2)*(1,2,3); 

(1,3) 

 

gap> (1,2,3)^2; 

(1,3,2) 

 

gap> (1,2,3)^-1; 

(1,3,2) 

 

gap> (1,2,3)^-2; 

(1,2,3) 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> b:=(1,2); 

(1,2) 

 

gap> a*b; 

(2,3) 

 

gap> a^2; 

(1,3,2) 

 

gap> a^-2; 

(1,2,3) 

 

gap> a^3; 

() 
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gap> a^-3; 

() 

 

gap> (a*b)^2; 

() 

 

gap> (a*b)^3; 

(2,3) 

 

 

6. How can I create a group from permutations, find the size of the group, and 

find the elements in the group? 

 

gap> a:=(1,2); 

(1,2) 

 

gap> b:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a,b); 

Group([ (1,2), (1,2,3) ]) 

 

gap> Size(g1); 

6 

 

gap> Elements(g1); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> g2:=Group([(1,2),(1,2,3)]); 

Group([ (1,2), (1,2,3) ]) 
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gap> g3:=Group((1,2),(2,3,4)); 

Group([ (1,2), (2,3,4) ]) 

 

 

7. How can I create a cyclic group of order 3? 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a); 

Group([ (1,2,3) ]) 

 

gap> Size(g1); 

3 

 

gap> Elements(g1); 

[ (), (1,2,3), (1,3,2) ] 

 

gap> g2:=Group((1,2,3)); 

Group([ (1,2,3) ]) 

 
gap> g3:=CyclicGroup(IsPermGroup,3); 

Group([ (1,2,3) ]) 
 
 
 
 
 
 
 
 
 
 
 



 66

8. How can I create a multiplication table for the cyclic group of order 3 that I just 

created? 

 

gap> ShowMultiplicationTable(g1); 

 

*          | ()          (1,2,3)     (1,3,2) 

--------+--------------------------------- 

()         | ()          (1,2,3)     (1,3,2) 

(1,2,3) | (1,2,3)  (1,3,2)     () 

(1,3,2) | (1,3,2)  ()             1,2,3) 

 

 

9. How do I determine if a group is abelian? 

 

gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> IsAbelian(g1); 
true 
 
gap> g2:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 
gap> IsAbelian(g2); 
false 

 

 

10. What do I type in order to get help for a command like “Elements?” 

 

gap> ?Elements 

 

 

11. How do I find all subgroups of a group? 

 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=AllSubgroups(g); 
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]), 
Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ] 
 
gap> List(h,i->Elements(i)); 
[ [ () ], [ (), (2,3) ], [ (), (1,2) ], [ (), (1,3) ], [ (), (1,2,3), 
(1,3,2) ], [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] ] 
 
gap> Elements(h[1]); 
[ () ] 
 
gap> Elements(h[2]); 
[ (), (2,3) ] 
 
gap> Elements(h[3]); 
[ (), (1,2) ] 
 
gap> Elements(h[4]); 
[ (), (1,3) ] 
 
 
gap> Elements(h[5]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(h[6]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

 

12. How do I find the subgroup generated by particular permutations? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 

 

 

13. How do I determine if a subgroup is normal? 
 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 
gap> h1:=Group((1,2)); 
Group([ (1,2) ]) 
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gap> IsNormal(g,h1); 
 
gap> h2:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
 
gap> IsNormal(g,h2); 
true 

 

 
 
 
14. How do I find all normal subgroups of a group? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 

gap> n:=NormalSubgroups(g); 
[ Group([ (1,2), (1,2,3) ]), Group([ (1,3,2) ]), Group(()) ] 
 

gap> Elements(n[1]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> Elements(n[2]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(n[3]); 
[ () ] 

 

 

15. How do I determine if a group is simple? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> IsSimple(g); 
false 

 
gap> h:=Group((1,2)); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> IsSimple(h); 
true 
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16. How do I find the right cosets of a subset H of G? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> c:=RightCosets(g,h); 
[ RightCoset(Group( [ (1,2) ] ),()), RightCoset(Group( [ (1,2) ] ),(1,3,2)), 
RightCoset(Group( [ (1,2) ] ),(1,2,3)) ] 
 
gap> List(c,i->Elements(i)); 
[ [ (), (1,2) ], [ (2,3), (1,3,2) ], [ (1,2,3), (1,3) ] ] 
gap> Elements(c[1]); 
[ (), (1,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,3,2) ] 
 
 
gap> Elements(c[3]); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=RightCoset(h,(1,2,3)); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=h*(1,2,3); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 

 
 

17. How can I create a quotient (factor) group? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> n:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> Elements(n); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> IsNormal(g,n); 
true 
 
gap> c:=RightCosets(g,n); 
[ RightCoset(Group([ (1,2,3) ]),()), RightCoset(Group([ (1,2,3) ]),(2,3)) ] 
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gap> Elements(c[1]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,2), (1,3) ] 
 
gap> f:=FactorGroup(g,n); 
Group([ f1 ]) 
 
gap> Elements(f); 
[ <identity> of ..., f1 ] 
 
gap> ShowMultiplicationTable(f); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
 
 
 

 

18. How do I find the center of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Center(g); 
Group(()) 
 
gap> c:=Center(g); 
Group(()) 
 
gap> Elements(c); 
[ () ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> c:=Center(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 

 
 
19. How do I find the commutator (derived) subgroup of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3,2) ]) 
 
gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(d); 
[ (), (1,3)(2,4) ] 
 

 
20. How do I find all Sylow p-subgroups for a given group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> FactorsInt(6); 
[ 2, 3 ] 
 
gap> sylow2:=SylowSubgroup(g,2); 
Group([ (2,3) ]) 
 
gap> IsNormal(g,sylow2); 
false 
 
gap> c:=ConjugateSubgroups(g,sylow2); 
[ Group([ (2,3) ]), Group([ (1,3) ]), Group([ (1,2) ]) ] 
 
gap> Elements(c[1]); 
[ (), (2,3) ] 
 
gap> Elements(c[2]); 
[ (), (1,3) ] 
 
gap> Elements(c[3]); 
[ (), (1,2) ] 
 
gap> sylow3:=SylowSubgroup(g,3); 
Group([ (1,2,3) ]) 
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gap> IsNormal(g,sylow3); 
true 
 
gap> Elements(sylow3); 
[ (), (1,2,3), (1,3,2) ] 
 

 
 
21. How can I create the Rubik’s cube group using GAP? 

 

First you need to save the following permutations as a pure text file with the 

name rubik.txt to your C-drive before you can import it into GAP. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 

 

And now you can read the file into GAP and begin exploring. 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
 
 
22. How can I find the center of the Rubik’s cube group? 
 
 
gap> c:=Center(rubik); 
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45) 
(39,47) ] 
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23. How can I find the commutator (derived) subgroup of the Rubik’s cube group? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group with 5 generators> 
 
gap> Size(d); 
21626001637244928000 
 
gap> IsNormal(rubik,d); 
true 

 

 

24. How can I find the quotient (factor) group of the Rubik’s cube group by its 

commutator (derived) subgroup? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group of size 21626001637244928000 with 5 generators> 
 
gap> f:=FactorGroup(rubik,d); 
Group([ f1 ]) 
 
gap> Size(f); 
2 
 

 

25. How can I find some Sylow p-subgroups of the Rubik’s cube group? 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
gap> FactorsInt(43252003274489856000); 
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11 ] 
 
gap> sylow2:=SylowSubgroup(rubik,2); 
<permutation group of size 134217728 with 27 generators> 
 
gap> sylow3:=SylowSubgroup(rubik,3); 
<permutation group of size 4782969 with 14 generators> 
 
gap> sylow5:=SylowSubgroup(rubik,5); 
<permutation group of size 125 with 3 generators> 
 
gap> sylow7:=SylowSubgroup(rubik,7); 
<permutation group of size 49 with 2 generators> 
 
gap> sylow11:=SylowSubgroup(rubik,11); 
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ]) 
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gap> Elements(sylow11); 
[ (), (4,5,36,21,31,15,39,13,42,7,12)(10,26,29,28,45,44,47,20,23,18,37), 
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29), 
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26), 
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45), 
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47), 
(4,21,39,7,5,31,13,12,36,15,42)(10,28,47,18,26,45,20,37,29,44,23), 
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20), 
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18), 
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44), 
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ] 
 
gap> IsNormal(rubik,sylow2); 
false 
 
gap> IsNormal(rubik,sylow3); 
false 
 
 
gap> IsNormal(rubik,sylow5); 
false 
 
gap> IsNormal(rubik,sylow7); 
false 
 
gap> IsNormal(rubik,sylow11); 
false 
 
NOTE:  All of the Sylow p-subgroups found above have conjugates, but the 
sheer size of the Rubik’s cube group makes it too difficult to pursue them on a 
typical desktop computer. 
 

 

26. How do I determine if a group is cyclic? 

 
gap> a:=(1,2,3)*(4,5,6,7); 
(1,2,3)(4,5,6,7) 
 
gap> g:=Group(a); 
Group([ (1,2,3)(4,5,6,7) ]) 
 
gap> Size(g); 
12 
 
gap> IsCyclic(g); 
true 

 

 

27. How do I create a dihedral group with 2n elements for an n-sided regular 

polygon? 

 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
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gap> Elements(d4); 
[ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ] 
 

 

28. How can I express the elements of a dihedral group as rotations and flips 
rather than as permutations? 

 
 
gap> d3:=DihedralGroup(6); 
<pc group of size 6 with 2 generators> 
 
gap> Elements(d3); 
[ <identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2 ] 
 
gap> ShowMultiplicationTable(d3); 
*                 | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
------------------+---------------------------------------------------------------------------------------------------\ 
--------- 
<identity> of ... | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
f1                | f1                <identity> of ... f1*f2             f2                f1*f2^2           f2^2       
f2                | f2                f1*f2^2           f2^2              f1                <identity> of ... f1*f2      
f1*f2             | f1*f2             f2^2              f1*f2^2           <identity> of ... f1                f2         
f2^2              | f2^2              f1*f2             <identity> of ... f1*f2^2           f2                f1         
f1*f2^2           | f1*f2^2           f2                f1                f2^2              f1*f2             
<identity> of ... 

29. How do I create a symmetric group of degree n with n! elements? 
 
gap> s4:=SymmetricGroup(4); 
Sym( [ 1 .. 4 ] ) 
 
gap> Size(s4); 
24 
 
gap> Elements(s4); 
[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), 
(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), 
  (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), 
(1,4), (1,4,2,3), (1,4)(2,3) ] 

 
 
 

30. How do I create an alternating group of degree n with !
2
n  elements? 

 
gap> a4:=AlternatingGroup(4); 
Alt( [ 1 .. 4 ] ) 

 
gap> Size(a4); 
12 
gap> Elements(a4); 
[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), 
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ] 

 
 
 
31. How do I create a direct product of two or more groups? 
 
gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
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gap> g2:=Group((4,5)); 
Group([ (4,5) ]) 
 
gap> dp:=DirectProduct(g1,g2); 
Group([ (1,2,3), (4,5) ]) 
 
gap> Size(dp); 
6 
gap> Elements(dp); 
[ (), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) ] 
 
gap> ShowMultiplicationTable(dp); 
*            | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
-------------+---------------------------------------------------------------------------
--- 
()           | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
(4,5)        | (4,5)        ()           (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2) 
(1,2,3)      | (1,2,3)      (1,2,3)(4,5) (1,3,2)      (1,3,2)(4,5) ()           (4,5) 
(1,2,3)(4,5) | (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2)      (4,5)        () 
(1,3,2)      | (1,3,2)      (1,3,2)(4,5) ()           (4,5)        (1,2,3)      
(1,2,3)(4,5) 
(1,3,2)(4,5) | (1,3,2)(4,5) (1,3,2)      (4,5)        ()           (1,2,3)(4,5) (1,2,3) 

 
 

 
 

32. How can I create the Quaternion group? 
 
gap> a:=(1,2,5,6)*(3,8,7,4); 
(1,2,5,6)(3,8,7,4) 
 
gap> b:=(1,4,5,8)*(2,7,6,3); 
(1,4,5,8)(2,7,6,3) 
 
gap> q:=Group(a,b); 
Group([ (1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ]) 
 
gap> Size(q); 
8 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3), 
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8), 
  (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ] 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6), 
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7), 
  (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ] 
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33. How can I find a set of independent generators for a group? 
 
 
gap> c6:=CyclicGroup(IsPermGroup,6); 
Group([ (1,2,3,4,5,6) ]) 
 
gap> Size(c6); 
6 
 
gap> GeneratorsOfGroup(c6); 
[ (1,2,3,4,5,6) ] 

 
 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
 
gap> Size(d4); 
8 
 
gap> GeneratorsOfGroup(d4); 
[ (1,2,3,4), (2,4) ] 

 
 
gap> s5:=SymmetricGroup(5); 
Sym( [ 1 .. 5 ] ) 
 
 
gap> Size(s5); 
120 
 
gap> GeneratorsOfGroup(s5); 
[ (1,2,3,4,5), (1,2) ] 
 
 
gap> a5:=AlternatingGroup(5); 
Alt( [ 1 .. 5 ] ) 
 
gap> Size(a5); 
60 
 
gap> GeneratorsOfGroup(a5); 
[ (1,2,3,4,5), (3,4,5) ] 
 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
gap> GeneratorsOfGroup(q); 
[ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ] 
 
 
 

34. How do I find the conjugate of a permutation in the form 1ba b ab−= ? 
 
gap> a:=(1,2,3,4,5); 
(1,2,3,4,5) 

 
gap> b:=(2,4,5); 
(2,4,5) 
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gap> a^b; 
(1,4,3,5,2) 

 
gap> b^-1*a*b; 
(1,4,3,5,2) 
 
 
 
35. How do I divide up a group into classes of elements that are conjugate to one another?  

(Note that “conjugacy” is an equivalence relation on our group G.  That means that 
G can be separated into nonintersecting subsets that contain only elements that are 
conjugate to one another.) 

 
gap> d3:=DihedralGroup(IsPermGroup,6); 
Group([ (1,2,3), (2,3) ]) 

 
gap> Size(d3); 
6 

 
gap> Elements(d3); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 
gap> cc:=ConjugacyClasses(d3); 
[ ()^G, (2,3)^G, (1,2,3)^G ] 

 
gap> Elements(cc[1]); 
[ () ] 

 
gap> Elements(cc[2]); 
[ (2,3), (1,2), (1,3) ] 

 
gap> Elements(cc[3]); 
[ (1,2,3), (1,3,2) ] 
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Summary (part 6) 

 

In this part we continued our examination of visual representations of groups.  In 

particular, you should be familiar with the following, and you should develop the 

habit of identifying groups, symmetry, and cycles in your life, both in space and in 

time, whenever they occur! 

• Frieze Groups. 

• Wallpaper Groups. 

• Free Range Symmetry. 
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practice (part 6) 

frieze groups 
 
 

Use the flow chart from the lesson to classify each frieze pattern below as either 
F1, F2, F3, F4, F5, F6, or F7. 
 
1.  

 
 

2.  

 
 

3.  

 
 

4.  
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5.  

 
 

6.  

 
 

7.  

 
 

8.  

 
 

9.  

 
 

10. Either through drawing by hand or by using a program such as Photoshop, 
create examples of each of the seven frieze groups. 
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WALLPAPER GROUPS 
 

 
Use the flowchart from the lesson to identify the wallpaper group for each image 
below. 
 
1.  

 
 
 

2.  
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3.  

 
 
 

4.  

 
 
 

5.  
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FREE RANGE SYMMETRY  

 

Now that you have some understanding about how groups and symmetry are 

everywhere, make a list of some of the symmetries and groups that you 

encounter in your life and in your environment.  And don’t restrict yourself to just 

completely identical, congruent shapes.  Look for repetition of color, repetition of 

shapes that change size, and cycles that occur over time.  Look at your repetitive 

habits and behaviors as well, and consider ways in which you can combine 

cycles in order to produce more complex groups.  By doing this, you will not only 

develop a greater appreciation for how ubiquitous groups and symmetry are in 

your life, you may also arrive at a greater understanding of the internal cycles 

and patterns that define the person that you are.  Groups, symmetry, and cycles 

are everywhere.  Learn to see this!  

 

“The sun also rises, and the sun goes down, and hastens to its place where it 

rises again.  The wind goes toward the south, and turns around to the north; it 

whirls around continually, and the wind returns again according to its circuits.  All 

the rivers run into the sea; yet the sea is not full; to the place from where the 

rivers come, there they return again. (Ecclesiastes 1:5-7) 

 

And finally, examine the two images below and identify as many groups as you 

can.  Also, don’t restrict yourself to just cyclic groups.  Imagine cycles that 

overlap with one another in ways that create nonabelian groups!  For example, in 

each eye socket of the dia de los muertos skull there is a flower with five red 

petals.  Imagine labeling the petals one through five and then consider the group 

generated by the cycles ( )1,2,3  and ( )3,4,5 ! 
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practice (part 6) - Answers 

frieze groups 
 
 

Use the flow chart from the lesson to classify each frieze pattern below as either 

F1, F2, F3, F4, F5, F6, or F7. 

 

1. F6 – Jump 

 
 

2. F3 – Sidle 

 
 

3. F4 – Spinning Sidle 

 
 

4. F2 – Step 
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5. F4 – Spinning Sidle 

 
 

6. F1 – Hop 

 
 

7. F1 – Hop 

 
 

8. F4 – Spinning Hop 

 
 

9. F7 – Spinning Jump 

 
 

10. Either through drawing by hand or by using a program such as Photoshop, 

create examples of each of the seven frieze groups. 
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F1 – Hop 

 
 

F2 – Step 

 
 

F3 – Sidle 

 
 

F4 – Spinning Hop 
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F5 – Spinning Sidle 

 

F6 – Jump 

 
 

F7 – Spinning Jump 

 
 



 

 91

WALLPAPER GROUPS 

 

 

Use the flowchart in this lesson to identify the wallpaper group for each image 

below. 

 

1. p4m 

 
 

 

2. p4m 
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3. p4g 

 
 

 

4. cmm 
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5. p2 
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FREE RANGE SYMMETRY  

 

Now that you have some understanding about how groups and symmetry are 

everywhere, make a list of some of the symmetries and groups that you 

encounter in your life and in your environment.  And don’t restrict yourself to just 

completely identical, congruent shapes.  Look for repetition of color, repetition of 

shapes that change size, and cycles that occur over time.  Look at your repetitive 

habits and behaviors as well, and consider ways in which you can combine 

cycles in order to produce more complex groups.  By doing this, you will not only 

develop a greater appreciation for how ubiquitous groups and symmetry are in 

your life, you may also arrive at a greater understanding of the internal cycles 

and patterns that define the person that you are.  Groups, symmetry, and cycles 

are everywhere.  Learn to see this!   

 

“The sun also rises, and the sun goes down, and hastens to its place where it 

rises again.  The wind goes toward the south, and turns around to the north; it 

whirls around continually, and the wind returns again according to its circuits.  All 

the rivers run into the sea; yet the sea is not full; to the place from where the 

rivers come, there they return again. (Ecclesiastes 1:5-7) 

 

And finally, examine the two images below and identify as many groups as you 

can.  Also, don’t restrict yourself to just cyclic groups.  Imagine cycles that 

overlap with one another in ways that create nonabelian groups!  For example, in 

each eye socket of the dia de los muertos skull there is a flower with five red 

petals.  Imagine labeling the petals one through five and then consider the group 

generated by the cycles ( )1,2,3  and ( )3,4,5 ! 

 

(Your answers will vary!) 
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Dia de Los Muertos Skull 
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Sri Yantra 

 

 

 

 



 
 

You can learn group theory in a 
flash! 




