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INTRODUCTION (part 5) 
 
 

 
In part 5 of this work we introduce three different ways to create visual 

representations of groups – a cycle graph, a Cayley diagram (named after 

mathematician Arthur Cayley, 1821-1895), and last but not least, what I like to 

call a generator diagram.  These three methods become more complex as the 

size of our group increases, but for relatively small groups, they provide an 

interesting way to study the subject, and these are methods that generally aren’t 

covered much in traditional textbooks on group theory and abstract algebra.  

Additionally, toward the end of Part 5 we have another chapter of How to Use 

GAP.  Nothing new is given that is not also given in the previous Part 4, but that 

chapter from Part 4 is repeated here for reference. 
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visual representations of groups 

 

There are three ways of representing groups visually that I want to talk about.  I 

call these ways cycle graphs, Cayley diagrams, and generator diagrams.  Of 

these three, only Cayley diagrams were easy to find information on when I was in 

graduate school in the early eighties.  Cycle graphs may have originated or been 

popularized later.  And lastly, generator diagrams are a creation of my own even 

though I wouldn’t be completely surprised if I am not the first one to ever use 

such a diagram.  We’ll illustrate each of these displays by first applying them to 

the dihedral group 3 3D S≅ , the group of symmetries of an equilateral triangle.   

 

Let’s begin with the list of elements in 3D . 

 

( )

3

(1,2)
(1,3)
(2,3)

(1,2,3)
(1,3,2)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

From this representation we can see that 3D  contains one element of order 1, 

three elements of order 2, and two elements of order 3.  A cycle graph for this 

simply creates a visual display of the order of each element.  I draw mine as 

follows. 
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In a cycle graph, every element of the group should be contained in one of the 

cycles shown.  Also, it would be nice if every single group was distinguished by 

the lengths of the cycles of its elements.  Unfortunately, this is not always the 

case.  For example, 4 2 2C C C× ×  and 4 2 2( )C C C× >  are both groups of order 16, 

and they both have one element of order 1, seven elements of order 2, and eight 

elements of order 4.  However, in spite of this similarity, the two groups are not 

isomorphic.  However, for groups of order less than 16 the cycle structure is 

unique.  For example, the dihedral group 3D has one element of order 1, three 

elements of order 2, and two elements of order 3, and any other group of order 6 

which has this same cycle structure must automatically be isomorphic to 3D .  But 

again, why this does not hold true for 4 2 2C C C× ×  and 4 2 2( )C C C× >  is something 

that is worthy of lengthy contemplation. 

 

Cayley diagrams were invented by British mathematician Arthur Cayley (1821-

1895).  There exist some variations of his method for presenting groups visually, 

but the way I construct them is very easy if the elements of your group are 

expressed in terms of permutations.  For example, if we want to create a Cayley 

diagram for the dihedral group 3D  (which is isomorphic to the symmetric group 

( )

( )1,2,3 ( )1,3, 2

( )1,2 ( )1,3 ( )2,3

( )

( )1,2,3 ( )1,3, 2

( )1,2 ( )1,3 ( )2,3
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3S ), then all we have to do is pick a minimal set of elements which generate the 

entire group such as (1,2,3)  and (2,3) .  Next we create a diagram which shows 

the result of multiplying various combinations of those permutations together, and 

we represent multiplication by (1,2,3)  by an arrow of one color and multiplication 

by (2,3)  by an arrow of a different color.  We begin our multiplication at the 

identity element ( ) , and notice that each element in the group will have two 

arrows leaving it, one for multiplication by (1,2,3)  and the other by multiplication 

by (2,3) .  Below is the final result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that if we start at the identity, then the blue arrow represents multiplication 

by (2,3)  and the red arrow leaving (2,3)  represents an additional multiplication by 

(1,2,3) .  Hence, the Cayley diagram shows us visually that (2,3)(1,2,3) (1,2)= .  

Likewise, we can easily find the result of any other multiplication by simply 

following the correct arrows in sequence. 

 

( )

(1,2,3) (1,3,2)

(2,3)

(1,2)(1,3)

( )

(1,2,3) (1,3,2)

(2,3)

(1,2)(1,3)
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The third type of visual display that I like is what I call a generator diagram.  It is 

inspired by the moves that generate the Rubik’s cube group, and it is a classic 

example of a group of permutations that act upon a set of objects.  In particular, 

recall that the entire group of permutations of the facelets of Rubik’s cube can be 

generated by quarter turns of the right, left, up, down, front, and back faces of the 

cube.  We denote these moves by R, L, U, D, F, and B, but if we write them in 

the order BFUDLR , then we can appropriately pronounce this “befuddler.” 

 

 
 

Recall also that if we number each facelet of our cube, then we can easily 

express the movements that generate our cube group as permutations written in 

cycle notation.  The usual way for numbering the facelets is given below. 

 
1 2 3
4 UP 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 LEFT 13 20 FRONT 21 28 RIGHT 29 36 BACK 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 DOWN 45
46 47 48  

 

And now, using this labeling scheme, recall that we can express our generating 

moves as follows: 
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r =(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24) 
l =(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35) 
u =(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19) 
d =(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40) 
f =(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11) 
b=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27) 
 

A simplified version of this, however, would be to ignore most of the color 

variations and just label the corner cublets 1 through 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using this simplification, we can rewrite the permutations for our moves as the 

following: 

 
R = (1,2,3,4) 

L = (5,8,7,6) 

1

2

3

4

5

6

7

8

(lower back left corner)

1

2

3

4

5

6

7

8

(lower back left corner)
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U = (2,5,6,3) 

D = (1,4,7,8) 

F = (1,8,5,2) 

B = (4,3,6,7) 

 

Of course, these permutations will generate something far smaller than the real 

Rubik’s cube group, but, nonetheless, they will make it easier for us to explain 

generator diagrams.  For instance, suppose we want to examine the group 

generated just by R and U.  Then we can easily diagram this using a couple of 

permutations that act on the set of numbers { }1,2,3,4,5,6 .   

 

 

 

 

 

 

 

 

 

 

 

 

 

This diagram is what I call a generator diagram.  It shows the objects that will be 

permuted along with the moves that create the corresponding permutation group.  

In this case, we generate our group by creating all possible finite combinations of 

our moves R and U, and the resulting permutation group is has 120 elements. 

 

Below is another generating diagram that consists of the permutations (1,2,3)a =  

and (1,4,3)b = .  The resulting group that is generated has 12 elements and is 

12

3 4

5

6

RU

12

3 4

5

6

RU
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isopmorphic to 4A , the subgroup of all even permutations contained in 4S  which, 

in turn, is the group of all possible permutations of a set of four elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And now, here is a generating diagram for the Klein 4-group, 2 2C C× , where the 

generators are (1,2)a =  and (3,4)b = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4
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Am I the first person to ever represent a group in this way by using what I call 

generator diagrams?  On the one hand, I rather doubt it, but on the other hand, I 

haven’t really seen these diagrams used before, and, frankly, I find them very 

useful.  I should also reiterate that when I was young and in graduate school 

back in the early eighties, I only ever saw Cayley diagrams, and they were not 

really covered in my classes as all the emphasis back in those days was placed 

on proving theorems. 

 

Now let me show you something very interesting, but first recall what our cycle 

and Cayley diagrams look like for 3D , the symmetries of an equilateral triangle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

( )1,2,3 ( )1,3, 2

( )1,2 ( )1,3 ( )2,3

( )

( )1,2,3 ( )1,3, 2

( )1,2 ( )1,3 ( )2,3

( )

(1,2,3) (1,3,2)

(2,3)

(1,2)(1,3)

( )

(1,2,3) (1,3,2)

(2,3)

(1,2)(1,3)
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A generator diagram for 3D , in terms of permutations (1,2,3)a   and (2,3)b  , can 

be constructed as follows. 

 

 

However, since the group 3D  has six elements, a good question to ask is can we 

express our generator diagram in terms of permutations of the numbers of the 

set  1,2,3,4,5,6 ?  Fortunately, this can be done, and I’ll now show you how to do 

it.  We’ll begin with the multiplication table for 3D . 

 
*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
--------+------------------------------------------------ 
()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2) 
(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3) 
(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2) 
(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3) 
(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   () 

 

And now, if you look closely at this table, it’s easy to see that the elements in 

each row are just a permutation of the elements in the top row.  That means that 

every element in the group can be represented by a permutation of the six 

elements in the top row, and the greater implication of this (known as Cayley’s 

Theorem) is that every finite group is isomorphic to a permutation group.  

However, the permutation may not be what you think it is.  One might be tempted 
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to indicate the permutation associated with each element by drawing arrows as 

follows. 

 

 

 

 

 

 

 

 

 

However, this is not going to work, and I’ll show you why.  First, notice that the 

red arrows above suggest that the permutation we want to associate this way 

with (2,3)  is ( )( )[ ,(2,3)][(1,2),(1,2,3)][(1,3,2)(1,3)] .  Now let’s do the same thing for 

(1,2,3)  by using the table below. 

 

 

 

 

 

 

 

 

 

Based on this correspondence, we should associate (1,2,3)  with the permutation 

( )( )[ , (1,2,3),(1,3,2)][(2,3),(1,3)(1,2)] .  Now if we do the multiplication (2,3)(1,2,3)  from 

left to right, then we get (1,2) , and using the table below we can see that (1,2)  

corresponds to ( )( )[ ,(1,2)][(2,3),(1,3,2)][(1,2,3)(1,3)] . 

 

 

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()
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And now we can begin to see what the problem is.  If we do the multiplication  

( )( )[ ,(2,3)][(1,2),(1,2,3)][(1,3,2)(1,3)] ( )( )[ , (1,2,3),(1,3,2)][(2,3),(1,3)(1,2)]  from left to right, 

then we get ( )( )[ ,(1,3)][(2,3),(1,2,3)][(1,2),(1,3,2)] .  However, this is not the 

permutation that (2,3)(1,2,3) (1,2)=  corresponds to.  In other words, our 

correspondence does not preserve the multiplication, and we call a one-to-one 

correspondence an isomorphism only if the multiplication in one group 

corresponds to the multiplication in the other, and the correspondence we set up 

doesn’t do that!  So how can we make things work the right way?  Well, 

fortunately, it’s not too hard.  We just have to think in terms of permutations of 

positions!  Thus, let’s examine the table below. 

 

 

 

 

 

 

 

 

 

 

 

 

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

1 2 3 4 5 6

Position

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

1 2 3 4 5 6

Position

1 2 3 4 5 6

Position
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This table suggests that we want to construct the permutation corresponding to 

(2,3)  by noting where the contents of position 1 in the identity wind up in the row 

corresponding to (2,3) , and we can clearly see that the contents of position 1 are 

moved to position 2.  If we do the same type of analysis for the remaining group 

elements, then we can conclude that the permutation corresponding to (2,3)  

should be (1,2)(3,4)(5,6) .  This means that the contents of positions 1 & 2 are 

switched as are the contents of positions 3 & 4 and the contents of positions 5 & 

6.  We can clearly see this in the table below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

1 2 3 4 5 6

Position

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

1 2 3 4 5 6

Position

1 2 3 4 5 6

Position
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Similarly, the element (1,2,3)  corresponds to (1,5,4)(2,3,6) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

And since (2,3)(1,2,3) (1,2)= , let’s also find the permutation that corresponds to the 

cycle (1,2)  by using the table below to obtain (1,3)(2,5)(4,6) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

1 2 3 4 5 6

Position

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

1 2 3 4 5 6

Position

1 2 3 4 5 6

Position

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

1 2 3 4 5 6

Position

*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

--------+------------------------------------------------

()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3)

(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2)

(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3)

(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2)

(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3)

(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   ()

1 2 3 4 5 6

Position

1 2 3 4 5 6

Position
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If we now do the multiplication (1,2)(3,4)(5,6) *(1,5,4)(2,3,6) , then we wind up with 

(1,3)(2,5)(4,6) .  In other words, the multiplication (2,3) *(1,2,3) (1,2)=  in the first 

group corresponds exactly to the multiplication 

 (1,2)(3,4)(5,6) *(1,5,4)(2,3,6) (1,3)(2,5)(4,6)=  in the second group, and this is exactly 

how we set up an isomorphism between our original group and our second group.  

What’s extremely important, though, is that whereas our original group looked at 

permutations of 3 objects, our second group deals with permutations of 6 objects 

where 6 is the actual number of elements in each group.  Furthermore, just as 

(1,2,3)  and (2,3)  generate the elements of our first group, so do (1,5,4)(2,3,6)  and 

(1,2)(3,4)(5,6)  generate the elements of our isomorphic group.  If we now construct 

a Cayley diagram for these generators, then we obtain the following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )(1,5,4)(2,3,6)

(1,4,5)(2,6,3)

(1,6)(2,4)(3,5) (1,2)(3,4)(5,6)

(1,3)(2,5)(4,6)

( )(1,5,4)(2,3,6)

(1,4,5)(2,6,3)

(1,6)(2,4)(3,5) (1,2)(3,4)(5,6)

(1,3)(2,5)(4,6)

( )(1,5,4)(2,3,6)

(1,4,5)(2,6,3)

(1,6)(2,4)(3,5) (1,2)(3,4)(5,6)

(1,3)(2,5)(4,6)
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But on the other hand, if we replace our permutations by the appropriate position 

numbers, then we get the following generator diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

So what does all this mean?  Let’s go through the steps.  We started with an 

equilateral triangle with vertices labeled 1, 2, & 3, and we constructed the six-

element dihedral group for this geometric figure.  Next, using the multiplication 

table for 3D , we converted this to an isomorphic group that acts on six elements 

that we labeled 1, 2, 3, 4, 5, & 6, and since our group 3D  has six elements, it is 

rather canonical to express it in terms of a group acting on six elements via 

permutations of those elements.  Next we constructed both a Cayley diagram 

and a generator diagram for the group that acts on these six elements, and now 

the Cayley diagram and the generator diagram look essentially the same!  And 

this shows us how, if we have a group of n elements, we can easily convert back 

and forth between a generator diagram of n elements and the corresponding 

15

4

6 2

3

15

4

6 2

3
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permutations of those n elements.  In this case, the Cayley diagram and the 

generator diagram are just two ways of looking at the same thing! 

 

If we have a group of order n and if we represent it by either a Cayley diagram 

involving permutations of n elements or by a generator diagram involving 

permutations of n objects, then I’ll refer to both as canonical representations.  

And now that we’ve seen how to develop such canonical representations, let me 

show you a shortcut that cuts through all the rigmarole.  As before, we’ll use a 

traditional Cayley diagram for 3D  as our starting point. 

 

Step 1:  Begin with any Cayley diagram for your group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

(1,2,3) (1,3,2)

(2,3)

(1,2)(1,3)

( )

(1,2,3) (1,3,2)

(2,3)

(1,2)(1,3)
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Step 2:  Replace the elements by numbers in whatever way seems most 

convenient to you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 3:  Treat this is a generator diagram, and write down the permutations of the 

numbers that are indicated by the different colored paths. 

 
(1,2,3)(4,5,6)a =  

(1,4)(2,6)(3,5)b =  

 

 

1

2 3

4

56

1

2 3

4

56
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Step 5:  Replace the numbers by permutations involving combinations of the 

permutations found in step 4 in order to create a canonical Cayley diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We can now use GAP software to verify that the group generated by our cycles a 

and b is indeed isomorphic to 3D  by generating both groups and examining the 

cycle structures of the elements in each group.  Recall that for groups of order 

less than 16, each distinct group has a unique cycle structure.  Thus, all we have 

to do, however, is verify that the elements of our new group have the same order 

or cycle length of the elements of our usual representation for 3D .  We compare 

the two groups below with 3D  on the left and our new representation on the right. 

 

( )

3

(1,2)
(1,3)
(2,3)

(1,2,3)
(1,3,2)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

  

( )
(1,4)(2,6)(3,5)
(1,6)(2,5)(3,4)
(1,5)(2,4)(3,6)
(1,2,3)(4,5,6)
(1,3,2)(4,6,5)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

( )

(1,2,3)(4,5,6) (1,3, 2)(4,6,5)

(1,4)(2,6)(3,5)

(1,5)(2,4)(3,6)(1,6)(2,5)(3,4)

( )

(1,2,3)(4,5,6) (1,3, 2)(4,6,5)

(1,4)(2,6)(3,5)

(1,5)(2,4)(3,6)(1,6)(2,5)(3,4)
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From the above we can see that each group contains an element of order 1 (the 

identity), three elements of order 2, and two elements of order 3.  Therefore, they 

are isomorphic! 

We can also rearrange the objects in our generator diagram to create results that 

may be more aesthetic to us.  Hence, below are a couple of modified generator 

diagrams and generators that also generate groups isomorphic to 3D , as can be 

verified by examining the orders of the elements using GAP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(1,2,3)(4,5,6)a =  

(1,4)(2,6)(3,5)b =  

 

( )
(1,4)(2,6)(3,5)
(1,6)(2,5)(3,4)
(1,5)(2,4)(3,6)
(1,2,3)(4,5,6)
(1,3,2)(4,6,5)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

12

3
4

5

6

12

3
4

5

6
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(1,2,3)(4,6,5)a =  

(1,6)(2,4)(3,5)b =  

 

( )

3

(1,2,3)(4,6,5)
(1,3,2)(4,5,6)
(1,4)(2,5)(3,6)
(1,5)(2,6)(3,4)
(1,6)(2,4)(3,5)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

 

 

12

3
4

5

6

12

3
4

5

6
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Notice, also, that if we reverse the direction of the arrows connecting, 4, 5,  and 6, 

then the resulting group generated is now isomorphic to 6C , and while it may 

seem strange to have a cyclic group generated by two elements (in this case, 

one of order 2 and the other of order 3), it’s all perfectly normal once we 

remember that 6 2 3C C C≅ × . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(1,2,3)(4,5,6)a =  

(1,6)(2,4)(3,5)b =  

 

( )

6 2 3

(1,2,3)(4,5,6)
(1,3,2)(4,6,5)
(1,4,3,6,2,5)
(1,5,2,6,2,4)

(1,6)(2,4)(3,5)

C C C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

12

3
4

5

6

12

3
4

5

6
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And now, we’ll look at the same groups of small order that we examined in the 

previous installment (Part 4) of this work, but this time we’ll present cycle graphs, 

Cayley diagrams, and generator diagrams for each group. 

 



 24

Groups of order 1 
 
 

The only group of order 1 is the group that consists of a single element, the 

identify element.  Consequently, it’s a pretty simple group, and there is not much 

detail to give about it. 
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THE IDENTITY GROUP 

 
 

Generators: 
 
( )  
 
 
Elements: 
 
{ () } 

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 

 
 
 
 

( )
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Cayley Diagram 
 
 
 
 
 
 
 
 

( )
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Generator Diagram 
 
 
 
 
 
 

1
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Groups of order 2 
 
 

Just as there is only one group of order 1, there is also only one group, up to 

isomorphism, of order 2.  Also, when we use the phrase “up to isomorphism,” 

recall that that means that even though we might use different names for the 

elements of the group and even though our binary operations may be defined 

differently in the different groups, the resulting multiplication tables all have the 

same algebraic structure.  That means that we can take the elements of one 

group, translate them into elements of the other group, and then the 

corresponding elements will combine with one another in the same way.  For 

example, below are four different looking multiplication tables that all represent 

the one (up to isomorphism) group of order 2. 

 
0 1

0 0 1
1 1 0  

1 2
1 1 2
2 2 1  

 
a b

a a b
b b a  

no flip flip
no flip no flip flip

flip flip no flip  
 

For the last group multiplication table in our list, what we have in mind is a light 

switch and the 2-element group associated with it.  Doing nothing, not flipping the 

switch at all, is the identity element in this group.  The only other element in the 

group is represented by flipping the switch, and if we flip the switch twice, then 

the result is the same as not flipping the switch at all.  In other words, “flip times 

flip = no flip.” 
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THE CYCLIC GROUP OF ORDER 2 

2 2C ≅  

 
 

Generators: 
 
(1,2)  
 
 
Elements: 
 
( )

2(1,2)
C

⎧ ⎫
≅⎨ ⎬

⎩ ⎭
} 

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( )1,2

( )

( )1,2
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( )1,2

( )

( )1,2
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Generator Diagram 
 

 
 

1

2

1

2
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Groups of order 3 
 
 

There is only one group of order 3, and it is the cyclic group 3C .  Notice, too, that 

3 is a prime number.  Whenever the order of a group is a prime such as 2 or 3, 

then the only group of that order is going to be a cyclic group.  This is because 

for finite groups the order of any subgroup has to be a divisor of the order of the 

group, and the only divisors of a prime number are itself and 1.  Hence, the only 

subgroups of a group of prime order are the whole group and the identity, and 

they are also normal subgroups.  Furthermore, 3C  is simple since it doesn’t have 

any normal subgroups besides itself and the identity.  Notice, also, that for any 

given finite order, there always exists a cyclic group of that order.  Hence, when 

the order is prime, the only group that exists is the cyclic group of that prime 

order. 
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THE CYCLIC GROUP OF ORDER 3 

3 3C ≅  

 
 

Generators: 
 
(1,2,3)  
 
 
Elements: 
 

( )
3(1,2,3)

(1,3,2)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

 

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

( )(1,2,3)

(1,3,2)

( )(1,2,3)

(1,3,2)
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Cayley Diagram 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )(1,2,3)

(1,3,2)

( )(1,2,3)

(1,3,2)
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Generator Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12

3

12

3
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Groups of order 4 
 
 

There exist two groups of order 4 and both are abelian.  Consequently, we can 

apply the Fundamental Theorem of Finite Abelian Groups which tells us that 

each group can be expressed as a direct product of cyclic groups of prime power 

order.  In this case that means that the only two possible groups are the cyclic 

group 4C  and the direct product 2 2C C× .  The group 2 2C C×  is also known as the 

Klein 4-group or as Vierergruppe (German for 4-group).  Additionally, it is 

sometimes denoted by 4K  or by V , and a good representation for this group 

consists of two light switches each of which can be flipped on or off. Let 1f  

represent flipping the first switch, let 2f  represent flipping the second switch, and 

let 0 represent no flip at all.  Then using this notation we can represent the 

elements of the group as { }1 2 1 2(0,0),( ,0),(0, ), ( , )f f f f  where 2 2
1 20f f= = . 
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THE CYCLIC GROUP OF ORDER 4 

4 4C ≅  

 
 

Generators: 
 

(1,2,3,4)a =  
 
 
Elements: 
 

( )

4
(1,2,3,4)
(1,3)(2,4)
(4,3,2,1)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( )1,2,3,4

( )1,3)(2,4

( )4,3,2,1

( )

( )1,2,3,4

( )1,3)(2,4

( )4,3,2,1
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
( )

( )1,2,3,4

( )1,3)(2,4

( )4,3,2,1

( )

( )1,2,3,4

( )1,3)(2,4

( )4,3,2,1



 43

Generator Diagram 
 
 

1

2

3

4

(1, 2,3,4)a =

1

2

3

4

(1, 2,3,4)a =
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 THE KLEIN 4-GROUP 

2 2 2 2C C× ≅ ×  

 
 

Generators: 
 

(1,2)
(3,4)

a
b
=
=

 

 
 
Elements: 
 

( )

2 2
(1,2)
(3,4)

(1,2)(3,4)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( )1,2 ( )1,2)(3, 4( )3,4

( )

( )1,2 ( )1,2)(3, 4( )3,4
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( )1,2

( )1,2)(3,4

( )3,4

( )

( )1,2

( )1,2)(3,4

( )3,4
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Generator Diagram 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Or 
 
 
 

1

2

3

4

(1,2
3 )

)
( ,4b

a
=
=

1

2

3

4

(1,2
3 )

)
( ,4b

a
=
=

1

2

3

4

(1,2)(3,4
(1,4)(2

)
,3)b

a
=
=

1

2

3

4

(1,2)(3,4
(1,4)(2

)
,3)b

a
=
=
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Groups of order 5 
 
 

Since 5 is a prime number, the only group that exists of order 5 is the abelian 

cyclic group of order 5, 5C .  Furthermore, this group is simple since its only 

normal subgroups are itself and the identity. 
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THE CYCLIC GROUP OF ORDER 5 

5 5C ≅  

 
 

Generators: 
 
(1,2,3,4,5)  
 
 
Elements: 
 

( )

5

(1,2,3,4,5)
(1,3,5,2,4)
(1,4,2,5,3)
(1,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

  

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 

 
 

 
 

( )(1,2,3,4,5)

(1,3,5,2,4)

(1, 4, 2,5,3)

(1,5,4,3,2)

( )(1,2,3,4,5)

(1,3,5,2,4)

(1, 4, 2,5,3)

(1,5,4,3,2)
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ( )(1,2,3,4,5)

(1,3,5,2,4)

(1, 4, 2,5,3)

(1,5,4,3,2)

( )(1,2,3,4,5)

(1,3,5,2,4)

(1, 4, 2,5,3)

(1,5,4,3,2)
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Generator Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12

3

4

5

12

3

4

5
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Groups of order 6 
 
 

Order 6 for groups is very noticeable because this is the first time we encounter a 

nonabelian group!  In fact, there exist just two groups of order 6 (two groups with 

six elements).  One is the cyclic group of order 6, 6C , and the other is the 

dihedral group of degree 3, 3D .  Notice that 6 is not a prime number, but that we 

can write 6 as 2 3×  where 2 and 3 are relatively prime (that means that their only 

common factor is 1).  When that happens with the order of a cyclic group, that 

means that we can also write our cyclic group as the direct product of smaller 

cyclic groups, and in this case we can write 6 3 2C C C≅ × .  The dihedral group 3D  

has order 6, and recall that it represents the symmetries of an equilateral triangle.  

In other words, it is the group generated by rotations of our triangle through 

angles that are integer multiples of 120°  and by flips about any of its three axes of 

symmetry.  Furthermore, the number of permutations that can be made of 3 

objects is 6, and that means that the symmetric group of degree 3, 3S , which is 

the group of all permutations that can be made of 3 objects is essentially identical 

or isomorphic with the dihedral group 3D , 3 3D S≅ .  Additionally, this is the only 

time something like this happens.  Since the order of nD  is 2n  and since the 

order of nS  is ! ( 1)( 2) (1)n n n n= − − … , the only time these two computations are the 

same is when 3n = .  Something else worth noting is that for any value of n there 

always exists a cyclic group of degree n, and for any value 2n  where 3n ≥ , there 

is always a dihedral group, nD , of that order, and for any dihedral group nD  it is 

also true that 2n nD C C≅ > .  Thus, 3 3 3 2D S C C≅ ≅ > .  A lot of groups of higher 

order turn out to be either cyclic or dihedral.  And if we add to this list the 

symmetric groups, alternating groups, direct products, and semidirect products, 

then those are probably the majority of the groups we are likely to encounter.  

Things will change though when we get to order 8 and discover an interesting 

group called the Quaternion group which is nonabelian and which falls into none 

of the aforementioned categories. 
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THE CYCLIC GROUP OF ORDER 6 

6 2 3 2 3 6C C C≅ × ≅ × ≅  

 
 

Generators: 
 

(1,2)
(3,4,5)

a
b
=
=

 

 
or 
 

(1,2,3,4,5,6)a =  
 
 
Elements: 
 

( ) ( )

6

(3,4,5) (1,2,3,4,5,6)
(3,5,4) (1,3,5)(2,4,6)
(1,2) (1,4)(2,5)(3,6)

(1,2)(3,4,5) (1,5,3)(2,6,4)
(1,2)(3,5,4) (1,6,5,4,3,2)

C

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪≅ ≅⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Or 

 

( )( )1, 2)(3,4,5

(1,2)(3,5, 4) (1, 2)

(3,5,4) (3, 4,5)

( )( )1, 2)(3,4,5

(1,2)(3,5, 4) (1, 2)

(3,5,4) (3, 4,5)
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( )( )1,2,3, 4,5,6

(1,4)(2,5)(3,6) (1,5,3)(2,6,4)

(1,3,5)(2,4,6) (1,6,5,4,3,2)

( )( )1,2,3, 4,5,6

(1,4)(2,5)(3,6) (1,5,3)(2,6,4)

(1,3,5)(2,4,6) (1,6,5,4,3,2)
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Cayley Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

( )( )1, 2)(3,4,5

(1,2)(3,5, 4) (1, 2)

(3,5,4) (3, 4,5)

( )( )1, 2)(3,4,5

(1,2)(3,5, 4) (1, 2)

(3,5,4) (3, 4,5)
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or 

( )( )1,2,3, 4,5,6

(1,4)(2,5)(3,6) (1,5,3)(2,6,4)

(1,3,5)(2,4,6) (1,6,5,4,3,2)

( )( )1,2,3, 4,5,6

(1,4)(2,5)(3,6) (1,5,3)(2,6,4)

(1,3,5)(2,4,6) (1,6,5,4,3,2)
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( )(1,2,3)(4,5,6)

(1,3,2)(4,6,5)
(1,4,3,6,2,5)

(1,5,2,6,3,4)

(1,6)(2,4)(3,5)

( )(1,2,3)(4,5,6)

(1,3,2)(4,6,5)
(1,4,3,6,2,5)

(1,5,2,6,3,4)

(1,6)(2,4)(3,5)
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Generator Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

12

4 5

3 6

12

4 5

3 6
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12

3
4

5

6

12

3
4

5

6



 62

THE DIHEDRAL/SYMMETRIC GROUP OF ORDER 6 

3 3 3 2 3 2D S C C≅ ≅ > ≅ >  

 
 

Generators: 
 

(1,2,3)
(2,3)

a
b
=
=

 

 
 
Elements: 
 

( )

3

(1,2)
(1,3)
(2,3)

(1,2,3)
(1,3,2)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 
 
Is Abelian? 
 
No 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( )1,2,3 ( )1,3, 2

( )1,2 ( )1,3 ( )2,3

( )

( )1,2,3 ( )1,3, 2

( )1,2 ( )1,3 ( )2,3
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Cayley Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or 

( )

(1,2,3) (1,3,2)

(2,3)

(1,2)(1,3)

( )

(1,2,3) (1,3,2)

(2,3)

(1,2)(1,3)
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Or 
 
 

( )(1,2,3)(4,5,6)

(1,3,2)(4,6,5)
(1,4)(2,6)(3,5)

(1,5)(2,4)(3,6)

(1,6)(2,5)(3,4)

( )(1,2,3)(4,5,6)

(1,3,2)(4,6,5)
(1,4)(2,6)(3,5)

(1,5)(2,4)(3,6)

(1,6)(2,5)(3,4)
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( )(1,2,3)(4,6,5)

(1,3,2)(4,5,6)
(1,4)(2,5)(3,6)

5(1,5)(2,6)(3,4)

(1,6)(2,4)(3,5)

( )(1,2,3)(4,6,5)

(1,3,2)(4,5,6)
(1,4)(2,5)(3,6)

5(1,5)(2,6)(3,4)

(1,6)(2,4)(3,5)
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Generator Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or

1

2 3

4

56

1

2 3

4

56
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or 

12

3
4

5

6

12

3
4

5

6



 69

 

12

3
4

5

6

12

3
4

5

6
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Groups of order 7 
 
 

The number 7 is prime, so you know what that means.  There exists only one 

group of order 7, and that is 7C , the cyclic group of order 7.  Furthermore, again 

since 7 is prime, its only subgroups are itself and the identity. 
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THE CYCLIC GROUP OF ORDER 7 

7 7C ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7)  
 
 
Elements: 
 

( )

7

(1,2,3,4,5,6,7)
(1,3,5,7,2,4,6)
(1,4,7,3,6,2,5)
(1,5,2,6,3,7,4)
(1,6,4,2,7,5,3)
(1,7,6,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

    

 

 
Is Abelian? 
 
Yes 
 
 



 72

Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )
(1,2,3,4,5,6,7)

(1,3,5,7,2,4,6)

(1,4,7,3,6,2,5)

(1,5,2,6,3,7,4)

(1,6,4,2,7,5,3)

(1,7,6,5,4,3,2)

( )
(1,2,3,4,5,6,7)

(1,3,5,7,2,4,6)

(1,4,7,3,6,2,5)

(1,5,2,6,3,7,4)

(1,6,4,2,7,5,3)

(1,7,6,5,4,3,2)

( )
(1,2,3,4,5,6,7)

(1,3,5,7,2,4,6)

(1,4,7,3,6,2,5)

(1,5,2,6,3,7,4)

(1,6,4,2,7,5,3)

(1,7,6,5,4,3,2)
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ( )

(1,2,3,4,5,6,7)

(1,3,5,7,2,4,6)

(1,4,7,3,6,2,5)

(1,5,2,6,3,7,4)

(1,6,4,2,7,5,3)

(1,7,6,5,4,3,2)

( )
(1,2,3,4,5,6,7)

(1,3,5,7,2,4,6)

(1,4,7,3,6,2,5)

(1,5,2,6,3,7,4)

(1,6,4,2,7,5,3)

(1,7,6,5,4,3,2)

( )
(1,2,3,4,5,6,7)

(1,3,5,7,2,4,6)

(1,4,7,3,6,2,5)

(1,5,2,6,3,7,4)

(1,6,4,2,7,5,3)

(1,7,6,5,4,3,2)
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Generator Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1

2

3

4

5

6

7

1

2

3

4

5

6

7
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Groups of order 8 
 
 

Things get quite interesting once we get to 8.  There exist five groups of order 8, 

and three of them are abelian.  And by the Fundamental Theorem of Finite 

Abelian Groups, we can immediately identify the abelian groups as 8C , 4 2C C× , 

and 2 2 2C C C× × .  Of the two nonabelian groups, since 8 is even we automatically 

know that one of them is 4D .  The other nonabelian group, though, is called the 

Quaternion group, and it is quite interesting since it is not one of our usual cyclic, 

dihedral, symmetric, alternating, direct product, or semidirect product groups.  It 

is something quite different, and notable feature of this group is that all of its 

subgroups are normal in spite of it being nonabelian.  Also of interest is that 

quaternions were invented by the mathematician William Rowan Hamilton (1805-

1865) as an extension of both vectors and imaginary numbers.  Thus, we have i, 

j, and k which resemble the unit vectors studied in trigonometry and advanced 

calculus, and these quantities are also like imaginary numbers since 
2 2 2 1i j k= = = − .  When I was younger, quaternions weren’t studied that much 

anymore, but these days there is renewed interest in the topic since they have 

turned out to be a useful mathematical tool for creating the kinds of computer 

generated effects that appear in many of today’s movies. 
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THE CYCLIC GROUP OF ORDER 8 

8 8C ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7,8)  
 
 
Elements: 
 

( )

8

(1,2,3,4,5,6,7,8)
(1,3,5,7)(2,4,6,8)
(1,4,7,2,5,8,3,6)

(1,5)(2,6)(3,7)(4,8)
(1,6,3,8,5,2,7,4)
(1,7,5,3)(2,8,6,4)
(1,8,7,6,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( )1,2,3,4,5,6,7,8

( )1,3,5,7)(2,4,6,8

( )1,4,7, 2,5,8,3,6 ( )1,5)(2,6)(3,7)(4,8

( )1,6,3,8,5,2,7,4

( )1,7,5,3)(2,8,6,4

( )1,8,7,6,5,4,3,2( )

( )1,2,3,4,5,6,7,8

( )1,3,5,7)(2,4,6,8

( )1,4,7, 2,5,8,3,6 ( )1,5)(2,6)(3,7)(4,8

( )1,6,3,8,5,2,7,4

( )1,7,5,3)(2,8,6,4

( )1,8,7,6,5,4,3,2
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

( )

( )1,2,3,4,5,6,7,8

( )1,3,5,7)(2,4,6,8

( )1,4,7, 2,5,8,3,6 ( )1,5)(2,6)(3,7)(4,8

( )1,6,3,8,5,2,7,4

( )1,7,5,3)(2,8,6,4

( )1,8,7,6,5,4,3,2( )

( )1,2,3,4,5,6,7,8

( )1,3,5,7)(2,4,6,8

( )1,4,7, 2,5,8,3,6 ( )1,5)(2,6)(3,7)(4,8

( )1,6,3,8,5,2,7,4

( )1,7,5,3)(2,8,6,4

( )1,8,7,6,5,4,3,2

(1,2,3,4,5,6,7,8)a =
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Generator Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4 5

6

7

81

2

3

4 5

6

7

8

(1,2,3,4,5,6,7,8)a =
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THE DIRECT PRODUCT 2 4C C×  

2 4 2 4C C× ≅ ×  

 
 

Generators: 
 
(1,2),(3,4,5,6)  
 
 
Elements: 
 

( )

2 4

(3,4,5,6)
(3,5)(4,6)
(3,6,5,4)

(1,2)
(1,2)(3,4,5,6)
(1,2)(3,5)(4,6)
(1,2)(3,6,5,4)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

( )

( )3, 4,5,6

(3,5)(4,6)

( )3,6,5,4

( )1,2)(3,5)(4,6

( )(1,2) 3,4,5,6 ( )(1,2) 3,6,5,4

(1,2)

( )

( )3, 4,5,6

(3,5)(4,6)

( )3,6,5,4

( )1,2)(3,5)(4,6

( )(1,2) 3,4,5,6 ( )(1,2) 3,6,5,4

(1,2)
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Cayley Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

 

( )

(3,4,5,6)

( )3,5)(4,6

(1,2)(3, 4,5,6) ( )3,6,5,4

( )1,2

(1,2)(3,5, 4,6)

( )(1,2) 3,5)(4,6

( )

(3,4,5,6)

( )3,5)(4,6

(1,2)(3, 4,5,6) ( )3,6,5,4

( )1,2

(1,2)(3,5, 4,6)

( )(1,2) 3,5)(4,6
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(1,2,3,4)(5,6,7,8)
(1,5)(2,6)(3,7)(4,8)b

a
=
=

( )

(1,2,3,4)(5,6,7,8)

(1,3)(2,4)(5,7)(6,8)

(1,6,3,8)(2,7,4,5) (1,4,3,2)(5,8,7,6)

(1,5)(2,6)(3,7)(4,8)

(1,8,3,6)(2,5,4,7)

(1,7)(2,8)(3,5)(4,6)

( )

(1,2,3,4)(5,6,7,8)

(1,3)(2,4)(5,7)(6,8)

(1,6,3,8)(2,7,4,5) (1,4,3,2)(5,8,7,6)

(1,5)(2,6)(3,7)(4,8)

(1,8,3,6)(2,5,4,7)

(1,7)(2,8)(3,5)(4,6)
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Generator Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1,2,3,4)(5,6,7,8)
(1,5)(2,6)(3,7)(4,8)b

a
=
=

1

2

3

6 4

5

8

7

1

2

3

6 4

5

8

7

1

2

3

6 4

5

8

7
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THE DIRECT PRODUCT 2 2 2C C C× ×  

2 2 2 2 2 2C C C× × ≅ × ×  

 
 

Generators: 
 
(1,2),(3,4),(5,6)  
 
 
Elements: 
 

( )

2 2 2

(5,6)
(3,4)

(3,4)(5,6)
(1,2)

(1,2)(5,6)
(1,2)(3,4)

(1,2)(3,4)(5,6)

C C C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅ × ×⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

 
 
Is Abelian? 
 
Yes 
 
 



 86

Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

( )3,4

(1,2)(3,4)

(3,4)(5,6)

(5,6)

(1,2)(5,6)

(1,2) (1,2)(3,4)(5,6)

( )

( )3,4

(1,2)(3,4)

(3,4)(5,6)

(5,6)

(1,2)(5,6)

(1,2) (1,2)(3,4)(5,6)
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Cayley Diagram 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

( )

( )3,4

(1,2)(3, 4)

(3,4)(5,6)

(5,6)

(1,2)(5,6)

(1,2)

(1,2)(3, 4)(5,6)

( )

( )3,4

(1,2)(3, 4)

(3,4)(5,6)

(5,6)

(1,2)(5,6)

(1,2)

(1,2)(3, 4)(5,6)

( )

( )3,4

(1,2)(3, 4)

(3,4)(5,6)

(5,6)

(1,2)(5,6)

(1,2)

(1,2)(3, 4)(5,6)
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( )

(1,4)(2,3)(5,8)(6,7)

(1,3)(2, 4)(5,7)(6,8)

(1,8)(2,7)(3,6)(4,5)

(1,5)(2,6)(3,7)(4,8)

(1,6)(2,5)(3,8)4,7)

(1, 2)(3,4)(5,6)(7,8)

(1,7)(2,8)(3,5)(4,6)

( )

(1,4)(2,3)(5,8)(6,7)

(1,3)(2, 4)(5,7)(6,8)

(1,8)(2,7)(3,6)(4,5)

(1,5)(2,6)(3,7)(4,8)

(1,6)(2,5)(3,8)4,7)

(1, 2)(3,4)(5,6)(7,8)

(1,7)(2,8)(3,5)(4,6)

( )

(1,4)(2,3)(5,8)(6,7)

(1,3)(2, 4)(5,7)(6,8)

(1,8)(2,7)(3,6)(4,5)

(1,5)(2,6)(3,7)(4,8)

(1,6)(2,5)(3,8)4,7)

(1, 2)(3,4)(5,6)(7,8)

(1,7)(2,8)(3,5)(4,6)
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Generator Diagram 

 

 

 

 

 

 

 

 

 

1

4

3

8

5

6

2

7

1

4

3

8

5

6

2

7

1

4

3

8

5

6

2

7



 90

THE DIHEDRAL GROUP 4D  

4 4 2 4 2D C C≅ > ≅ >  

 
 

Generators: 
 
(1,2,3,4),(2,4)  
 
 
Elements: 
 

( )

4

(2,4)
(1,2)(3,4)
(1,2,3,4)

(1,3)
(1,3)(2,4)
(1,4,3,2)
(1,4)(2,3)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

 
 
Is Abelian? 
 
No 
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Cycle Graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

( )1,2,3,4

(1,3)(2,4)

(1,4,3,2)

(2,4) (1,3)(1,4)(2,3) (1, 2)(3,4)

( )

( )1,2,3,4

(1,3)(2,4)

(1,4,3,2)

(2,4) (1,3)(1,4)(2,3) (1, 2)(3,4)
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Cayley Diagrams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

( )

( )1,2,3,4

(1,3)(2, 4)

(1, 4,3,2)

(2,4)

(1,3)

(1,4)(2,3) (1,2)(3,4)

( )

( )1,2,3,4

(1,3)(2, 4)

(1, 4,3,2)

(2,4)

(1,3)

(1,4)(2,3) (1,2)(3,4)
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( )

( )1,2,3,4 (5,6,7,8)

(1,3)(2,4)(5,7)(6,8)

(1,4,3,2)(5,8,7,6)

(1,5)(2,8)(3,7)(4,6)

(1,7)(2,6)(3,5)(4,8)

(1,8)(2,7)(3,6)(4,5) (1,6)(2,5)(3,8)(4,7)

( )

( )1,2,3,4 (5,6,7,8)

(1,3)(2,4)(5,7)(6,8)

(1,4,3,2)(5,8,7,6)

(1,5)(2,8)(3,7)(4,6)

(1,7)(2,6)(3,5)(4,8)

(1,8)(2,7)(3,6)(4,5) (1,6)(2,5)(3,8)(4,7)
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Generator Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

5

7

8 6

1

2

3

4

5

7

8 6

(1,2,3,4)(5,6,7,8)
(1,5)(2,8)(3,7)(4,6)b

a
=
=
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THE QUATERNION GROUP 8Q  

8Q  

 
 

Generators: 
 
(1,2,5,6)(3,8,7,4) , (1,4,5,8)(2,7,6,3)  
 
 
Elements: 
 

( )

8

(1,2,5,6)(3,8,7,4)
(1,3,5,7)(2,4,6,8)
(1,4,5,8)(2,7,6,3)

(1,5)(2,6)(3,7)(4,8)
(1,6,5,2)(3,4,7,8)
(1,7,5,3)(2,8,6,4)
(1,8,5,4)(2,3,6,7)

Q

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

  

 
 
Is Abelian? 
 
No 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1,2,5,6)(8,7,4,3)

( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8)

(1,6,5,2)(3,4,7,8)
(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)(1,3,5,7)(2,4,6,8)

(1,2,5,6)(8,7,4,3)

( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8)

(1,6,5,2)(3,4,7,8)
(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)(1,3,5,7)(2,4,6,8)

(1,2,5,6)(8,7,4,3)

( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8)

(1,6,5,2)(3,4,7,8)
(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)(1,3,5,7)(2,4,6,8)
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1,2,5,6)(8,7,4,3) ( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8) (1,6,5,2)(3,4,7,8)

(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)

(1,3,5,7)(2,4,6,8)

(1,2,5,6)(8,7,4,3) ( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8) (1,6,5,2)(3,4,7,8)

(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)

(1,3,5,7)(2,4,6,8)
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Generator Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12

3

4

65

8

7

12

3

4

65

8

7
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Groups of order 9 
 
 

Things get simpler again once we get to order 9.  There are only two groups of 

order 9, and they are both abelian.  Thus, the only two possible groups of this 

order are 9C  and 3 3C C× . 
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THE CYCLIC GROUP OF ORDER 9 

9 9C ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7,8,9)  
 
 
Elements: 
 

( )

9

(1,2,3,4,5,6,7,8,9)
(1,3,5,7,9,2,4,6,8)

(1,4,7)(2,5,8)(3,6,9)
(1,5,9,4,8,3,7,2,6)
(1,6,2,7,3,8,4,9,5)

(1,7,4)(2,8,5)(3,6,9)
(1,8,6,4,2,9,7,5,3)
(1,9,8,7,6,5,4,3,2

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )
(1, 2,3,4,5,6,7,8,9)

(1,3,5,7,9,2,4,6,8)

(1,4,7)(2,5,8)(3,6,9)

(1,5,9,4,8,3,7, 2,6) (1,6,2, 7,3,8, 4,9,5)

(1,7,4)(2,8,5)(3,6,9)

(1,8,6, 4,2,9,7,5,3)

(1,9,8,7,6,5, 4,3, 2)
( )

(1, 2,3,4,5,6,7,8,9)

(1,3,5,7,9,2,4,6,8)

(1,4,7)(2,5,8)(3,6,9)

(1,5,9,4,8,3,7, 2,6) (1,6,2, 7,3,8, 4,9,5)

(1,7,4)(2,8,5)(3,6,9)

(1,8,6, 4,2,9,7,5,3)

(1,9,8,7,6,5, 4,3, 2)
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Cayley Diagram 

 

 

 

 

 

 

( )
(1, 2,3,4,5,6,7,8,9)

(1,3,5,7,9,2,4,6,8)

(1,4,7)(2,5,8)(3,6,9)

(1,5,9,4,8,3,7, 2,6) (1,6,2, 7,3,8, 4,9,5)

(1,7,4)(2,8,5)(3,6,9)

(1,8,6, 4,2,9,7,5,3)

(1,9,8,7,6,5, 4,3, 2)
( )

(1, 2,3,4,5,6,7,8,9)

(1,3,5,7,9,2,4,6,8)

(1,4,7)(2,5,8)(3,6,9)

(1,5,9,4,8,3,7, 2,6) (1,6,2, 7,3,8, 4,9,5)

(1,7,4)(2,8,5)(3,6,9)

(1,8,6, 4,2,9,7,5,3)

(1,9,8,7,6,5, 4,3, 2)
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Generator Diagram 

 

 

 

 

 

 

 

 

 

 

 

1
2

3

4

5 6

7

8

9
1

2

3

4

5 6

7

8

9
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THE DIRECT PRODUCT 3 3×  

3 3 3 3C C× ≅ ×  

 
 

Generators: 
 
(1,2,3),(4,5,6)  
 
 
Elements: 
 

( )

3 3

(4,5,6)
(4,6,5)
(1,2,3)

(1,2,3)(4,5,6)
(1,2,3)(4,6,5)

(1,3,2)
(1,3,2)(4,5,6)
(1,3,2)(4,6,5)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or 

( )

(1,2,3)

(1,3,2)

(1,2,3)(4,5,6)

(4,6,5)

(4,5,6)

(1,3,2)(4,5,6) (1,2,3)(4,6,5)

(1,3,2)(4,6,5)

( )

(1,2,3)

(1,3,2)

(1,2,3)(4,5,6)

(4,6,5)

(4,5,6)

(1,3,2)(4,5,6) (1,2,3)(4,6,5)

(1,3,2)(4,6,5)
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( )

(1,2,3)(4,5,6)(7,8,9)

(1,3,2)(4,6,5)(7,9,8)

(1,4,7)(2,5,8)(3,6,9)

(1,7,4)(2,8,5)(3,9,6)

(1,5,9)(2,6,7)(3,4,8) (1,9,5)(2,7,6)(3,8,4)

(1,8,6)(2,9,4)(3,7,5)(1,6,8)(2,4,9)(3,5,7)

( )

(1,2,3)(4,5,6)(7,8,9)

(1,3,2)(4,6,5)(7,9,8)

(1,4,7)(2,5,8)(3,6,9)

(1,7,4)(2,8,5)(3,9,6)

(1,5,9)(2,6,7)(3,4,8) (1,9,5)(2,7,6)(3,8,4)

(1,8,6)(2,9,4)(3,7,5)(1,6,8)(2,4,9)(3,5,7)
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or 

( )

(1,2,3)

(1,3,2)

(1,2,3)(4,5,6)

(4,6,5)

(4,5,6)

(1,3,2)(4,5,6)

(1,2,3)(4,6,5)(1,3,2)(4,6,5)

( )

(1,2,3)

(1,3,2)

(1,2,3)(4,5,6)

(4,6,5)

(4,5,6)

(1,3,2)(4,5,6)

(1,2,3)(4,6,5)(1,3,2)(4,6,5)
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( )

(1,2,3)(4,5,6)(7,8,9)

(1,3,2)(4,6,5)(7,9,8)

(1,5,9)(2,6,7)(3,4,8)

(1,7,4)(2,8,5)(3,9,6)

(1,4,7)(2,5,8)(3,6,9)

(1,6,8)(2,4,9)(3,5,7)

(1,8,6)(2,9,4)(3,7,5)(1,9,5)(2,7,6)(3,8,4)

( )

(1,2,3)(4,5,6)(7,8,9)

(1,3,2)(4,6,5)(7,9,8)

(1,5,9)(2,6,7)(3,4,8)

(1,7,4)(2,8,5)(3,9,6)

(1,4,7)(2,5,8)(3,6,9)

(1,6,8)(2,4,9)(3,5,7)

(1,8,6)(2,9,4)(3,7,5)(1,9,5)(2,7,6)(3,8,4)
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Generator Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

2

3

5

7

4

6

89

1

2

3

5

7

4

6

89
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Groups of order 10 
 
 

Things are also pretty simple for groups of order 10.  We know that one group of 

order 10 is the abelian group 10 5 2C C C≅ × , and the other is the nonabelian group 

5 5 2D C C≅ > . 
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THE CYCLIC GROUP OF ORDER 10 

10 2 5 2 5 10C C C≅ × ≅ × ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7,8,9,10)  
 
 
Elements: 
 

( )
(1,2,3,4,5,6,7,8,9,10)
(1,3,5,7,9)(2,4,6,8,10)
(1,4,7,10,3,6,9,2,5,8)
(1,5,9,3,7)(2,6,10,4,8)

(1,6)(2,7)(3,8)(4,9)(5,10)
(1,7,3,9,5)(2,8,4,10,6)
(1,8,5,2,9,6,3,10,7,4)
(1,9,7,5,3)(2,10,8,6,4)
(1,10,9,8,7,6,5,

10

4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )
(1,2,3,4,5,6,7,8,9,10)

(1,3,5,7,9)(2,4,6,8,10)

(1,4,7,10,3,6,9,2,5,8)

(1,5,9,3,7)(2,6,10,4,8) (1,7,3,9,5)(2,8,4,10,6)

(1,8,5,2,9,6,3,10,7,4)

(1,9,7,5,3)(2,10,8,6,4)

(1,10,9,8,7,6,5,4,3,2)

(1,6)(2,7)(3,8)(4,9)(5,10)

( )
(1,2,3,4,5,6,7,8,9,10)

(1,3,5,7,9)(2,4,6,8,10)

(1,4,7,10,3,6,9,2,5,8)

(1,5,9,3,7)(2,6,10,4,8) (1,7,3,9,5)(2,8,4,10,6)

(1,8,5,2,9,6,3,10,7,4)

(1,9,7,5,3)(2,10,8,6,4)

(1,10,9,8,7,6,5,4,3,2)

(1,6)(2,7)(3,8)(4,9)(5,10)
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or 

( )
(1,2,3,4,5,6,7,8,9,10)

(1,3,5,7,9)(2,4,6,8,10)

(1,4,7,10,3,6,9,2,5,8)

(1,5,9,3,7)(2,6,10,4,8) (1,7,3,9,5)(2,8,4,10,6)

(1,8,5,2,9,6,3,10,7,4)

(1,9,7,5,3)(2,10,8,6,4)

(1,10,9,8,7,6,5,4,3,2)

(1,6)(2,7)(3,8)(4,9)(5,10)

( )
(1,2,3,4,5,6,7,8,9,10)

(1,3,5,7,9)(2,4,6,8,10)

(1,4,7,10,3,6,9,2,5,8)

(1,5,9,3,7)(2,6,10,4,8) (1,7,3,9,5)(2,8,4,10,6)

(1,8,5,2,9,6,3,10,7,4)

(1,9,7,5,3)(2,10,8,6,4)

(1,10,9,8,7,6,5,4,3,2)

(1,6)(2,7)(3,8)(4,9)(5,10)
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or 

( )

(1, 2,3,4,5) (1,5,4,3, 2)

(1,4, 2,5,3)(1,3,5, 2, 4)

(6,7)

(1, 2,3, 4,5)(6, 7)

(1,3,5,2,4)(6, 7) (1,4,2,5,3)(6,7)

(1,5, 4,3, 2)(6,7)

( )

(1, 2,3,4,5) (1,5,4,3, 2)

(1,4, 2,5,3)(1,3,5, 2, 4)

(6,7)

(1, 2,3, 4,5)(6, 7)

(1,3,5,2,4)(6, 7) (1,4,2,5,3)(6,7)

(1,5, 4,3, 2)(6,7)
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( )

(1,2,3,4,5)(6,7,8,9,10) (1,5,4,3,2)(6,10,9,8,7)

(1,4,2,5,3)(6,9,7,10,8)(1,3,5,2,4)(6,8,10,7,9)

(1,6)(2,7)(3,8)(4,9)(5,10)

(1,7,3,9,5,6,2,8,4,10)

(1,8,5,7, 4,6,3,10,2,9) (1,9,2,10,3,6,4,7,5,8)

(1,10, 4,8,2,6,5,9,3,7)

( )

(1,2,3,4,5)(6,7,8,9,10) (1,5,4,3,2)(6,10,9,8,7)

(1,4,2,5,3)(6,9,7,10,8)(1,3,5,2,4)(6,8,10,7,9)

(1,6)(2,7)(3,8)(4,9)(5,10)

(1,7,3,9,5,6,2,8,4,10)

(1,8,5,7, 4,6,3,10,2,9) (1,9,2,10,3,6,4,7,5,8)

(1,10, 4,8,2,6,5,9,3,7)
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Generator Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

or 

1
2

3

4

5 7

8

9

10

6

1
2

3

4

5 7

8

9

10

6
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or 

12

3

4

5 6

712

3

4

5 6

7
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1

2 5

43

6

7

8 9

10

1

2 5

43

6

7

8 9

10
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THE DIHEDRAL GROUP 5D  

5 5 2 5 2D C C≅ > ≅ >  

 
 

Generators: 
 
(1,2,3,4,5),(2,5)(3,4)  
 
 
Elements: 
 

( ) ( )
(2,5)(3,4) (1,2,3,4,5)(6,7,8,9,10)
(1,2)(3,5) (1,3,5,2,4)(6,8,10,7,9)

(1,2,3,4,5) (1,4,2,5,3)(6,9,7,10,8)
(1,3)(4,5) (1

(1,3,5,2,4)
(1,4)(2,3)
(1,4,2,5,3)
(1,5,4,3,2)
(1,5)(2,4)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

5
,5,4,3,2)(6,10,9,8,7)

(1,6)(2,10)(3,9)(4,8)(5,7)
(1,7)(2,6)(3,10)(4,9)(5,8)
(1,8)(2,7)(3,6)(4,10)(5,9)
(1,9)(2,8)(3,7)(4,6)(5,10)
(1,10)(2,9)(3,8)(4,7)(5,6)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

 
 
Is Abelian? 
 
No 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

(1, 2,3,4,5)

(1,3,5, 2,4) (1, 4,2,5,3)

(1,5,4,3,2)

(2,5)(3, 4) (1,2)(3,5) (1,3)(4,5) (1,4)(2,3) (1,5)(2,4)

( )

(1, 2,3,4,5)

(1,3,5, 2,4) (1, 4,2,5,3)

(1,5,4,3,2)

(2,5)(3, 4) (1,2)(3,5) (1,3)(4,5) (1,4)(2,3) (1,5)(2,4)
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or 

( )

(1,2,3,4,5)

(1,3,5, 2, 4)

(1, 4, 2,5,3)

(1,5, 4,3, 2)

(2,5)(3,4) (1,2)(3,5)

(1,3)(4,5)

(1, 4)(2,3)

(1,5)(2,4)

( )

(1,2,3,4,5)

(1,3,5, 2, 4)

(1, 4, 2,5,3)

(1,5, 4,3, 2)

(2,5)(3,4) (1,2)(3,5)

(1,3)(4,5)

(1, 4)(2,3)

(1,5)(2,4)
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( )

(1,2,3,4,5)(6,7,8,9,10)

(1,3,5,2,4)(6,8,10,7,9)

(1, 4, 2,5,3)(6,9,7,10,8)

(1,5,4,3, 2)(6,10,9,8,7)

(1,6)(2,10)(3,9)(4,8)(5,7) (1,7)(2,6)(3,10)(4,9)(5,8)

(1,8)(2,7)(3,6)(4,10)(5,9)

(1,9)(2,8)(3,7)(4,6)(5,10)

(1,10)(2,9)(3,8)(4,7)(5,6)

( )

(1,2,3,4,5)(6,7,8,9,10)

(1,3,5,2,4)(6,8,10,7,9)

(1, 4, 2,5,3)(6,9,7,10,8)

(1,5,4,3, 2)(6,10,9,8,7)

(1,6)(2,10)(3,9)(4,8)(5,7) (1,7)(2,6)(3,10)(4,9)(5,8)

(1,8)(2,7)(3,6)(4,10)(5,9)

(1,9)(2,8)(3,7)(4,6)(5,10)

(1,10)(2,9)(3,8)(4,7)(5,6)
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Generator Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

2

3

4

5

6 7

8

9

10

1

2

3

4

5

6 7

8

9

10
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How to use gap (part 5) 

 

Part 5 of How to Use GAP is actually the same as Part 4.  We are just repeating 

the information for easy reference. 

 

 

1. How can I redisplay the previous command in order to edit it? 

 

Press down on the control key and then also press p.  In other words, “Ctrl p”. 

 

 

2. If the program gets in a loop and shows you the prompt “brk>” instead of 

“gap>”, how can I exit the loop? 

 

Press down on the control key and then also press d.  In other words, “Ctrl d”. 

 

 

3. How can I exit the program? 

 

Either click on the “close” box for the window, or type “quit;” and press 

“Enter.” 

 

 

4. How do I find the inverse of a permutation? 

 

gap> a:=(1,2,3,4); 

(1,2,3,4) 

gap> a^-1; 

(1,4,3,2) 
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5. How can I multiply permutations and raise permutations to powers? 

 

gap> (1,2)*(1,2,3); 

(1,3) 

 

gap> (1,2,3)^2; 

(1,3,2) 

 

gap> (1,2,3)^-1; 

(1,3,2) 

 

gap> (1,2,3)^-2; 

(1,2,3) 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> b:=(1,2); 

(1,2) 

 

gap> a*b; 

(2,3) 

 

gap> a^2; 

(1,3,2) 

 

gap> a^-2; 

(1,2,3) 

 

gap> a^3; 

() 
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gap> a^-3; 

() 

 

gap> (a*b)^2; 

() 

 

gap> (a*b)^3; 

(2,3) 

 

 

6. How can I create a group from permutations, find the size of the group, and 

find the elements in the group? 

 

gap> a:=(1,2); 

(1,2) 

 

gap> b:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a,b); 

Group([ (1,2), (1,2,3) ]) 

 

gap> Size(g1); 

6 

 

gap> Elements(g1); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> g2:=Group([(1,2),(1,2,3)]); 

Group([ (1,2), (1,2,3) ]) 
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gap> g3:=Group((1,2),(2,3,4)); 

Group([ (1,2), (2,3,4) ]) 

 

 

7. How can I create a cyclic group of order 3? 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a); 

Group([ (1,2,3) ]) 

 

gap> Size(g1); 

3 

 

gap> Elements(g1); 

[ (), (1,2,3), (1,3,2) ] 

 

gap> g2:=Group((1,2,3)); 

Group([ (1,2,3) ]) 

 
gap> g3:=CyclicGroup(IsPermGroup,3); 

Group([ (1,2,3) ]) 
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8. How can I create a multiplication table for the cyclic group of order 3 that I just 

created? 

 

gap> ShowMultiplicationTable(g1); 

 

*          | ()          (1,2,3)     (1,3,2) 

--------+--------------------------------- 

()         | ()          (1,2,3)     (1,3,2) 

(1,2,3) | (1,2,3)  (1,3,2)     () 

(1,3,2) | (1,3,2)  ()             1,2,3) 

 

 

9. How do I determine if a group is abelian? 

 

gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> IsAbelian(g1); 
true 
 
gap> g2:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 
gap> IsAbelian(g2); 
false 

 

 

10. What do I type in order to get help for a command like “Elements?” 

 

gap> ?Elements 

 

 

11. How do I find all subgroups of a group? 

 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=AllSubgroups(g); 
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]), 
Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ] 
 
gap> List(h,i->Elements(i)); 
[ [ () ], [ (), (2,3) ], [ (), (1,2) ], [ (), (1,3) ], [ (), (1,2,3), 
(1,3,2) ], [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] ] 
 
gap> Elements(h[1]); 
[ () ] 
 
gap> Elements(h[2]); 
[ (), (2,3) ] 
 
gap> Elements(h[3]); 
[ (), (1,2) ] 
 
gap> Elements(h[4]); 
[ (), (1,3) ] 
 
 
gap> Elements(h[5]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(h[6]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

 

12. How do I find the subgroup generated by particular permutations? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 

 

 

13. How do I determine if a subgroup is normal? 
 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 
gap> h1:=Group((1,2)); 
Group([ (1,2) ]) 
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gap> IsNormal(g,h1); 
 
gap> h2:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
 
gap> IsNormal(g,h2); 
true 

 

 
 
 
14. How do I find all normal subgroups of a group? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 

gap> n:=NormalSubgroups(g); 
[ Group([ (1,2), (1,2,3) ]), Group([ (1,3,2) ]), Group(()) ] 
 

gap> Elements(n[1]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> Elements(n[2]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(n[3]); 
[ () ] 

 

 

15. How do I determine if a group is simple? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> IsSimple(g); 
false 

 
gap> h:=Group((1,2)); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> IsSimple(h); 
true 
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16. How do I find the right cosets of a subset H of G? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> c:=RightCosets(g,h); 
[ RightCoset(Group( [ (1,2) ] ),()), RightCoset(Group( [ (1,2) ] ),(1,3,2)), 
RightCoset(Group( [ (1,2) ] ),(1,2,3)) ] 
 
gap> List(c,i->Elements(i)); 
[ [ (), (1,2) ], [ (2,3), (1,3,2) ], [ (1,2,3), (1,3) ] ] 
gap> Elements(c[1]); 
[ (), (1,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,3,2) ] 
 
 
gap> Elements(c[3]); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=RightCoset(h,(1,2,3)); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=h*(1,2,3); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 

 
 

17. How can I create a quotient (factor) group? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> n:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> Elements(n); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> IsNormal(g,n); 
true 
 
gap> c:=RightCosets(g,n); 
[ RightCoset(Group([ (1,2,3) ]),()), RightCoset(Group([ (1,2,3) ]),(2,3)) ] 
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gap> Elements(c[1]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,2), (1,3) ] 
 
gap> f:=FactorGroup(g,n); 
Group([ f1 ]) 
 
gap> Elements(f); 
[ <identity> of ..., f1 ] 
 
gap> ShowMultiplicationTable(f); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
 
 
 

 

18. How do I find the center of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Center(g); 
Group(()) 
 
gap> c:=Center(g); 
Group(()) 
 
gap> Elements(c); 
[ () ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> c:=Center(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 

 
 
19. How do I find the commutator (derived) subgroup of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3,2) ]) 
 
gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(d); 
[ (), (1,3)(2,4) ] 
 

 
20. How do I find all Sylow p-subgroups for a given group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> FactorsInt(6); 
[ 2, 3 ] 
 
gap> sylow2:=SylowSubgroup(g,2); 
Group([ (2,3) ]) 
 
gap> IsNormal(g,sylow2); 
false 
 
gap> c:=ConjugateSubgroups(g,sylow2); 
[ Group([ (2,3) ]), Group([ (1,3) ]), Group([ (1,2) ]) ] 
 
gap> Elements(c[1]); 
[ (), (2,3) ] 
 
gap> Elements(c[2]); 
[ (), (1,3) ] 
 
gap> Elements(c[3]); 
[ (), (1,2) ] 
 
gap> sylow3:=SylowSubgroup(g,3); 
Group([ (1,2,3) ]) 
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gap> IsNormal(g,sylow3); 
true 
 
gap> Elements(sylow3); 
[ (), (1,2,3), (1,3,2) ] 
 

 
 
21. How can I create the Rubik’s cube group using GAP? 

 

First you need to save the following permutations as a pure text file with the 

name rubik.txt to your C-drive before you can import it into GAP. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 

 

And now you can read the file into GAP and begin exploring. 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
 
 
22. How can I find the center of the Rubik’s cube group? 
 
 
gap> c:=Center(rubik); 
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45) 
(39,47) ] 
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23. How can I find the commutator (derived) subgroup of the Rubik’s cube group? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group with 5 generators> 
 
gap> Size(d); 
21626001637244928000 
 
gap> IsNormal(rubik,d); 
true 

 

 

24. How can I find the quotient (factor) group of the Rubik’s cube group by its 

commutator (derived) subgroup? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group of size 21626001637244928000 with 5 generators> 
 
gap> f:=FactorGroup(rubik,d); 
Group([ f1 ]) 
 
gap> Size(f); 
2 
 

 

25. How can I find some Sylow p-subgroups of the Rubik’s cube group? 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
gap> FactorsInt(43252003274489856000); 
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11 ] 
 
gap> sylow2:=SylowSubgroup(rubik,2); 
<permutation group of size 134217728 with 27 generators> 
 
gap> sylow3:=SylowSubgroup(rubik,3); 
<permutation group of size 4782969 with 14 generators> 
 
gap> sylow5:=SylowSubgroup(rubik,5); 
<permutation group of size 125 with 3 generators> 
 
gap> sylow7:=SylowSubgroup(rubik,7); 
<permutation group of size 49 with 2 generators> 
 
gap> sylow11:=SylowSubgroup(rubik,11); 
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ]) 
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gap> Elements(sylow11); 
[ (), (4,5,36,21,31,15,39,13,42,7,12)(10,26,29,28,45,44,47,20,23,18,37), 
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29), 
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26), 
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45), 
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47), 
(4,21,39,7,5,31,13,12,36,15,42)(10,28,47,18,26,45,20,37,29,44,23), 
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20), 
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18), 
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44), 
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ] 
 
gap> IsNormal(rubik,sylow2); 
false 
 
gap> IsNormal(rubik,sylow3); 
false 
 
 
gap> IsNormal(rubik,sylow5); 
false 
 
gap> IsNormal(rubik,sylow7); 
false 
 
gap> IsNormal(rubik,sylow11); 
false 
 
NOTE:  All of the Sylow p-subgroups found above have conjugates, but the 
sheer size of the Rubik’s cube group makes it too difficult to pursue them on a 
typical desktop computer. 
 

 

26. How do I determine if a group is cyclic? 

 
gap> a:=(1,2,3)*(4,5,6,7); 
(1,2,3)(4,5,6,7) 
 
gap> g:=Group(a); 
Group([ (1,2,3)(4,5,6,7) ]) 
 
gap> Size(g); 
12 
 
gap> IsCyclic(g); 
true 

 

 

27. How do I create a dihedral group with 2n elements for an n-sided regular 

polygon? 

 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
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gap> Elements(d4); 
[ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ] 
 

 

28. How can I express the elements of a dihedral group as rotations and flips 
rather than as permutations? 

 
 
gap> d3:=DihedralGroup(6); 
<pc group of size 6 with 2 generators> 
 
gap> Elements(d3); 
[ <identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2 ] 
 
gap> ShowMultiplicationTable(d3); 
*                 | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
------------------+---------------------------------------------------------------------------------------------------\ 
--------- 
<identity> of ... | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
f1                | f1                <identity> of ... f1*f2             f2                f1*f2^2           f2^2       
f2                | f2                f1*f2^2           f2^2              f1                <identity> of ... f1*f2      
f1*f2             | f1*f2             f2^2              f1*f2^2           <identity> of ... f1                f2         
f2^2              | f2^2              f1*f2             <identity> of ... f1*f2^2           f2                f1         
f1*f2^2           | f1*f2^2           f2                f1                f2^2              f1*f2             
<identity> of ... 

29. How do I create a symmetric group of degree n with n! elements? 
 
gap> s4:=SymmetricGroup(4); 
Sym( [ 1 .. 4 ] ) 
 
gap> Size(s4); 
24 
 
gap> Elements(s4); 
[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), 
(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), 
  (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), 
(1,4), (1,4,2,3), (1,4)(2,3) ] 

 
 
 

30. How do I create an alternating group of degree n with !
2
n  elements? 

 
gap> a4:=AlternatingGroup(4); 
Alt( [ 1 .. 4 ] ) 

 
gap> Size(a4); 
12 
gap> Elements(a4); 
[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), 
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ] 

 
 
 
31. How do I create a direct product of two or more groups? 
 
gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
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gap> g2:=Group((4,5)); 
Group([ (4,5) ]) 
 
gap> dp:=DirectProduct(g1,g2); 
Group([ (1,2,3), (4,5) ]) 
 
gap> Size(dp); 
6 
gap> Elements(dp); 
[ (), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) ] 
 
gap> ShowMultiplicationTable(dp); 
*            | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
-------------+---------------------------------------------------------------------------
--- 
()           | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
(4,5)        | (4,5)        ()           (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2) 
(1,2,3)      | (1,2,3)      (1,2,3)(4,5) (1,3,2)      (1,3,2)(4,5) ()           (4,5) 
(1,2,3)(4,5) | (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2)      (4,5)        () 
(1,3,2)      | (1,3,2)      (1,3,2)(4,5) ()           (4,5)        (1,2,3)      
(1,2,3)(4,5) 
(1,3,2)(4,5) | (1,3,2)(4,5) (1,3,2)      (4,5)        ()           (1,2,3)(4,5) (1,2,3) 

 
 

 
 

32. How can I create the Quaternion group? 
 
gap> a:=(1,2,5,6)*(3,8,7,4); 
(1,2,5,6)(3,8,7,4) 
 
gap> b:=(1,4,5,8)*(2,7,6,3); 
(1,4,5,8)(2,7,6,3) 
 
gap> q:=Group(a,b); 
Group([ (1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ]) 
 
gap> Size(q); 
8 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3), 
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8), 
  (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ] 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6), 
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7), 
  (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ] 
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33. How can I find a set of independent generators for a group? 
 
 
gap> c6:=CyclicGroup(IsPermGroup,6); 
Group([ (1,2,3,4,5,6) ]) 
 
gap> Size(c6); 
6 
 
gap> GeneratorsOfGroup(c6); 
[ (1,2,3,4,5,6) ] 

 
 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
 
gap> Size(d4); 
8 
 
gap> GeneratorsOfGroup(d4); 
[ (1,2,3,4), (2,4) ] 

 
 
gap> s5:=SymmetricGroup(5); 
Sym( [ 1 .. 5 ] ) 
 
 
gap> Size(s5); 
120 
 
gap> GeneratorsOfGroup(s5); 
[ (1,2,3,4,5), (1,2) ] 
 
 
gap> a5:=AlternatingGroup(5); 
Alt( [ 1 .. 5 ] ) 
 
gap> Size(a5); 
60 
 
gap> GeneratorsOfGroup(a5); 
[ (1,2,3,4,5), (3,4,5) ] 
 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
gap> GeneratorsOfGroup(q); 
[ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ] 
 
 
 

34. How do I find the conjugate of a permutation in the form 1ba b ab−= ? 
 
gap> a:=(1,2,3,4,5); 
(1,2,3,4,5) 

 
gap> b:=(2,4,5); 
(2,4,5) 
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gap> a^b; 
(1,4,3,5,2) 

 
gap> b^-1*a*b; 
(1,4,3,5,2) 
 
 
 
35. How do I divide up a group into classes of elements that are conjugate to one another?  

(Note that “conjugacy” is an equivalence relation on our group G.  That means that 
G can be separated into nonintersecting subsets that contain only elements that are 
conjugate to one another.) 

 
gap> d3:=DihedralGroup(IsPermGroup,6); 
Group([ (1,2,3), (2,3) ]) 

 
gap> Size(d3); 
6 

 
gap> Elements(d3); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 
gap> cc:=ConjugacyClasses(d3); 
[ ()^G, (2,3)^G, (1,2,3)^G ] 

 
gap> Elements(cc[1]); 
[ () ] 

 
gap> Elements(cc[2]); 
[ (2,3), (1,2), (1,3) ] 

 
gap> Elements(cc[3]); 
[ (1,2,3), (1,3,2) ] 
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How to find the quotient of a cayley 
diagram 

 
 

 

We’re now going to give an illustration of how to find the Cayley diagram of a 

quotient group, and for this example we will use the Quanternion Group since all 

of its subgroups are normal subgroups.  Thus, below is the Cayley diagram for 

the Quanternion Group, and the subgroup we are going to factor our is 

( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1,2,5,6)(8,7,4,3) ( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8) (1,6,5,2)(3,4,7,8)

(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)

(1,3,5,7)(2,4,6,8)

(1,2,5,6)(8,7,4,3) ( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8) (1,6,5,2)(3,4,7,8)

(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)

(1,3,5,7)(2,4,6,8)
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And now, for convenience, we’ll color-code the various right cosets that are to be 

found in our corresponding quotient group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (1,2,5,6)(8,7,4,3) ( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8) (1,6,5,2)(3,4,7,8)

(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)

(1,3,5,7)(2,4,6,8)

(1,2,5,6)(8,7,4,3) ( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8) (1,6,5,2)(3,4,7,8)

(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)

(1,3,5,7)(2,4,6,8)
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The four elements in our quotient group can be listed as follows. 

 

( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

, 
(1,2,5,6)(8,7,4,3)
(1,6,5,2)(3,4,7,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

, 
(1,7,5,3)(2,8,6,4)
(1,3,5,7)(2,4,6,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

, and  

 

(1,4,5,8)(7,6,3,2)
(1,8,5,4)(2,3,6,7)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 

 

 

We can also write each of those as a right coset of the normal subgroup that we 

are factoring out. 

 

( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 

 

( )
(1

(1
,5

,2,5
)(2,

,6)(8,7,
6)(3,7)(

4,3)
(1,6,5,2)(3, 4,8)

(1,2,5,6)(8,7,4,
4,

3)
7,8)

⎧ ⎫⎧ ⎫
=⎨ ⎨ ⎬

⎭⎩ ⎩
⎬
⎭

 

 

( )
(1

(1
,5

,4,5
)(2,

,8)(7,6,
6)(3,7)(

3,2)
(1,8,5,4)(2, 4,8)

(1,4,5,8)(7,6,3,
3,

2)
6,7)

⎧ ⎫⎧ ⎫
=⎨ ⎨ ⎬

⎭⎩ ⎩
⎬
⎭

 

 

( )

( )

(1,7,5,3)(2,8,6,4)
(1,7,5,3)(2,8,6,4)

(1,3,5,7)(2,4,6,8) (1,5)(2,6)(3,7)(4,8)

(1,5)(2,
(1,4,5,8)(7(1, ,6,3,2)2,5,6)(

6)(3,7
8,7,4

)(
,3

4,
)

8)

⎧ ⎫
=⎨ ⎬

⎩ ⎭

=

⎧ ⎫
⎨ ⎬
⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭
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Using our Cayley diagram where the cosets are color-coded (repeated below), 

we can find the order of each element of our quotient group by following the 

appropriate arrows leading away from each particular coset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, if we apply the red arrows twice to each element of the coset  

( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

, then we arrive back at elements in the coset 

( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

.  Hence, ( )
(1,5)(2,6)(3,7)(4,8)

(1,2,5,6)(8,7,4,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 has order 2.  

Similarly, if we apply the green arrows twice to ( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

, then we also 

arrive back at elements in the coset ( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

, and so 

( )
(1,5)(2,6)(3,7)(4,8)

(1,4,5,8)(7,6,3,2)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 also has order 2.  Also, if we apply the red 

arrow followed by the green arrow  repeatedly to the coset we have factored out, 

then we again show that we have an element of order 2.. 

(1,2,5,6)(8,7,4,3) ( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8) (1,6,5,2)(3,4,7,8)

(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)

(1,3,5,7)(2,4,6,8)

(1,2,5,6)(8,7,4,3) ( )

(1,4,5,8)(7,6,3,2)

(1,5)(2,6)(3,7)(4,8) (1,6,5,2)(3,4,7,8)

(1,8,5,4)(2,3,6,7)

(1,7,5,3)(2,8,6,4)

(1,3,5,7)(2,4,6,8)
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( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 

 

( ) (1,4,5,8)(7,6,3,2)
(1,5)(2,6)(3,7)(4,

(1,7,5,3)(2,8,6,

(1,

4)
(

2

1,3,5,7)(2,4,6,

,5,6)(3,8,7,4

)

)
)

8

8
⎧ ⎫
⎨ ⎬
⎩ ⎭

=
⎧ ⎫
⎨ ⎬
⎩ ⎭

 

 

( )

( )

2

(1,5)(2,6)(3,7)

(1,7,5,3)(2,8,6,

(4,8)

(1,5)(2,6)(3

4)
(1,3,5,7)(2,4,6,8)

(1,2,5,6)(3,8,7,4)

(1,2,5,6)(3,8,7,4

(1,4,5,8)(7,6,3,2)

(1,4,5,8)(7,6,3,

,7)(4,8

)

)

[ ]2)
⎧ ⎫

= ⎨ ⎬
⎩

⎧

⎭

⎧ ⎫
= ⎨

⎫
⎨ ⎬
⎩

⎩

⎭

⎬
⎭
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From this we know that our quotient group must be isomorphic to the Klein 4-

group, and we can easily construct its Cayley diagram.  And we are done. 

 

 

 

( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

(1, 2,5,6)(8,7,4,3)
(1,6,5, 2)(3, 4,7,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

(1,7,5,3)(2,8,6,4)
(1,3,5,7)(2, 4,6,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

(1,4,5,8)(7,6,3, 2)
(1,8,5,4)(2,3,6,7)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,5)(2,6)(3,7)(4,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

(1, 2,5,6)(8,7,4,3)
(1,6,5, 2)(3, 4,7,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

(1,7,5,3)(2,8,6,4)
(1,3,5,7)(2, 4,6,8)
⎧ ⎫
⎨ ⎬
⎩ ⎭

(1,4,5,8)(7,6,3, 2)
(1,8,5,4)(2,3,6,7)
⎧ ⎫
⎨ ⎬
⎩ ⎭
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Summary (part 5) 

 

Upon completing this part, you should be able to construct the following items for 

a group once you are given generators for that group: 

• A cycle graph. 

• A Cayley diagram. 

• A generator diagram. 

• A canonical generator diagram. 

• The quotient of a Cayley diagram 

 

The fun continues! 
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practice (part 5) 
 

For each given group and set of generators for that group, construct the same 

type of visual analysis presented in Part 5 of this work. 

 

1. Group:  11 11C ≅   (cyclic group) 

Generators:  (1,2,3,4,5,6,7,8,9,10,11)  

 

2. Group:  6 2 3 2 2 3 2 2 6 2C C C C C× ≅ × × ≅ × × ≅ ×   (direct product) 

Generators:  (1,2,3,4,5,6),(7,8)  

 

3. Group:  6 6 2 6 2D C C≅ > ≅ >   (dihedral group) 

Generators:  (1,2,3,4,5,6),(2,6)(3,5)  

 

4. Group:  4A   (alternating group) 

Generators:  (1,2,3),(2,3,4)  
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practice (part 5) - Answers 
 

For each given group and set of generators for that group, construct the same 

type of visual analysis presented in part 5 of this work. 
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1. Group:  11 11C ≅   (cyclic group) 

Generators:  (1,2,3,4,5,6,7,8,9,10,11)  
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THE CYCLIC GROUP OF ORDER 11 

11 11C ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7,8,9,10,11)  
 
 
Elements: 
 

( )
(1,2,3,4,5,6,7,8,9,10,11)
(1,3,5,7,9,11,2,4,6,8,10)
(1,4,7,10,2,5,8,11,3,6,9)
(1,5,9,2,6,10,3,7,11,4,8)
(1,6,11,5,10,4,9,3,8,2,7)
(1,7,2,8,3,9,4,10,5,11,6)
(1,8,4,11,7,3,10,6,2,9,5)
(1,9,6,3,11,8,5,2,10,7,4)

11

(1,10,8,6,4,2,11,9,7,5,3)
(1,11,10,9,8,7,6,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

(1,2,3, 4,5,6,7,8,9,10,11)

(1,3,5,7,9,11,2,4,6,8,10)

(1,7,2,8,3,9,4,10,5,11,6)

(1,10,8,6, 4,2,11,9,7,5,3)

(1,5,9,2,6,10,3,7,11,4,8)

(1,4,7,10,2,5,8,11,3,6,9)

(1,6,11,5,10,4,9,3,8,2, 7)

(1,9,6,3,11,8,5,2,10,7,4)

(1,8,4,11,7,3,10,6,2,9,5)

(1,11,10,9,8,7,6,5,4,3, 2)

( )

(1,2,3, 4,5,6,7,8,9,10,11)

(1,3,5,7,9,11,2,4,6,8,10)

(1,7,2,8,3,9,4,10,5,11,6)

(1,10,8,6, 4,2,11,9,7,5,3)

(1,5,9,2,6,10,3,7,11,4,8)

(1,4,7,10,2,5,8,11,3,6,9)

(1,6,11,5,10,4,9,3,8,2, 7)

(1,9,6,3,11,8,5,2,10,7,4)

(1,8,4,11,7,3,10,6,2,9,5)

(1,11,10,9,8,7,6,5,4,3, 2)
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Cayley diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
( )

(1,2,3, 4,5,6,7,8,9,10,11)

(1,3,5,7,9,11,2,4,6,8,10)

(1,7,2,8,3,9,4,10,5,11,6)

(1,10,8,6, 4,2,11,9,7,5,3)

(1,5,9,2,6,10,3,7,11,4,8)

(1,4,7,10,2,5,8,11,3,6,9)

(1,6,11,5,10,4,9,3,8,2, 7)

(1,9,6,3,11,8,5,2,10,7,4)

(1,8,4,11,7,3,10,6,2,9,5)

(1,11,10,9,8,7,6,5,4,3, 2)

( )

(1,2,3, 4,5,6,7,8,9,10,11)

(1,3,5,7,9,11,2,4,6,8,10)

(1,7,2,8,3,9,4,10,5,11,6)

(1,10,8,6, 4,2,11,9,7,5,3)

(1,5,9,2,6,10,3,7,11,4,8)

(1,4,7,10,2,5,8,11,3,6,9)

(1,6,11,5,10,4,9,3,8,2, 7)

(1,9,6,3,11,8,5,2,10,7,4)

(1,8,4,11,7,3,10,6,2,9,5)

(1,11,10,9,8,7,6,5,4,3, 2)
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Generator Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

7

10

5

4

6

9

8

11

1

2

3

7

10

5

4

6

9

8

11
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2. Group:  6 2 3 2 2 3 2 2 6 2C C C C C× ≅ × × ≅ × × ≅ ×   (direct product) 

Generators:  (1,2,3,4,5,6),(7,8)  
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THE DIRECT PRODUCT 6 2×  

6 2 3 2 2 3 2 2 6 2C C C C C× ≅ × × ≅ × × ≅ ×  

 
 

Generators: 
 
(1,2,3,4,5,6),(7,8)  
 
 
Elements: 
 

( )
(7,8)

(1,2,3,4,5,6)
(1,2,3,4,5,6)(7,8)

(1,3,5)(2,4,6)
(1,3,5)(2,4,6)(7,8)

(1,4)(2,5)(3,6)
(1,4)(2,5)(3,6)(7,8)

(1,5,3)(2,6,4)
(1,5,3)(2,6,4)(7,8)

(1,6,5,4,3,2)
(1,6,5,4,3,2)(7,8)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩ ⎭

6 2C C≅ ×

⎪
⎪
⎪
⎪
⎪
⎪

   

 
 
Is Abelian? 
 
Yes 
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Cycle Graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

(1,2,3,4,5,6)
(1,2,3,4,5,6)(7,8) (1,6,5,4,3,2)(7,8)

(1,5,3)(2,6,4)(7,8)

(1,4)(2,5)(3,6)(7,8)

(1,3,5)(2,4,6)
(7,8)

(1,4)(2,5)(3,6)

(1,5,3)(2,6,4)

(1,6,5,4,3,2)

(1,3,5)(2,4,6)(7,8)

( )

(1,2,3,4,5,6)
(1,2,3,4,5,6)(7,8) (1,6,5,4,3,2)(7,8)

(1,5,3)(2,6,4)(7,8)

(1,4)(2,5)(3,6)(7,8)

(1,3,5)(2,4,6)
(7,8)

(1,4)(2,5)(3,6)

(1,5,3)(2,6,4)

(1,6,5,4,3,2)

(1,3,5)(2,4,6)(7,8)
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Cayley Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

( )

(1,2,3,4,5,6)

(1,2,3,4,5,6)(7,8) (1,6,5,4,3,2)(7,8)

(1,5,3)(2,6,4)(7,8)

(1,4)(2,5)(3,6)(7,8)

(1,3,5)(2,4,6)

(7,8)

(1,4)(2,5)(3,6)

(1,5,3)(2,6,4)

(1,6,5,4,3,2)

(1,3,5)(2,4,6)(7,8)

( )

(1,2,3,4,5,6)

(1,2,3,4,5,6)(7,8) (1,6,5,4,3,2)(7,8)

(1,5,3)(2,6,4)(7,8)

(1,4)(2,5)(3,6)(7,8)

(1,3,5)(2,4,6)

(7,8)

(1,4)(2,5)(3,6)

(1,5,3)(2,6,4)

(1,6,5,4,3,2)

(1,3,5)(2,4,6)(7,8)
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or 

( )

(1,2,3,4,5,6)(7,8,9,10,11,12)

(1,8,3,10,5,12)(2,9,4,11,6,7) (1,12,5,10,3,8)(2,7,6,11,4,9)

(1,11,3,7,5,9)(2,12,4,8,6,10)

(1,10)(2,11)(3,12)(4,7)(5,8)(6,9)

(1,3,5)(2,4,6)(7,9,11)(8,10,12)

(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)

(1,4)(2,5)(3,6)(7,10)(8,11)(9,12)

(1,5,3)(2,6,4)(7,11,9)(8,12,10)

(1,6,5,4,3,2)(7,12,11,10,9,8)

(1,9,5,7,3,11)(2,10,6,8,4,12)

( )

(1,2,3,4,5,6)(7,8,9,10,11,12)

(1,8,3,10,5,12)(2,9,4,11,6,7) (1,12,5,10,3,8)(2,7,6,11,4,9)

(1,11,3,7,5,9)(2,12,4,8,6,10)

(1,10)(2,11)(3,12)(4,7)(5,8)(6,9)

(1,3,5)(2,4,6)(7,9,11)(8,10,12)

(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)

(1,4)(2,5)(3,6)(7,10)(8,11)(9,12)

(1,5,3)(2,6,4)(7,11,9)(8,12,10)

(1,6,5,4,3,2)(7,12,11,10,9,8)

(1,9,5,7,3,11)(2,10,6,8,4,12)
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or 

( )(1,2,3)

(1,3,2)

(4,5)(1,2,3)(4,5)

(1,3,2)(4,5)

(6,7)(1,2,3)(6,7)

(1,3,2)(6,7)
(1,2,3)(4,5)(6,7)

(1,3,2)(4,5)(6,7)

(4,5)(6,7)

( )(1,2,3)

(1,3,2)

(4,5)(1,2,3)(4,5)

(1,3,2)(4,5)

(6,7)(1,2,3)(6,7)

(1,3,2)(6,7)
(1,2,3)(4,5)(6,7)

(1,3,2)(4,5)(6,7)

(4,5)(6,7)

( )(1,2,3)

(1,3,2)

(4,5)(1,2,3)(4,5)

(1,3,2)(4,5)

(6,7)(1,2,3)(6,7)

(1,3,2)(6,7)
(1,2,3)(4,5)(6,7)

(1,3,2)(4,5)(6,7)

(4,5)(6,7)
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(1,6,2,4,3,5)(7,12,8,10,9,11)

( )(1,2,3)(4,5,6)(7,8,9)(10,11,12)

(1,3,2)(4,6,5)(7,9,8)(10,12,11)

(1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(1,5,3,4,2,6)(7,11,9,10,8,12)

(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(1,8,3,7,2,9)(4,11,6,10,5,12)

(1,9,2,7,3,8)(4,12,5,10,6,11)
(1,11,3,10,2,12)(4,8,6,7,5,9)

(1,12,2,10,3,11)(4,9,5,7,6,8)

(1,10)(2,11)(3,12)(4,7)(5,8)(6,9)

(1,6,2,4,3,5)(7,12,8,10,9,11)(1,6,2,4,3,5)(7,12,8,10,9,11)(1,6,2,4,3,5)(7,12,8,10,9,11)

( )(1,2,3)(4,5,6)(7,8,9)(10,11,12)

(1,3,2)(4,6,5)(7,9,8)(10,12,11)

(1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(1,5,3,4,2,6)(7,11,9,10,8,12)

(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(1,8,3,7,2,9)(4,11,6,10,5,12)

(1,9,2,7,3,8)(4,12,5,10,6,11)
(1,11,3,10,2,12)(4,8,6,7,5,9)

(1,12,2,10,3,11)(4,9,5,7,6,8)

(1,10)(2,11)(3,12)(4,7)(5,8)(6,9)
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Generator Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

1

2

8 12

11

10

3

7

4

5

6

9

1

2

8 12

11

10

3

7

4

5

6

9
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or 

1

2

8
3

7

4

5

6

1

2

8
3

7

4

5

6
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or 

7

64

51

23

7

64

51

23

1

23
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12

3

45

6

78

9
11

12

10

12

3

45

6

78

9
11

12

10
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3. Group:  6 6 2 6 2D C C≅ > ≅ >   (dihedral group) 

Generators:  (1,2,3,4,5,6),(2,6)(3,5)  
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THE DIHEDRAL GROUP 6D  

6 6 2 6 2D C C≅ > ≅ >  

 
 

Generators: 
 
(1,2,3,4,5,6),(2,6)(3,5)  
 
 
Elements: 
 

( )

6

(2,6)(3,5)
(1,2)(3,6)(4,5)
(1,2,3,4,5,6)

(1,3)(4,6)
(1,3,5)(2,4,6)
(1,4)(2,3)(5,6)
(1,4)(2,5)(3,6)

(1,5)(2,4)
(1,5,3)(2,6,4)
(1,6,5,4,3,2)

(1,6)(2,5)(3,4)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

   

 
 
Is Abelian? 
 
No 
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Cycle Graph 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )

(1,2,3,4,5,6)

(1,6)(2,5)(3,4) (1,2)(3,6)(4,5) (1,3)(4,6) (1,4)(2,3)(5,6)

(1,3,5)(2,4,6)

(2,6)(3,5)

(1,4)(2,5)(3,6)

(1,5,3)(2,6,4)

(1,6,5,4,3,2)

(1,5)(2,4)

( )

(1,2,3,4,5,6)

(1,6)(2,5)(3,4) (1,2)(3,6)(4,5) (1,3)(4,6) (1,4)(2,3)(5,6)

(1,3,5)(2,4,6)

(2,6)(3,5)

(1,4)(2,5)(3,6)

(1,5,3)(2,6,4)

(1,6,5,4,3,2)

(1,5)(2,4)
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Cayley Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

or 

( )

(1,2,3,4,5,6)

(1,6)(2,5)(3,4) (1,2)(3,6)(4,5)

(1,3)(4,6)

(1,4)(2,3)(5,6)

(1,3,5)(2,4,6)

(2,6)(3,5)

(1,4)(2,5)(3,6)

(1,5,3)(2,6,4)

(1,6,5,4,3,2)

(1,5)(2,4)

( )

(1,2,3,4,5,6)

(1,6)(2,5)(3,4) (1,2)(3,6)(4,5)

(1,3)(4,6)

(1,4)(2,3)(5,6)

(1,3,5)(2,4,6)

(2,6)(3,5)

(1,4)(2,5)(3,6)

(1,5,3)(2,6,4)

(1,6,5,4,3,2)

(1,5)(2,4)
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( )

(1,2,3,4,5,6)(7,8,9,10,11,12)

(1,12)(2,11)(3,10)(4,9)(5,8)(6,7) (1,8)(2,7)(3,12)(4,11)(5,10)(6,9)

(1,9)(2,8)(3,7)(4,12)(5,11)(6,10)

(1,10)(2,9)(3,8)(4,7)(5,12)(6,11)

(1,3,5)(2,4,6)(7,9,11)(8,10,12)

(1,7)(2,12)(3,11)(4,10)(5,9)(6,8)

(1,4)(2,5)(3,6)(7,10)(8,11)(9,12)

(1,5,3)(2,6,4)(7,11,9)(8,12,10)

(1,6,5,4,3,2)(7,12,11,10,9,8)

(1,11)(2,10)(3,9)(4,8)(5,7)(6,12)

( )

(1,2,3,4,5,6)(7,8,9,10,11,12)

(1,12)(2,11)(3,10)(4,9)(5,8)(6,7) (1,8)(2,7)(3,12)(4,11)(5,10)(6,9)

(1,9)(2,8)(3,7)(4,12)(5,11)(6,10)

(1,10)(2,9)(3,8)(4,7)(5,12)(6,11)

(1,3,5)(2,4,6)(7,9,11)(8,10,12)

(1,7)(2,12)(3,11)(4,10)(5,9)(6,8)

(1,4)(2,5)(3,6)(7,10)(8,11)(9,12)

(1,5,3)(2,6,4)(7,11,9)(8,12,10)

(1,6,5,4,3,2)(7,12,11,10,9,8)

(1,11)(2,10)(3,9)(4,8)(5,7)(6,12)
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Generator Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

or 

1

2

12 8

9

10

3

7

4

5

6

11

1

2

12 8

9

10

3

7

4

5

6

11



 172

 

 

1

3

2

4

5

6

1

3

2

4

5

6
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4. Group:  4A   (alternating group) 

Generators:  (1,2,3),(2,3,4)  
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THE ALTERNATING GROUP OF DEGREE 4 4A  

4A  

 
 

Generators: 
 
(1,2,3),(2,3,4)  
 
 
Elements: 
 

( )

4

(2,3,4)
(2,4,3)

(1,2)(3,4)
(1,2,3)
(1,2,4)
(1,3,2)
(1,3,4)

(1,3)(2,4)
(1,4,2)
(1,4,3)

(1,4)(2,3)

A

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

   

 
 
Is Abelian? 
 
No 
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Cycle Graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )

(1,2,3)

(1,3,2)

(2,3,4)

(2,4,3) (1,2,4)

(1,4,2)

(1,3,4)

(1,4,3)

(1,2)(3, 4) (1,3)(2, 4) (1,4)(2,3)

( )

(1,2,3)

(1,3,2)

(2,3,4)

(2,4,3) (1,2,4)

(1,4,2)

(1,3,4)

(1,4,3)

(1,2)(3, 4) (1,3)(2, 4) (1,4)(2,3)
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Cayley Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

( )(1,2,3) (2,3,4)

(1,3,2)

(2,4,3)(1,3)(2,4)

(1,4,3)

(1,4,2) (1,2)(3,4)

(1,2,4)

(1,3,4)

(1,4)(2,3)

( )(1,2,3) (2,3,4)

(1,3,2)

(2,4,3)(1,3)(2,4)

(1,4,3)

(1,4,2) (1,2)(3,4)

(1,2,4)

(1,3,4)

(1,4)(2,3)
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( )(1,2,3)(4,5,6)(7,8,9)(10,11,12) (1,10,4)(2,6,7)(3,9,11)(5,12,8)

(1,3,2)(4,6,5)(7,9,8)(10,12,11)

(1,4,10)(2,7,6)(3,11,9)(5,8,12)(1,6)(2,9)(3,10)(4,12)(5,7)(8,11)

(1,7,12)(2,11,5)(3,4,8)(6,10,9)

(1,9,5)(2,10,8)(3,6,12)(4,7,11)
(1,11)(2,4)(3,7)(5,10)(6,8)(9,12)

(1,5,9)(2,8,10)(3,12,6)(4,11,7)

(1,12,7)(2,5,11)(3,8,4)(6,9,10)

(1,8)(2,12)(3,5)(4,9)(6,11)(7,10)

( )(1,2,3)(4,5,6)(7,8,9)(10,11,12) (1,10,4)(2,6,7)(3,9,11)(5,12,8)

(1,3,2)(4,6,5)(7,9,8)(10,12,11)

(1,4,10)(2,7,6)(3,11,9)(5,8,12)(1,6)(2,9)(3,10)(4,12)(5,7)(8,11)

(1,7,12)(2,11,5)(3,4,8)(6,10,9)

(1,9,5)(2,10,8)(3,6,12)(4,7,11)
(1,11)(2,4)(3,7)(5,10)(6,8)(9,12)

(1,5,9)(2,8,10)(3,12,6)(4,11,7)

(1,12,7)(2,5,11)(3,8,4)(6,9,10)

(1,8)(2,12)(3,5)(4,9)(6,11)(7,10)

 
 

or 
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or 

( )(1, 2,3)

(1,3,2)

(1,3)(2,4)

(2,4,3)

(1, 2, 4)

(1, 4,2)

(1, 4,3)

(1,4)(2,3)

(2,3,4)

(1, 2)(3,4) (1,3,4)

( )(1, 2,3)

(1,3,2)

(1,3)(2,4)

(2,4,3)

(1, 2, 4)

(1, 4,2)

(1, 4,3)

(1,4)(2,3)

(2,3,4)

(1, 2)(3,4) (1,3,4)
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( )(1,2,3)(4,5,6)(7,8,9)(10,11,12)

(1,3,2)(4,6,5)(7,9,8)(10,12,11)

(1,4)(2,7)(3,10)(5,12)(6,8)(9,11)

(1,5,10)(2,8,4)(3,11,7)(6,9,12)

(1,6,7)(2,9,10)(3,12,4)(5,11,8)

(1,7,6)(2,10,9)(3,4,12)(5,8,11)

(1,8,12)(2,11,6)(3,5,9)(4,10,7)

(1,9)(2,12)(3,6)(4,11)(5,7)(8,10)

(1,10,5)(2,4,8)(3,7,11)(6,12,9)

(1,11)(2,5)(3,8)(4,9)(6,10)(7,12) (1,12,8)(2,6,11)(3,9,5)(4,7,10)

( )(1,2,3)(4,5,6)(7,8,9)(10,11,12)

(1,3,2)(4,6,5)(7,9,8)(10,12,11)

(1,4)(2,7)(3,10)(5,12)(6,8)(9,11)

(1,5,10)(2,8,4)(3,11,7)(6,9,12)

(1,6,7)(2,9,10)(3,12,4)(5,11,8)

(1,7,6)(2,10,9)(3,4,12)(5,8,11)

(1,8,12)(2,11,6)(3,5,9)(4,10,7)

(1,9)(2,12)(3,6)(4,11)(5,7)(8,10)

(1,10,5)(2,4,8)(3,7,11)(6,12,9)

(1,11)(2,5)(3,8)(4,9)(6,10)(7,12) (1,12,8)(2,6,11)(3,9,5)(4,7,10)
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Generator Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or 

12 10

3

46

7

9 11

5

12

8

12 10

3

46

7

9 11

5

12

8
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12

3

4

5

6

7

8

9

10

11 12

12

3

4

5

6

7

8

9

10

11 12



 
 

Your knowledge of group theory 
is coming along swimmingly! 




