A GMTID: BARDEN OF BDOUPS

Visual Representations of Groups

Creative Commons License

You are free to:

- Share this work
- Adapt this work
- Attribute all original materials to Doc Benton

You are not free to:

- Charge money for this work; Knowledge is free!

CONTENTS (PADT S)

Introduction (Part 5) 1
Visual Representations of Groups 2
Groups of Order 1 24
Groups of Order 2 29
Groups of Order 3 34
Groups of Order 4 39
Groups of Order 5 48
Groups of Order 6 53
Groups of Order 7 70
Groups of Order 8 75
Groups of Order 9 99
Groups of Order 10 110
How to Use GAP (Part 5) 124
How to Find the Quotient of a Cayley Diagram 141
Summary (Part 5) 147
Practice (Part 5) 148
Practice (Part 5) - Answers 149

INTMODUCTHOM (PADT S)

In part 5 of this work we introduce three different ways to create visual representations of groups - a cycle graph, a Cayley diagram (named after mathematician Arthur Cayley, 1821-1895), and last but not least, what I like to call a generator diagram. These three methods become more complex as the size of our group increases, but for relatively small groups, they provide an interesting way to study the subject, and these are methods that generally aren't covered much in traditional textbooks on group theory and abstract algebra. Additionally, toward the end of Part 5 we have another chapter of How to Use GAP. Nothing new is given that is not also given in the previous Part 4, but that chapter from Part 4 is repeated here for reference.

MTSUA PEPREEMTATOMS OF BPOUPS

There are three ways of representing groups visually that I want to talk about. I call these ways cycle graphs, Cayley diagrams, and generator diagrams. Of these three, only Cayley diagrams were easy to find information on when I was in graduate school in the early eighties. Cycle graphs may have originated or been popularized later. And lastly, generator diagrams are a creation of my own even though I wouldn't be completely surprised if I am not the first one to ever use such a diagram. We'll illustrate each of these displays by first applying them to the dihedral group $D_{3} \cong S_{3}$, the group of symmetries of an equilateral triangle.

Let's begin with the list of elements in D_{3}.

$$
\left\{\begin{array}{c}
(,) \\
(1,2) \\
(1,3) \\
(2,3) \\
(1,2,3) \\
(1,3,2)
\end{array}\right\} \cong D_{3}
$$

From this representation we can see that D_{3} contains one element of order 1 , three elements of order 2, and two elements of order 3. A cycle graph for this simply creates a visual display of the order of each element. I draw mine as follows.

In a cycle graph, every element of the group should be contained in one of the cycles shown. Also, it would be nice if every single group was distinguished by the lengths of the cycles of its elements. Unfortunately, this is not always the case. For example, $C_{4} \times C_{2} \times C_{2}$ and $\left(C_{4} \times C_{2}\right)>\triangleleft C_{2}$ are both groups of order 16, and they both have one element of order 1, seven elements of order 2, and eight elements of order 4. However, in spite of this similarity, the two groups are not isomorphic. However, for groups of order less than 16 the cycle structure is unique. For example, the dihedral group D_{3} has one element of order 1, three elements of order 2, and two elements of order 3, and any other group of order 6 which has this same cycle structure must automatically be isomorphic to D_{3}. But again, why this does not hold true for $C_{4} \times C_{2} \times C_{2}$ and $\left(C_{4} \times C_{2}\right)>\triangleleft C_{2}$ is something that is worthy of lengthy contemplation.

Cayley diagrams were invented by British mathematician Arthur Cayley (18211895). There exist some variations of his method for presenting groups visually, but the way I construct them is very easy if the elements of your group are expressed in terms of permutations. For example, if we want to create a Cayley diagram for the dihedral group D_{3} (which is isomorphic to the symmetric group
S_{3}), then all we have to do is pick a minimal set of elements which generate the entire group such as $(1,2,3)$ and $(2,3)$. Next we create a diagram which shows the result of multiplying various combinations of those permutations together, and we represent multiplication by $(1,2,3)$ by an arrow of one color and multiplication by $(2,3)$ by an arrow of a different color. We begin our multiplication at the identity element (), and notice that each element in the group will have two arrows leaving it, one for multiplication by $(1,2,3)$ and the other by multiplication by $(2,3)$. Below is the final result.

Notice that if we start at the identity, then the blue arrow represents multiplication by $(2,3)$ and the red arrow leaving $(2,3)$ represents an additional multiplication by $(1,2,3)$. Hence, the Cayley diagram shows us visually that $(2,3)(1,2,3)=(1,2)$. Likewise, we can easily find the result of any other multiplication by simply following the correct arrows in sequence.

The third type of visual display that I like is what I call a generator diagram. It is inspired by the moves that generate the Rubik's cube group, and it is a classic example of a group of permutations that act upon a set of objects. In particular, recall that the entire group of permutations of the facelets of Rubik's cube can be generated by quarter turns of the right, left, up, down, front, and back faces of the cube. We denote these moves by R, L, U, D, F, and B, but if we write them in the order BFUDLR, then we can appropriately pronounce this "befuddler."

Recall also that if we number each facelet of our cube, then we can easily express the movements that generate our cube group as permutations written in cycle notation. The usual way for numbering the facelets is given below.

And now, using this labeling scheme, recall that we can express our generating moves as follows:

```
r=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)
l =(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)
u =(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)
d = (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)
f =(17,19,24,22)(18, 21, 23, 20)(6,25,43,16)(7, 28,42,13)(8,30,41, 11)
b=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47, 29)(1, 14,48,27)
```

A simplified version of this, however, would be to ignore most of the color variations and just label the corner cublets 1 through 8 .

Using this simplification, we can rewrite the permutations for our moves as the following:
$R=(1,2,3,4)$
$L=(5,8,7,6)$
$U=(2,5,6,3)$
$D=(1,4,7,8)$
$F=(1,8,5,2)$
$B=(4,3,6,7)$

Of course, these permutations will generate something far smaller than the real Rubik's cube group, but, nonetheless, they will make it easier for us to explain generator diagrams. For instance, suppose we want to examine the group generated just by R and U. Then we can easily diagram this using a couple of permutations that act on the set of numbers $\{1,2,3,4,5,6\}$.

This diagram is what I call a generator diagram. It shows the objects that will be permuted along with the moves that create the corresponding permutation group. In this case, we generate our group by creating all possible finite combinations of our moves R and U, and the resulting permutation group is has 120 elements.

Below is another generating diagram that consists of the permutations $a=(1,2,3)$ and $b=(1,4,3)$. The resulting group that is generated has 12 elements and is
isopmorphic to A_{4}, the subgroup of all even permutations contained in S_{4} which, in turn, is the group of all possible permutations of a set of four elements.

And now, here is a generating diagram for the Klein 4-group, $C_{2} \times C_{2}$, where the generators are $a=(1,2)$ and $b=(3,4)$.

Am I the first person to ever represent a group in this way by using what I call generator diagrams? On the one hand, I rather doubt it, but on the other hand, I haven't really seen these diagrams used before, and, frankly, I find them very useful. I should also reiterate that when I was young and in graduate school back in the early eighties, I only ever saw Cayley diagrams, and they were not really covered in my classes as all the emphasis back in those days was placed on proving theorems.

Now let me show you something very interesting, but first recall what our cycle and Cayley diagrams look like for D_{3}, the symmetries of an equilateral triangle.

A generator diagram for D_{3}, in terms of permutations $a=(1,2,3)$ and $b=(2,3)$, can be constructed as follows.

However, since the group D_{3} has six elements, a good question to ask is can we express our generator diagram in terms of permutations of the numbers of the set $\{1,2,3,4,5,6\}$? Fortunately, this can be done, and I'll now show you how to do it. We'll begin with the multiplication table for D_{3}.

And now, if you look closely at this table, it's easy to see that the elements in each row are just a permutation of the elements in the top row. That means that every element in the group can be represented by a permutation of the six elements in the top row, and the greater implication of this (known as Cayley's Theorem) is that every finite group is isomorphic to a permutation group. However, the permutation may not be what you think it is. One might be tempted
to indicate the permutation associated with each element by drawing arrows as follows.

	()	$(2,3)$	$(1,2)$	$(1,2,3)$	$(1,3,2)$	$(1,3)$
()	((\%)	(7,2)	, 2,	$\left(\frac{1}{4}, 3,2\right)$	(1, ${ }^{\text {a }}$
$(2,3)$	\| $(2,3)$	()	$(1,2,3)$	$(1,2)$	$(1,3)$	1, 3
$(1,2)$	\| (1,2)	$(1,3,2)$	()	$(1,3)$	$(2,3)$, 2
2, 3)	$(1,2,3)$	$(1,3)$	$(2,3)$	1,3,2)	()	1, 2)
$(1,3,2)$	$(1,3,2)$	$(1,2)$	$(1,3)$	()	$(1,2,3)$	$(2,3)$
$(1,3)$	\| (1,3)	$(1,2,3)$	$(1,3,2)$	$(2,3)$	$(1,2)$	()

However, this is not going to work, and I'll show you why. First, notice that the red arrows above suggest that the permutation we want to associate this way with $(2,3)$ is $([(),(2,3)][(1,2),(1,2,3)][(1,3,2)(1,3)])$. Now let's do the same thing for $(1,2,3)$ by using the table below.

Based on this correspondence, we should associate $(1,2,3)$ with the permutation $([(),(1,2,3),(1,3,2)][(2,3),(1,3)(1,2)])$. Now if we do the multiplication $(2,3)(1,2,3)$ from left to right, then we get $(1,2)$, and using the table below we can see that $(1,2)$ corresponds to $([(),(1,2)][(2,3),(1,3,2)][(1,2,3)(1,3)])$.

*	\| ()	$(2,3)$	$(1,2)$	($1,2,3$)	$(1,3,2)$	$(1,3)$
()	1 ()	$(2,3)$	(1,2)	$(1,2,3)$	$(1,3,2)$	$(1,3)$
$(2,3)$	1 (2, 3)	()	$(\sqrt{2}, 3)$	$(1,2)$	(\downarrow, 3)	$(\mathrm{L}, 3,2)$
$(1,2)$	\| (1,2)	$(1,3,2)$	()	$(1,3)$	$(2,3)$	$(1,2,3)$
$(1,2,3)$	\| $(1,2,3)$	$(1,3)$	$(2,3)$	$(1,3,2)$	()	$(1,2)$
$(1,3,2)$	\| ($1,3,2$)	$(1,2)$	$(1,3)$	()	$(1,2,3)$	$(2,3)$
$(1,3)$	\| (1,3)	$(1,2,3)$	$(1,3,2)$	$(2,3)$	$(1,2)$	()

And now we can begin to see what the problem is. If we do the multiplication $([(),(2,3)][(1,2),(1,2,3)][(1,3,2)(1,3)])([(),(1,2,3),(1,3,2)][(2,3),(1,3)(1,2)])$ from left to right, then we get $([(),(1,3)][(2,3),(1,2,3)][(1,2),(1,3,2)])$. However, this is not the permutation that $(2,3)(1,2,3)=(1,2)$ corresponds to. In other words, our correspondence does not preserve the multiplication, and we call a one-to-one correspondence an isomorphism only if the multiplication in one group corresponds to the multiplication in the other, and the correspondence we set up doesn't do that! So how can we make things work the right way? Well, fortunately, it's not too hard. We just have to think in terms of permutations of positions! Thus, let's examine the table below.

Position

	1	2	3	4	5	6
*	()	$(2,3)$	$(1,2)$	$(1,2,3)$	$(1,3,2)$	$(1,3)$
()	1 ()	$(2,3)$	$(1,2)$	$(1,2,3)$	$(1,3,2)$	$(1,3)$
$(2,3)$	\| $(2,3)$	()	$(1,2,3)$	$(1,2)$	$(1,3)$	$(1,3,2)$
$(1,2)$	\| $(1,2)$	$(1,3,2)$	()	$(1,3)$	$(2,3)$	($1,2,3$)
$(1,2,3)$	\| $(1,2,3)$	$(1,3)$	$(2,3)$	$(1,3,2)$	()	$(1,2)$
$(1,3,2)$	\| $(1,3,2)$	$(1,2)$	$(1,3)$	()	$(1,2,3)$	$(2,3)$
$(1,3)$	\| (1,3)	$(1,2,3)$	$(1,3,2)$	$(2,3)$	$(1,2)$	()

This table suggests that we want to construct the permutation corresponding to $(2,3)$ by noting where the contents of position 1 in the identity wind up in the row corresponding to $(2,3)$, and we can clearly see that the contents of position 1 are moved to position 2. If we do the same type of analysis for the remaining group elements, then we can conclude that the permutation corresponding to $(2,3)$ should be $(1,2)(3,4)(5,6)$. This means that the contents of positions $1 \& 2$ are switched as are the contents of positions $3 \& 4$ and the contents of positions $5 \&$ 6. We can clearly see this in the table below.

Position

		2	3	4	5	6
*	()	$(2,3)$	(1,2)	$(1,2,3)$	(1,3 ,	3)
(()		(1,2)	$(1,2,3)$	($1,3,2$	
$(2,3)$	\| $(2,3)$		$(1,2,3)$	$(1,2)$	(1,3)	$(1,3,2)$
$(1,2)$	\| $(1,2)$	$(1,3,2)$	()	$(1,3)$	$(2,3)$	($1,2,3$)
$(1,2,3)$	\| $(1,2,3)$	$(1,3)$	$(2,3)$	$(1,3,2)$	()	$(1,2)$
$(1,3,2)$	\| $(1,3,2)$	$(1,2)$	$(1,3)$	()	$(1,2,3)$	$(2,3)$
$(1,3)$	\| $(1,3)$	$(1,2,3)$	$(1,3,2)$	$(2,3)$	$(1,2)$	()

Similarly, the element $(1,2,3)$ corresponds to $(1,5,4)(2,3,6)$.

Position

And since $(2,3)(1,2,3)=(1,2)$, let's also find the permutation that corresponds to the cycle $(1,2)$ by using the table below to obtain $(1,3)(2,5)(4,6)$.

Position

If we now do the multiplication $(1,2)(3,4)(5,6)^{*}(1,5,4)(2,3,6)$, then we wind up with $(1,3)(2,5)(4,6)$. In other words, the multiplication $(2,3) *(1,2,3)=(1,2)$ in the first group corresponds exactly to the multiplication $(1,2)(3,4)(5,6)^{*}(1,5,4)(2,3,6)=(1,3)(2,5)(4,6)$ in the second group, and this is exactly how we set up an isomorphism between our original group and our second group. What's extremely important, though, is that whereas our original group looked at permutations of 3 objects, our second group deals with permutations of 6 objects where 6 is the actual number of elements in each group. Furthermore, just as $(1,2,3)$ and $(2,3)$ generate the elements of our first group, so do $(1,5,4)(2,3,6)$ and $(1,2)(3,4)(5,6)$ generate the elements of our isomorphic group. If we now construct a Cayley diagram for these generators, then we obtain the following.

But on the other hand, if we replace our permutations by the appropriate position numbers, then we get the following generator diagram.

So what does all this mean? Let's go through the steps. We started with an equilateral triangle with vertices labeled 1,2 , \& 3, and we constructed the sixelement dihedral group for this geometric figure. Next, using the multiplication table for D_{3}, we converted this to an isomorphic group that acts on six elements that we labeled $1,2,3,4,5, \& 6$, and since our group D_{3} has six elements, it is rather canonical to express it in terms of a group acting on six elements via permutations of those elements. Next we constructed both a Cayley diagram and a generator diagram for the group that acts on these six elements, and now the Cayley diagram and the generator diagram look essentially the same! And this shows us how, if we have a group of n elements, we can easily convert back and forth between a generator diagram of n elements and the corresponding
permutations of those n elements. In this case, the Cayley diagram and the generator diagram are just two ways of looking at the same thing!

If we have a group of order n and if we represent it by either a Cayley diagram involving permutations of n elements or by a generator diagram involving permutations of n objects, then I'll refer to both as canonical representations. And now that we've seen how to develop such canonical representations, let me show you a shortcut that cuts through all the rigmarole. As before, we'll use a traditional Cayley diagram for D_{3} as our starting point.

Step 1: Begin with any Cayley diagram for your group.

Step 2: Replace the elements by numbers in whatever way seems most convenient to you.

Step 3: Treat this is a generator diagram, and write down the permutations of the numbers that are indicated by the different colored paths.
$a=(1,2,3)(4,5,6)$
$b=(1,4)(2,6)(3,5)$

Step 5: Replace the numbers by permutations involving combinations of the permutations found in step 4 in order to create a canonical Cayley diagram.

We can now use GAP software to verify that the group generated by our cycles a and b is indeed isomorphic to D_{3} by generating both groups and examining the cycle structures of the elements in each group. Recall that for groups of order less than 16 , each distinct group has a unique cycle structure. Thus, all we have to do, however, is verify that the elements of our new group have the same order or cycle length of the elements of our usual representation for D_{3}. We compare the two groups below with D_{3} on the left and our new representation on the right.

$$
\left\{\begin{array}{c}
(~) \\
(1,2) \\
(1,3) \\
(2,3) \\
(1,2,3) \\
(1,3,2)
\end{array}\right\} \cong D_{3} \quad\left\{\begin{array}{c}
() \\
(1,4)(2,6)(3,5) \\
(1,6)(2,5)(3,4) \\
(1,5)(2,4)(3,6) \\
(1,2,3)(4,5,6) \\
(1,3,2)(4,6,5)
\end{array}\right\}
$$

From the above we can see that each group contains an element of order 1 (the identity), three elements of order 2 , and two elements of order 3 . Therefore, they are isomorphic!
We can also rearrange the objects in our generator diagram to create results that may be more aesthetic to us. Hence, below are a couple of modified generator diagrams and generators that also generate groups isomorphic to D_{3}, as can be verified by examining the orders of the elements using GAP.

$$
\begin{aligned}
a & =(1,2,3)(4,5,6) \\
b & =(1,4)(2,6)(3,5)
\end{aligned}
$$

$$
\left\{\begin{array}{c}
() \\
(1,4)(2,6)(3,5) \\
(1,6)(2,5)(3,4) \\
(1,5)(2,4)(3,6) \\
(1,2,3)(4,5,6) \\
(1,3,2)(4,6,5)
\end{array}\right\}
$$

Notice, also, that if we reverse the direction of the arrows connecting, 4, 5, and 6, then the resulting group generated is now isomorphic to C_{6}, and while it may seem strange to have a cyclic group generated by two elements (in this case, one of order 2 and the other of order 3), it's all perfectly normal once we remember that $C_{6} \cong C_{2} \times C_{3}$.

$$
\begin{array}{r}
a=(1,2,3)(4,5,6) \\
b=(1,6)(2,4)(3,5)
\end{array}
$$

$$
\left\{\begin{array}{c}
() \\
(1,2,3)(4,5,6) \\
(1,3,2)(4,6,5) \\
(1,4,3,6,2,5) \\
(1,5,2,6,2,4) \\
(1,6)(2,4)(3,5)
\end{array}\right\} \cong C_{6} \cong C_{2} \times C_{3}
$$

And now, we'll look at the same groups of small order that we examined in the previous installment (Part 4) of this work, but this time we'll present cycle graphs, Cayley diagrams, and generator diagrams for each group.

BDOMPS OF OPDED

The only group of order 1 is the group that consists of a single element, the identify element. Consequently, it's a pretty simple group, and there is not much detail to give about it.

THE IDENTITY GROUP

Generators:
()

Elements:

\{() \}

Is Abelian?
Yes

Cycle Graph

()

Cayley Diagram
()

Generator Diagram

$$
1
$$

BPOMPS OP ORDER2

Just as there is only one group of order 1, there is also only one group, up to isomorphism, of order 2. Also, when we use the phrase "up to isomorphism," recall that that means that even though we might use different names for the elements of the group and even though our binary operations may be defined differently in the different groups, the resulting multiplication tables all have the same algebraic structure. That means that we can take the elements of one group, translate them into elements of the other group, and then the corresponding elements will combine with one another in the same way. For example, below are four different looking multiplication tables that all represent the one (up to isomorphism) group of order 2.

	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	1
$\mathbf{1}$	1	0

	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{1}$	1	2
$\mathbf{2}$	2	1

	\mathbf{a}	\mathbf{b}
\mathbf{a}	a	b
\mathbf{b}	b	a

	no flip	flip
no flip	no flip	flip
flip	flip	no flip

For the last group multiplication table in our list, what we have in mind is a light switch and the 2-element group associated with it. Doing nothing, not flipping the switch at all, is the identity element in this group. The only other element in the group is represented by flipping the switch, and if we flip the switch twice, then the result is the same as not flipping the switch at all. In other words, "flip times flip = no flip."

THE CYCLIC GROUP OF ORDER 2

$$
C_{2} \cong \mathbb{Z}_{2}
$$

Generators:

$(1,2)$

Elements:
$\left.\left\{\begin{array}{c}(~) \\ (1,2)\end{array}\right\} \cong C_{2}\right\}$

Is Abelian?
Yes

Cycle Graph

Cayley Diagram

Generator Diagram

2

1

CDOUPS OF OPDEBe

There is only one group of order 3, and it is the cyclic group C_{3}. Notice, too, that 3 is a prime number. Whenever the order of a group is a prime such as 2 or 3 , then the only group of that order is going to be a cyclic group. This is because for finite groups the order of any subgroup has to be a divisor of the order of the group, and the only divisors of a prime number are itself and 1. Hence, the only subgroups of a group of prime order are the whole group and the identity, and they are also normal subgroups. Furthermore, C_{3} is simple since it doesn't have any normal subgroups besides itself and the identity. Notice, also, that for any given finite order, there always exists a cyclic group of that order. Hence, when the order is prime, the only group that exists is the cyclic group of that prime order.

THE CYCLIC GROUP OF ORDER 3

$$
C_{3} \cong \mathbb{Z}_{3}
$$

Generators:

$(1,2,3)$

Elements:
$\left\{\begin{array}{c}(\mathrm{O} \\ (1,2,3) \\ (1,3,2)\end{array}\right\} \cong C_{3}$

Is Abelian?
Yes

Cycle Graph

Cayley Diagram

CDOHPS OF OPDEM

There exist two groups of order 4 and both are abelian. Consequently, we can apply the Fundamental Theorem of Finite Abelian Groups which tells us that each group can be expressed as a direct product of cyclic groups of prime power order. In this case that means that the only two possible groups are the cyclic group C_{4} and the direct product $C_{2} \times C_{2}$. The group $C_{2} \times C_{2}$ is also known as the Klein 4-group or as Vierergruppe (German for 4-group). Additionally, it is sometimes denoted by K_{4} or by V, and a good representation for this group consists of two light switches each of which can be flipped on or off. Let f_{1} represent flipping the first switch, let f_{2} represent flipping the second switch, and let 0 represent no flip at all. Then using this notation we can represent the elements of the group as $\left\{(0,0),\left(f_{1}, 0\right),\left(0, f_{2}\right),\left(f_{1}, f_{2}\right)\right\}$ where $f_{1}^{2}=0=f_{2}{ }^{2}$.

THE CYCLIC GROUP OF ORDER 4

$$
C_{4} \cong \mathbb{Z}_{4}
$$

Generators:

$a=(1,2,3,4)$

Elements:

$$
\left\{\begin{array}{c}
(~) \\
(1,2,3,4) \\
(1,3)(2,4) \\
(4,3,2,1)
\end{array}\right\} \cong C_{4}
$$

Is Abelian?

Yes

Cayley Diagram

THE KLEIN 4-GROUP

$$
C_{2} \times C_{2} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Generators:

$a=(1,2)$
$b=(3,4)$

Elements:
$\left\{\begin{array}{c}() \\ (1,2) \\ (3,4) \\ (1,2)(3,4)\end{array}\right\} \cong C_{2} \times C_{2}$

Is Abelian?
Yes

Cycle Graph

$(1,2) \quad(3,4) \quad(1,2)(3,4)$

 ()

Cayley Diagram

Generator Diagram

CDOUPS OF OPDEB

Since 5 is a prime number, the only group that exists of order 5 is the abelian cyclic group of order $5, C_{5}$. Furthermore, this group is simple since its only normal subgroups are itself and the identity.

THE CYCLIC GROUP OF ORDER 5

$$
C_{5} \cong \mathbb{Z}_{5}
$$

Generators:

(1,2,3,4,5)

Elements:
$\left\{\begin{array}{c}(~) \\ (1,2,3,4,5) \\ (1,3,5,2,4) \\ (1,4,2,5,3) \\ (1,5,4,3,2)\end{array}\right\} \cong C_{5}$

Is Abelian?
Yes

Cayley Diagram

Generator Diagram

CDOUPS OF OPDEB

Order 6 for groups is very noticeable because this is the first time we encounter a nonabelian group! In fact, there exist just two groups of order 6 (two groups with six elements). One is the cyclic group of order $6, C_{6}$, and the other is the dihedral group of degree $3, D_{3}$. Notice that 6 is not a prime number, but that we can write 6 as 2×3 where 2 and 3 are relatively prime (that means that their only common factor is 1). When that happens with the order of a cyclic group, that means that we can also write our cyclic group as the direct product of smaller cyclic groups, and in this case we can write $C_{6} \cong C_{3} \times C_{2}$. The dihedral group D_{3} has order 6, and recall that it represents the symmetries of an equilateral triangle. In other words, it is the group generated by rotations of our triangle through angles that are integer multiples of 120° and by flips about any of its three axes of symmetry. Furthermore, the number of permutations that can be made of 3 objects is 6 , and that means that the symmetric group of degree $3, S_{3}$, which is the group of all permutations that can be made of 3 objects is essentially identical or isomorphic with the dihedral group $D_{3}, D_{3} \cong S_{3}$. Additionally, this is the only time something like this happens. Since the order of D_{n} is $2 n$ and since the order of S_{n} is $n!=n(n-1)(n-2) \ldots(1)$, the only time these two computations are the same is when $n=3$. Something else worth noting is that for any value of n there always exists a cyclic group of degree n, and for any value $2 n$ where $n \geq 3$, there is always a dihedral group, D_{n}, of that order, and for any dihedral group D_{n} it is also true that $D_{n} \cong C_{n}>\triangleleft C_{2}$. Thus, $D_{3} \cong S_{3} \cong C_{3}>\triangleleft C_{2}$. A lot of groups of higher order turn out to be either cyclic or dihedral. And if we add to this list the symmetric groups, alternating groups, direct products, and semidirect products, then those are probably the majority of the groups we are likely to encounter. Things will change though when we get to order 8 and discover an interesting group called the Quaternion group which is nonabelian and which falls into none of the aforementioned categories.

THE CYCLIC GROUP OF ORDER 6

$$
C_{6} \cong C_{2} \times C_{3} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{6}
$$

Generators:

$a=(1,2)$
$b=(3,4,5)$
or
$a=(1,2,3,4,5,6)$

Elements:
$\left\{\begin{array}{c}() \\ (3,4,5) \\ (3,5,4) \\ (1,2) \\ (1,2)(3,4,5) \\ (1,2)(3,5,4)\end{array}\right\} \cong\left\{\begin{array}{c}() \\ (1,2,3,4,5,6) \\ (1,3,5)(2,4,6) \\ (1,4)(2,5)(3,6) \\ (1,5,3)(2,6,4) \\ (1,6,5,4,3,2)\end{array}\right\} \cong C_{6}$

Is Abelian?

Yes

Cayley Diagram

Generator Diagram

THE DIHEDRAL/SYMMETRIC GROUP OF ORDER 6

$$
D_{3} \cong S_{3} \cong \mathbb{Z}_{3}>\triangleleft \mathbb{Z}_{2} \cong C_{3}>\triangleleft C_{2}
$$

Generators:

$a=(1,2,3)$
$b=(2,3)$

Elements:
$\left\{\begin{array}{c}(~) \\ (1,2) \\ (1,3) \\ (2,3) \\ (1,2,3) \\ (1,3,2)\end{array}\right\} \cong D_{3}$

Is Abelian?

No

Cycle Graph

Cayley Graph

or

or

CDOMPS OF OPDEM

The number 7 is prime, so you know what that means. There exists only one group of order 7, and that is C_{7}, the cyclic group of order 7. Furthermore, again since 7 is prime, its only subgroups are itself and the identity.

$$
C_{7} \cong \mathbb{Z}_{7}
$$

Generators:

(1, 2, 3, 4, 5, 6, 7)

Elements:
$\left\{\begin{array}{c}() \\ (1,2,3,4,5,6,7) \\ (1,3,5,7,2,4,6) \\ (1,4,7,3,6,2,5) \\ (1,5,2,6,3,7,4) \\ (1,6,4,2,7,5,3) \\ (1,7,6,5,4,3,2)\end{array}\right\} \cong C_{7}$

Is Abelian?
Yes

Generator Diagram

GPOUPS OF OPDEP

Things get quite interesting once we get to 8. There exist five groups of order 8 , and three of them are abelian. And by the Fundamental Theorem of Finite Abelian Groups, we can immediately identify the abelian groups as $C_{8}, C_{4} \times C_{2}$, and $C_{2} \times C_{2} \times C_{2}$. Of the two nonabelian groups, since 8 is even we automatically know that one of them is D_{4}. The other nonabelian group, though, is called the Quaternion group, and it is quite interesting since it is not one of our usual cyclic, dihedral, symmetric, alternating, direct product, or semidirect product groups. It is something quite different, and notable feature of this group is that all of its subgroups are normal in spite of it being nonabelian. Also of interest is that quaternions were invented by the mathematician William Rowan Hamilton (18051865) as an extension of both vectors and imaginary numbers. Thus, we have i, j, and k which resemble the unit vectors studied in trigonometry and advanced calculus, and these quantities are also like imaginary numbers since $i^{2}=j^{2}=k^{2}=-1$. When I was younger, quaternions weren't studied that much anymore, but these days there is renewed interest in the topic since they have turned out to be a useful mathematical tool for creating the kinds of computer generated effects that appear in many of today's movies.

THE CYCLIC GROUP OF ORDER 8

$$
C_{8} \cong \mathbb{Z}_{8}
$$

Generators:

(1, 2, 3, 4, 5, 6, 7,8)

Elements:
$\left\{\begin{array}{c}() \\ (1,2,3,4,5,6,7,8) \\ (1,3,5,7)(2,4,6,8) \\ (1,4,7,2,5,8,3,6) \\ (1,5)(2,6)(3,7)(4,8) \\ (1,6,3,8,5,2,7,4) \\ (1,7,5,3)(2,8,6,4) \\ (1,8,7,6,5,4,3,2)\end{array}\right\} \cong C_{8}$

Is Abelian?
Yes

Cayley Diagram

Generator Diagram

THE DIRECT PRODUCT $C_{2} \times C_{4}$

$$
C_{2} \times C_{4} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}
$$

Generators:

(1, 2), (3, 4,5,6)

Elements:
$\left\{\begin{array}{c}() \\ (3,4,5,6) \\ (3,5)(4,6) \\ (3,6,5,4) \\ (1,2) \\ (1,2)(3,4,5,6) \\ (1,2)(3,5)(4,6) \\ (1,2)(3,6,5,4)\end{array}\right\} \cong C_{2} \times C_{4}$

Is Abelian?

Yes

Cayley Diagram

or

Generator Diagram

THE DIRECT PRODUCT $C_{2} \times C_{2} \times C_{2}$

$$
C_{2} \times C_{2} \times C_{2} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Generators:

(1, 2), (3, 4), (5,6)

Elements:
$\left\{\begin{array}{c}() \\ (5,6) \\ (3,4) \\ (3,4)(5,6) \\ (1,2) \\ (1,2)(5,6) \\ (1,2)(3,4) \\ (1,2)(3,4)(5,6)\end{array}\right\} \cong C_{2} \times C_{2} \times C_{2}$

Is Abelian?

Yes

Cayley Diagram

Generator Diagram

THE DIHEDRAL GROUP D_{4}

$$
D_{4} \cong C_{4}>\triangleleft C_{2} \cong \mathbb{Z}_{4}>\triangleleft \mathbb{Z}_{2}
$$

Generators:

(1, 2, 3, 4),(2,4)

Elements:
$\left\{\begin{array}{c}(~) \\ (2,4) \\ (1,2)(3,4) \\ (1,2,3,4) \\ (1,3) \\ (1,3)(2,4) \\ (1,4,3,2) \\ (1,4)(2,3)\end{array}\right\} \cong D_{4}$

Is Abelian?

No

Cayley Diagrams

or

Generator Diagram

THE QUATERNION GROUP Q_{8}

Q_{8}

Generators:

$(1,2,5,6)(3,8,7,4),(1,4,5,8)(2,7,6,3)$

Elements:
$\left\{\begin{array}{c}\left(\begin{array}{c}(\\ (1,2,5,6)(3,8,7,4) \\ (1,3,5,7)(2,4,6,8) \\ (1,4,5,8)(2,7,6,3) \\ (1,5)(2,6)(3,7)(4,8) \\ (1,6,5,2)(3,4,7,8) \\ (1,7,5,3)(2,8,6,4) \\ (1,8,5,4)(2,3,6,7)\end{array}\right\} \cong Q_{8}, \\ \end{array}\right.$

Is Abelian?

No

Cayley Diagram

GRODPS OF OPDEP S

Things get simpler again once we get to order 9. There are only two groups of order 9, and they are both abelian. Thus, the only two possible groups of this order are C_{9} and $C_{3} \times C_{3}$.

THE CYCLIC GROUP OF ORDER 9

$$
C_{9} \cong \mathbb{Z}_{9}
$$

Generators:

(1,2,3,4,5,6,7,8,9)

Elements:
$\left\{\begin{array}{c}() \\ (1,2,3,4,5,6,7,8,9) \\ (1,3,5,7,9,2,4,6,8) \\ (1,4,7)(2,5,8)(3,6,9) \\ (1,5,9,4,8,3,7,2,6) \\ (1,6,2,7,3,8,4,9,5) \\ (1,7,4)(2,8,5)(3,6,9) \\ (1,8,6,4,2,9,7,5,3) \\ (1,9,8,7,6,5,4,3,2\end{array}\right\} \cong C_{9}$

Is Abelian?
Yes

Cycle Graph

Cayley Diagram

Generator Diagram

THE DIRECT PRODUCT $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$

$$
\mathbb{Z}_{3} \times \mathbb{Z}_{3} \cong C_{3} \times C_{3}
$$

Generators:

$(1,2,3),(4,5,6)$

Elements:

$$
\left\{\begin{array}{c}
(~) \\
(4,5,6) \\
(4,6,5) \\
(1,2,3) \\
(1,2,3)(4,5,6) \\
(1,2,3)(4,6,5) \\
(1,3,2) \\
(1,3,2)(4,5,6) \\
(1,3,2)(4,6,5)
\end{array}\right\} \cong C_{3} \times C_{3}
$$

Is Abelian?
Yes

Cayley Diagram

Generator Diagram

GOOPS OF OPDED

Things are also pretty simple for groups of order 10. We know that one group of order 10 is the abelian group $C_{10} \cong C_{5} \times C_{2}$, and the other is the nonabelian group $D_{5} \cong C_{5}>\triangleleft C_{2}$.

THE CYCLIC GROUP OF ORDER 10

$$
C_{10} \cong C_{2} \times C_{5} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{10}
$$

Generators:

(1, 2, 3, 4, 5, 6, 7,8,9,10)

Elements:
$\left\{\begin{array}{c}() \\ (1,2,3,4,5,6,7,8,9,10) \\ (1,3,5,7,9)(2,4,6,8,10) \\ (1,4,7,10,3,6,9,2,5,8) \\ (1,5,9,3,7)(2,6,10,4,8) \\ (1,6)(2,7)(3,8)(4,9)(5,10) \\ (1,7,3,9,5)(2,8,4,10,6) \\ (1,8,5,2,9,6,3,10,7,4) \\ (1,9,7,5,3)(2,10,8,6,4) \\ (1,10,9,8,7,6,5,4,3,2)\end{array}\right\} \cong C_{10}$

Is Abelian?

Yes

Cayley Diagram

Generator Diagram

or

THE DIHEDRAL GROUP D_{5}

$$
D_{5} \cong \mathbb{Z}_{5}>\triangleleft \mathbb{Z}_{2} \cong C_{5}>\triangleleft C_{2}
$$

Generators:

$(1,2,3,4,5),(2,5)(3,4)$

Elements:
$\left\{\begin{array}{c}() \\ (2,5)(3,4) \\ (1,2)(3,5) \\ (1,2,3,4,5) \\ (1,3)(4,5) \\ (1,3,5,2,4) \\ (1,4)(2,3) \\ (1,4,2,5,3) \\ (1,5,4,3,2) \\ (1,5)(2,4)\end{array}\right\} \cong\left\{\begin{array}{c}() \\ (1,2,3,4,5)(6,7,8,9,10) \\ (1,3,5,2,4)(6,8,10,7,9) \\ (1,4,2,5,3)(6,9,7,10,8) \\ (1,5,4,3,2)(6,10,9,8,7) \\ (1,6)(2,10)(3,9)(4,8)(5,7) \\ (1,7)(2,6)(3,10)(4,9)(5,8) \\ (1,8)(2,7)(3,6)(4,10)(5,9) \\ (1,9)(2,8)(3,7)(4,6)(5,10) \\ (1,10)(2,9)(3,8)(4,7)(5,6)\end{array}\right\} \cong D_{5}$

Is Abelian?

No

Cayley Diagram

Generator Diagram

HOW TO USE BAP (PADT F)

Part 5 of How to Use GAP is actually the same as Part 4. We are just repeating the information for easy reference.

1. How can I redisplay the previous command in order to edit it?

Press down on the control key and then also press p. In other words, "Ctrl p".
2. If the program gets in a loop and shows you the prompt "brk>" instead of "gap>", how can I exit the loop?

Press down on the control key and then also press d. In other words, "Ctrl d".
3. How can I exit the program?

Either click on the "close" box for the window, or type "quit;" and press "Enter."
4. How do I find the inverse of a permutation?
gap> $a:=(1,2,3,4)$;
(1,2,3,4)
gap> $a^{\wedge}-1$;
$(1,4,3,2)$
5. How can I multiply permutations and raise permutations to powers?
gap> $(1,2)^{\star}(1,2,3)$;
$(1,3)$
gap> (1,2,3)^2;
$(1,3,2)$
gap> (1,2,3) ${ }^{\wedge}-1$;
$(1,3,2)$
gap> $(1,2,3)^{\wedge}-2 ;$
$(1,2,3)$
gap> $\mathrm{a}:=(1,2,3)$;
$(1,2,3)$
gap> $\mathrm{b}:=(1,2)$;
$(1,2)$
gap> a*b;
$(2,3)$
gap> $a^{\wedge} 2 ;$
$(1,3,2)$
gap> $a^{\wedge}-2$;
$(1,2,3)$
gap> $a^{\wedge} 3 ;$
()
gap> $a^{\wedge}-3 ;$
0
gap> (a*b)^2;
0
gap> (a*b)^3;
$(2,3)$
6. How can I create a group from permutations, find the size of the group, and find the elements in the group?
gap> $a:=(1,2)$;
$(1,2)$
gap> b:=(1,2,3);
$(1,2,3)$
gap> g1:=Group(a,b);
$\operatorname{Group}([(1,2),(1,2,3)])$
gap> Size(g1);
6
gap> Elements(g1);
[()$,(2,3),(1,2),(1,2,3),(1,3,2),(1,3)]$
gap> g2:=Group([(1,2),(1,2,3)]);
$\operatorname{Group}([(1,2),(1,2,3)])$
gap> g3:=Group((1,2),(2,3,4));
Group([$(1,2),(2,3,4)])$
7. How can I create a cyclic group of order 3?
gap> $a:=(1,2,3)$;
$(1,2,3)$
gap> g1:=Group(a);
Group([(1,2,3)])
gap> Size(g1);
3
gap> Elements(g1);
[()$,(1,2,3),(1,3,2)]$
gap> g2:=Group((1,2,3));
Group([$(1,2,3)])$
gap> g3: =CyclicGroup(IsPermGroup, 3);
Group([(1, 2, 3)])
8. How can I create a multiplication table for the cyclic group of order 3 that I just created?
gap> ShowMultiplicationTable(g1);

*	\| ()	$(1,2,3)$	$(1,3,2)$
()	()	$(1,2,3)$	$(1,3,2)$
$(1,2,3)$	$(1,2,3)$	$(1,3,2)$	()
$(1,3,2)$	$\mid(1,3,2)$	()	1,2,3)

9. How do I determine if a group is abelian?
```
gap> g1:=Group((1,2,3));
Group([ (1,2,3) ])
gap> IsAbelian(g1);
true
gap> g2:=Group((1,2),(1,2,3));
Group([ (1,2), (1,2,3) ])
gap> IsAbelian(g2);
false
```

10. What do I type in order to get help for a command like "Elements?"
gap> ?Elements
11. How do I find all subgroups of a group?
```
gap> a:=(1, 2,3);
(1,2,3)
```

```
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2,3), (2,3) ])
gap> Size(g);
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> h:=Al|Subgroups(g);
[Group(()),Group([(2,3) ]), Group([ (1,2) ]), Group([ (1,3)]),
Group([(1,2,3) ]), Group([(1,2,3),(2,3)])]
gap>List(h,i->E|ements(i));
[[() ], [ (), (2,3)],[(), (1, 2)], [ (), (1,3) ], [ (), (1, 2,3),
(1,3,2) ], [ (), (2,3),'(1,2)', (1,2,3)', (1,3,2),'(1,3) ] ]
gap> Elements(h[1]);
[() ]
gap> Elements(h[2]);
[(), (2,3) ]
gap> Elements(h[3]);
[(), (1,2) ]
gap> Elements(h[4]);
[ (), (1,3) ]
gap> Elements(h[5]);
[(), (1,2,3),(1,3,2) ]
gap> Elements(h[6]);
[(),(2,3),(1,2),'(1, 2, 3), (1,3,2), (1,3)]
```

12. How do I find the subgroup generated by particular permutations?
```
gap> g:=Group((1,2),(1,2,3));
Groupl[(1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> h:=Subgroup(g,[(1,2)]);
Group([ (1, 2) ])
gap> Elements(h);
[(), (1,2)]
```

13. How do I determine if a subgroup is normal?
```
gap> g:=Group((1,2),(1,2,3));
Group([ (1,2), (1,2,3) ])
gap> h1:=Group((1,2));
Group([ (1,2)])
```

```
gap> | sNormal(g,h1);
gap> h2:=Group((1,2,3));
Group([ (1, 2,3) ])
gap> I sNormal(g,h2);
true
```

14. How do I find all normal subgroups of a group?
```
gap> g:=Group((1, 2),(1, 2,3));
Group([ (1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> n:=Normal Subgroups(g);
gap> Elements(n[1]);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> Elements(n[2]);
[(), (1,2,3),(1,3,2) ]
gap> Elements(n[3]);
[ () ]
```


15. How do I determine if a group is simple?

```
gap> g:=Group((1,2),(1, 2,3));
Group([ (1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> |sSimple(g);
false
gap> h:=Group((1,2));
Group([ (1,2)])
gap> Elements(h);
[(), (1,2) ]
gap> |ssimple(h);
true
```


16. How do I find the right cosets of a subset H of G ?

```
gap> g:=Group([(1, 2, 3), (1, 2)]);
Group([ (1,2,3), (1,2)'])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3),(1,3,2), (1,3)]
gap> h:=Subgroup(g,[(1,2)]);
Group([ (1,2) ])
gap> Elements(h);
gap> c:=RightCosets(g,h);
M,
gap> List(c,i->E| ements(i));
[[(),(1,2) ],[(2,3), (1,3,2) ], [ (1, 2,3), (1,3)] ]
gap> Elements(c[1]);
[ (), (1,2) ]
gap> Elements(c[2]);
gap> Elements(c[3]);
gap> rc:=RightCoset(h, (1, 2,3));
RightCoset(Group([ (1, 2) ]),(1, 2, 3))
gap> Elements(rc);
[(1,2,3), (1,3) ]
gap> rc:=h*(1, 2, 3);
RightCoset(Group(['(1,2) ]),(1, 2, 3))
gap> El ements(rc);
[(1,2,3), (1,3) ]
```


17. How can I create a quotient (factor) group?

```
gap> g:=Group([(1, 2, 3), (1, 2)]);
Group([ (1,2,3), (1,2) ])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> n:=Group((1,2,3));
Group([ (1,2,3)])
gap> Elements(n);
[(),(1,2,3),(1,3,2) ]
gap> |sNormal(g,n);
true
gap> C:=RightCosets(g,n);
[RightCoset(Group([(1,2,3) ]),()), RightCoset(Group([ (1, 2,3) ]),(2,3)) ]
```

```
gap> Elements(c[1]);
[(), (1,2,3), (1,3,2) ]
gap> Elements(c[2]);
[(2,3),(1,2),(1,3) ]
gap> f:=FactorGroup(g,n);
Group([ f1 ])
gap> Elements(f);
[ <identity> of ..., fl ]
gap> ShowMultiplicationTable(f);
* .l <identity> of ...f1
<identity> of ... < <identity> of ... f 1
fl fl fl <identity> of ...
```

18. How do I find the center of a group?
```
gap> a:=(1, 2,3);
(1,2,3)
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2, 3), (2,3) ])
gap> Center(g);
Group(())
gap> c:=Center(g);
Group(())
gap> Elements(c);
[ () ]
gap> a:=(1, 2,3,4);
(1, 2, 3, 4)
gap>b:=(1,3);
(1,3)
gap> g:=Group(a,b);
Group([ (1, 2,3,4),'(1,3) ])
gap> c:=Center(g);
Group([ (1,3)(2,4) ])
gap> Elements(c);
[(), (1,3)(2,4)]
```

19. How do I find the commutator (derived) subgroup of a group?
gap> a: $=(1,2,3)$;
(1, 2, 3)
```
gap> b:=(2,3);
(2,3)
gap>g:=Group(a,b);
Groupl[ (1, 2, 3),, (2,3) ])
gap> d:=DerivedSubgroup(g);
Group([ (1,3,2) ])
gap> Elements(d);
[(), (1,2,3), (1, 3, 2) ]
gap> a:=(1, 2,3,4);
(1, 2, 3,4)
gap> b:=(1,3);
(1,3)
gap>g:=Group(a,b);
Group([ (1,2,3,4), (1,3) ])
gap> d:=DerivedSubgroup(g);
Group([ (1,3)(2,4)])
gap> Elements(d);
[(), (1,3)(2,4)]
```


20. How do I find all Sylow p-subgroups for a given group?

```
gap> a:=(1, 2, 3);
(1,2,3)
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2, 3), (2,3) ])
gap>Size(g);
gap> Factorslnt(6);
[2, 3]
gap> sylow2:=SylowSubgroup(g,2);
gap> | sNormal(g,sy| ow2);
false
gap> c:=ConjugateSubgroups(g, sylow2);
[Group([(2,3) ]), Group([(1,3)])', Group([ (1,2) ])]
gap> Elements(c[1]);
[(), (2,3) ]
gap> Elements(c[2]);
[(), (1,3)]
gap> Elements(c[3]);
[ (), (1,2) ]
gap> sylow3:=SylowSubgroup(g, 3);
Group([ (1, 2,3) ])
```

```
gap> |sNormal(g,sy|ow3);
true
gap> El ements(sylow3);
[ (), (1,2,3), (1,3,2) ]
```

21. How can I create the Rubik's cube group using GAP?

First you need to save the following permutations as a pure text file with the name rubik.txt to your C-drive before you can import it into GAP.

```
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);
```

And now you can read the file into GAP and begin exploring.

```
gap> Read("C:/rubik.txt");
gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>
gap> Size(rubik);
432520003274489856000
```

22. How can I find the center of the Rubik's cube group?
```
gap> c:=Center(rubik);
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ])
gap> Size(c);
gap> Elements(c);
[ [39,47) [ ] (2)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29, 36)(31,45)
```

```
gap> d:=DerivedSubgroup(rubik);
<permutation group with 5 generators>
gap> Size(d);
216260001637244928000
gap> |sNormal(rubik,d);
true
```

24. How can I find the quotient (factor) group of the Rubik's cube group by its commutator (derived) subgroup?
```
gap> d:=DerivedSubgroup(rubik);
<permutation group of size 21626001637244928000 with 5 generators>
gap> f:=FactorGroup(rubik,d);
Group([ f1 ])
g2ap> Size(f);
```

25. How can I find some Sylow p-subgroups of the Rubik's cube group?
```
gap> Read("C:/rubik.txt");
gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>
gap> Size(rubik);
43252003274489856000
gap> Factorslnt(43252003274489856000);
[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11]
gap> sylow2:=SylowSubgroup(rubik, 2);
<permutation group of size 134217728 with 27 generators>
gap> sylow3:=SylowSubgroup(rubik,3);
<permutation group of size 4782969 with 14 generators>
gap> sylow5:=SylowSubgroup(rubik, 5);
<permutation group of size 125 with'3 generators>
gap> sylow7:=SylowSubgroup(rubik,7);
<permutation group of size 49 with 2 generators>
gap> sylow11:=SylowSubgroup(rubik,11);
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ])
```

```
gap> Elements(sylowl1);
(1), (4,5,36,21,31,15,39,13,42,7,12)(10, 26,29,28,45,44,47,20,23,18,37),
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29),
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26),
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45),
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47),
(4,21,39,7,5,31,13,12,36,15,42)(10, 28,47,18,26,45,20,37,29,44, 23),
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20),
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18),
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44),
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ]
gap> I sNormal(rubik, sylow2);
false
gap> IsNormal(rubik,sylow3);
false
gap> | sNormal(rubik, sylow5);
false
gap> |sNormal(rubik,sylow7);
false
gap> | sNormal(rubik,sylowl1);
false
```

NOTE: All of the Sylow p-subgroups found above have conjugates, but the sheer size of the Rubik's cube group makes it too difficult to pursue them on a typical desktop computer.

26. How do I determine if a group is cyclic?

```
gap> a:=(1,2,3)*(4,5,6,7);
(1,2,3)(4,5,6,7)
gap>g:=Group(a);
Group([ (1, 2,3)(4,5,6,7) ])
gap>Size(g);
12
gap> |sCyclic(g);
true
```

27. How do I create a dihedral group with $2 n$ elements for an n-sided regular polygon?
```
gap> d4:=Dihedral Group(|spermGroup,8);
Group([ (1, 2, 3,4), (2,4) ])
```

gap> Elements(d4);
$[(),(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(1,3)(2,4),(1,4,3,2),(1,4)(2,3)]$
28. How can I express the elements of a dihedral group as rotations and flips rather than as permutations?

```
gap> d3:=Di hedral Group(6);
<pc group of size 6 with 2 generators>
gap> Elements(d3);
[<identity> of ..., f1,f2,f1*f2,f2^2,f1*f2^2 ]
```


29. How do I create a symmetric group of degree n with n! elements?

```
gap> s 4:=SymmetricGroup(4);
gap> Size(s4);
24
gap> Elements(s4);
[(1, (3,4),(2,3),(2,3,4),}(2,4,3),(2,4),(1,2),(1,2)(3,4),(1,2,3)
(1,2,3,4),(1,2,4,3),(1,2,4),(1,3,2),
    (1,3,4,2),(1,3),(1,3,4),(1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3),
(1,4),(1,4,2,3),(1,4)(2,3) ]
```

30. How do I create an alternating group of degree n with $\frac{n!}{2}$ elements?
```
gap> 4:=AlternatingGroup(4);
Alt([1 .. 4 ] )
gap> Size(a4);
12
gap> Elements(a4);
[(1,3)(2,4), (2, 4),(1,4,4), (2),(1,4,2)(3,4),(1,4)(2,3), (1, ]), (1, 2,4), (1, 3, 2), (1, 3,4),
```


31. How do I create a direct product of two or more groups?

```
gap> g1:=Group((1,2,3));
Group([(1, 2,3)])
```

```
\(\left.\left.\begin{array}{l}\text { gap }>\text { g2: }=\operatorname{Group}((4,5)) \text {; } \\ \text { Group }([(4,5)\end{array}\right)\right)\)
gap>dp:=DirectProduct(g1,g2);
Groupl( \((1,2,3),(4,5)])\)
gap \(>\) Size(dp);
gap> El ements(dp);
\([(1),(4,5),(1,2,3),(1,2,3)(4,5),(1,3,2),(1,3,2)(4,5)]\)
\(\underset{*}{\text { gap }}\) ) ShowMultiplicationTable \((4,5)(d p)\); \((1,2,3) \quad(1,2,3)(4,5)(1,3,2)\)
\((1,3,2)(4,5)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline () 1 , 14,5 & () & \((4,5)\) & \((1,2,3)\) & \((1,2,3)(4,5)\) & \((1,3,2)\) & \\
\hline \((1,3,2)(4,5)\) & \((4,5)\) & & & \((1,2,3)\) & & \\
\hline (1, 2, 3) & (1, 2, 3) & \((1,2,3)(4,5)\) & \((1,3,2)\) & \((1,3,2)(4,5)\) & & \((4,5)\) \\
\hline \((1,2,3)(4,5)\) & \((1,2,3)(4,5)\) & \((1,2,3)\) & \((1,3,2)(4,5)\) & \((1,3,2)\) & \((4,5)\) & () \\
\hline \((1,3,2)\) & \((1,3,2)\) & \((1,3,2)(4,5)\) & () & \((4,5)\) & 1, 2, 3) & \\
\hline \[
\begin{aligned}
& (1,2,3)(4,5) \\
& (1,3,2)(4,5)
\end{aligned}
\] & \((1,3,2)(4,5)\) & \((1,3,2)\) & \((4,5)\) & () & \((1,2,3)(4,5)\) & \((1,2,3)\) \\
\hline
\end{tabular}
```


32. How can I create the Quaternion group?

```
gap> a: =( 1, 2,5,6)*(3,8,7,4);
(1,2,5,6)(3,8,7,4)
gap> b:=(1,4,5,8)*(2,7,6,3);
(1,4,5,8)(2,7,6,3)
gap> q:=Group(a,b);
Group([ (1, 2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ])
gap> Size(q);
gap> |sAbelian(q);
gap> Elements(q);
[(), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3),
(1,5) (2,6) (3,7)(4,8), (1,6,5,2) (3,4,7,8),
    (1,7,5,3)(2,8,6,4), (1,8,5,4)(2, 3,6,7) ]
gap> q: =QuaternionGroup(IsPermGroup, 8);
Group([ (1,5,3,7)(2, 8,4,6), (1, 2, 3,4)(5,6,7,8) ])
gap> Size(q);
gap> lsabelian(q);
gap> Elements(q);
[(), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6),
(1,5,3,7)(2,8,4,6),(1,6,3,8)(2,5,4,7)
    (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ]
```

33. How can I find a set of independent generators for a group?
```
gap>c6:=CyclicGroup(IsPermGroup,6);
Group([ (1, 2, 3,4,5,6) ])
g
gap> Generators Of Group(c6);
[(1, 2, 3, 4,5,6)]
gap>d4:=Di hedral Group(Is sermGroup, 8);
Group([ (1, 2,3,4), (2,4) ])
g
gap> GeneratorsOf Group(d4);
[(1,2,3,4), (2,4)]
gap> s5:=SymmetricGroup(5);
Sym( [1..5 ])
gap>Size(s5);
gap> Generators Of Group(s5);
[(1,2,3,4,5),(1,2)
gap> a 5:=AlternatingGroup(5);
Alt([ 1 .. 5 ])
gap> Size(a5);
6 0
gap> GeneratorsOf Group(a5);
[(1,2,3,4,5),(3,4,5)]
gap> q:=QuaternionGroup(I sPermGroup, 8);
Group([ (1,5,3,7)(2,8,4,6),(1,2,3,4)(5,6,7,8) ])
gap> Size(q);
gap> Generators Of Group(q);
[(1,5,3,7)(2,8,4,6),(1,2,3,4)(5,6,7,8)]
```

34. How do I find the conjugate of a permutation in the form $a^{b}=b^{-1} a b$?
gap> a: $=(1,2,3,4,5)$;
$(1,2,3,4,5)$
$g a p>b:=(2,4,5)$;
$(2,4,5)$
gap> a^b;
$(1,4,3,5,2)$
$g a p>b^{\wedge}-1 * a * b ;$
$(1,4,3,5,2)$
35. How do I divide up a group into classes of elements that are conjugate to one another? (Note that "conjugacy" is an equivalence relation on our group G. That means that G can be separated into nonintersecting subsets that contain only elements that are conjugate to one another.)
```
gap> d3:=Di hedral Group(|sPermGroup,6);
Group([ (1, 2,3), (2,3) ])
g
gap> Elements(d3);
[(),(2,3),(1,2), (1, 2, 3), (1,3,2), (1,3)]
gap> Cc:=ConjugacyCl asses(d3);
[()^G, (2,3)^G, (1,2,3)^G]
gap> Elements(cc[1]);
gap> Elements(cc[2]);
[(2,3),(1,2),(1,3)]
gap> Elements(cc[3]);
[(1,2,3),(1,3,2)]
```


HOW TO FTM THE MOOTHEAT OF ACAYLEY (1) AGBAM 2

We're now going to give an illustration of how to find the Cayley diagram of a quotient group, and for this example we will use the Quanternion Group since all of its subgroups are normal subgroups. Thus, below is the Cayley diagram for the Quanternion Group, and the subgroup we are going to factor our is $\left\{\begin{array}{c}() \\ (1,5)(2,6)(3,7)(4,8)\end{array}\right\}$.

And now, for convenience, we'll color-code the various right cosets that are to be found in our corresponding quotient group.

The four elements in our quotient group can be listed as follows.
$\left\{\begin{array}{c}() \\ (1,5)(2,6)(3,7)(4,8)\end{array}\right\},\left\{\begin{array}{l}(1,2,5,6)(8,7,4,3) \\ (1,6,5,2)(3,4,7,8)\end{array}\right\},\left\{\begin{array}{l}(1,7,5,3)(2,8,6,4) \\ (1,3,5,7)(2,4,6,8)\end{array}\right\}$, and
$\left\{\begin{array}{l}(1,4,5,8)(7,6,3,2) \\ (1,8,5,4)(2,3,6,7)\end{array}\right\}$

We can also write each of those as a right coset of the normal subgroup that we are factoring out.

$$
\left\{\begin{array}{c}
() \\
(1,5)(2,6)(3,7)(4,8)
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
(1,2,5,6)(8,7,4,3) \\
(1,6,5,2)(3,4,7,8)
\end{array}\right\}=\left\{\begin{array}{c}
() \\
(1,5)(2,6)(3,7)(4,8)
\end{array}\right\}(1,2,5,6)(8,7,4,3)
$$

$$
\left\{\begin{array}{l}
(1,4,5,8)(7,6,3,2) \\
(1,8,5,4)(2,3,6,7)
\end{array}\right\}=\left\{\begin{array}{c}
() \\
(1,5)(2,6)(3,7)(4,8)
\end{array}\right\}(1,4,5,8)(7,6,3,2)
$$

$$
\left\{\begin{array}{c}
(1,7,5,3)(2,8,6,4) \\
(1,3,5,7)(2,4,6,8)
\end{array}\right\}=\left\{\begin{array}{c}
() \\
(1,5)(2,6)(3,7)(4,8)
\end{array}\right\}(1,7,5,3)(2,8,6,4)
$$

Using our Cayley diagram where the cosets are color-coded (repeated below), we can find the order of each element of our quotient group by following the appropriate arrows leading away from each particular coset.

Thus, if we apply the red arrows twice to each element of the coset $\left\{\begin{array}{c}(1,5)(2,6)(3,7)(4,8)\end{array}\right\}$, then we arrive back at elements in the coset

Similarly, if we apply the green arrows twice to $\left\{\begin{array}{c}() \\ (1,5)(2,6)(3,7)(4,8)\end{array}\right\}$, then we also arrive back at elements in the $\operatorname{coset}\left\{\begin{array}{c}() \\ (1,5)(2,6)(3,7)(4,8)\end{array}\right\}$, and so
 arrow followed by the green arrow repeatedly to the coset we have factored out, then we again show that we have an element of order $2 .$.

$$
\left\{\begin{array}{c}
() \\
(1,5)(2,6)(3,7)(4,8)
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
() \\
\{(1,5)(2,6)(3,7)(4,8)
\end{array}\right\}(1,2,5,6)(3,8,7,4)(1,4,5,8)(7,6,3,2)
$$

$$
=\left\{\begin{array}{l}
(1,7,5,3)(2,8,6,4) \\
(1,3,5,7)(2,4,6,8)
\end{array}\right\}
$$

$$
\left\{\begin{array}{l}
(1,7,5,3)(2,8,6,4) \\
(1,3,5,7)(2,4,6,8)\}
\end{array}\right\}(1,2,5,6)(3,8,7,4)(1,4,5,8)(7,6,3,2)
$$

$$
=\left\{\begin{array}{c}
() \\
(1,5)(2,6)(3,7)(4,8)
\end{array}\right\}[(1,2,5,6)(3,8,7,4)(1,4,5,8)(7,6,3,2)]^{2}
$$

$$
=\left\{\begin{array}{c}
(1,5)(2,6)(3,7)(4,8) \\
()
\end{array}\right\}
$$

From this we know that our quotient group must be isomorphic to the Klein 4group, and we can easily construct its Cayley diagram. And we are done.

SUMAMAM (PADT E)

Upon completing this part, you should be able to construct the following items for a group once you are given generators for that group:

- A cycle graph.
- A Cayley diagram.
- A generator diagram.
- A canonical generator diagram.
- The quotient of a Cayley diagram

The fun continues!

PDACTICE (PADT S)

For each given group and set of generators for that group, construct the same type of visual analysis presented in Part 5 of this work.

1. Group: $C_{11} \cong \mathbb{Z}_{11}$ (cyclic group)

Generators: (1, 2,3,4,5,6,7,8,9,10,11)
2. Group: $C_{6} \times C_{2} \cong C_{3} \times C_{2} \times C_{2} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{6} \times \mathbb{Z}_{2}$ (direct product)

Generators: (1, 2,3,4,5,6),(7,8)
3. Group: $D_{6} \cong \mathbb{Z}_{6}>\triangleleft \mathbb{Z}_{2} \cong C_{6}>\triangleleft C_{2}$ (dihedral group)

Generators: (1, 2, 3,4,5,6),(2,6)(3,5)
4. Group: A_{4} (alternating group)

Generators: ($1,2,3$), ($2,3,4$)

PRACTTEB (PART E) - ANSMARE

For each given group and set of generators for that group, construct the same type of visual analysis presented in part 5 of this work.

1. Group: $C_{11} \cong \mathbb{Z}_{11}$ (cyclic group)

Generators: (1, 2,3,4,5,6, $, 8,9,10,11)$

THE CYCLIC GROUP OF ORDER 11

$$
C_{11} \cong \mathbb{Z}_{11}
$$

Generators:

$$
(1,2,3,4,5,6,7,8,9,10,11)
$$

Elements:

$\left\{\begin{array}{c}() \\ (1,2,3,4,5,6,7,8,9,10,11) \\ (1,3,5,7,9,11,2,4,6,8,10) \\ (1,4,7,10,2,5,8,11,3,6,9) \\ (1,5,9,2,6,10,3,7,11,4,8) \\ (1,6,11,5,10,4,9,3,8,2,7) \\ (1,7,2,8,3,9,4,10,5,11,6) \\ (1,8,4,11,7,3,10,6,2,9,5) \\ (1,9,6,3,11,8,5,2,10,7,4) \\ (1,10,8,6,4,2,11,9,7,5,3) \\ (1,11,10,9,8,7,6,5,4,3,2)\end{array}\right\} \cong C_{11}$

Is Abelian?

Yes

Cycle Graph

Cayley diagram

Generator Diagram

2. Group: $C_{6} \times C_{2} \cong C_{3} \times C_{2} \times C_{2} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{6} \times \mathbb{Z}_{2}$ (direct product) Generators: $(1,2,3,4,5,6),(7,8)$

$$
\begin{gathered}
\text { THE DIRECT PRODUCT } \mathbb{Z}_{6} \times \mathbb{Z}_{2} \\
C_{6} \times C_{2} \cong C_{3} \times C_{2} \times C_{2} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{6} \times \mathbb{Z}_{2}
\end{gathered}
$$

Generators:

(1, 2, 3, 4, 5, 6), (7,8)

Elements:
$\left\{\begin{array}{c}() \\ (7,8) \\ (1,2,3,4,5,6) \\ (1,2,3,4,5,6)(7,8) \\ (1,3,5)(2,4,6) \\ (1,3,5)(2,4,6)(7,8) \\ (1,4)(2,5)(3,6) \\ (1,4)(2,5)(3,6)(7,8) \\ (1,5,3)(2,6,4) \\ (1,5,3)(2,6,4)(7,8) \\ (1,6,5,4,3,2) \\ (1,6,5,4,3,2)(7,8)\end{array}\right\} \cong C_{6} \times C_{2}$

Is Abelian?

Yes

Cayley Diagram

or

or

Generator Diagram

Or

or

3. Group: $D_{6} \cong \mathbb{Z}_{6}>\triangleleft \mathbb{Z}_{2} \cong C_{6}>\triangleleft C_{2}$ (dihedral group) Generators: $(1,2,3,4,5,6),(2,6)(3,5)$

THE DIHEDRAL GROUP D_{6}

$$
D_{6} \cong \mathbb{Z}_{6}>\triangleleft \mathbb{Z}_{2} \cong C_{6}>\triangleleft C_{2}
$$

Generators:

$(1,2,3,4,5,6),(2,6)(3,5)$

Elements:
$\left\{\begin{array}{c}() \\ (2,6)(3,5) \\ (1,2)(3,6)(4,5) \\ (1,2,3,4,5,6) \\ (1,3)(4,6) \\ (1,3,5)(2,4,6) \\ (1,4)(2,3)(5,6) \\ (1,4)(2,5)(3,6) \\ (1,5)(2,4) \\ (1,5,3)(2,6,4) \\ (1,6,5,4,3,2) \\ (1,6)(2,5)(3,4)\end{array}\right\} \cong D_{6}$

Is Abelian?

No

Cayley Diagram

or

Generator Diagram

4. Group: A_{4} (alternating group)

Generators: (1, 2, 3), (2,3,4)

Generators:

$(1,2,3),(2,3,4)$

Elements:
$\left\{\begin{array}{c}(,) \\ (2,3,4) \\ (2,4,3) \\ (1,2)(3,4) \\ (1,2,3) \\ (1,2,4) \\ (1,3,2) \\ (1,3,4) \\ (1,3)(2,4) \\ (1,4,2) \\ (1,4,3) \\ (1,4)(2,3)\end{array}\right\} \cong A_{4}$

Is Abelian?

No

Or

Generator Diagram

YOUP KHOMLEDGE OF BPOUP THEOPY

