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INTRODUCTION (part 4) 
 
 

 
We can never learn about all the numbers in our number system since there are 

an infinite number of them and we have only a finite amount of time to live.  

Nonetheless, because we know multiplication tables and lots of other facts about 

many small numbers, we feel that we know numbers in general and we have a 

good feel for what is true and what is not true about numbers.  This same 

strategy  can also be applied to the study of group theory.  We can never know 

all there is to know about every single group, but if we study several groups of 

small order in detail, then that will gives us a good base of knowledge to draw 

upon when thinking about groups.  Thus, in this part of our work we’ll examine all 

groups of orders 1 through 10, and almost all of them will be either cyclic groups, 

dihedral groups, symmetric groups, alternating groups, direct products, or 

semidirect products..  More specifically, we’ll identify permutations that generate 

each group, list the elements of the group, identify whether the group is abelian 

or not, list important subgroups of each group, draw the what’s known as a 

subgroup lattice (a diagram that visually illustrates the subgroup structure of a 

group), and we’ll identify whether each subgroup is normal or not.  Also, if a 

subgroup H of a group G is not normal in G and if a G∈ , then both 1aHa−  and 
1a Ha−  are also subgroups of G called conjugates of H in G (see Part 2).  

Furthermore, if a subgroup is not normal, then we’ll express that subgroup and its 

conjugates all in the same color in the charts that follow.  Also, just as a 

subgroup can have conjugates by an element, so can we find the conjugate of a 

single element.  Thus, if we have a subgroup H of a group G and if a H∈  and 

b G∈ , then both 1bab−  and 1b ab−  are called conjugates of a by b.  Also, GAP 

software will define ba  as meaning 1b ab− , but be aware that some authors define 
ba  as meaning 1bab− .  Additionally, if our group is abelian, then it’s pretty easy to 

identify its internal structure thanks to the Fundamental Theorem of Finite 

Abelain Groups.  This theorem tells us that every finite abelian group is a direct 
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product of groups of prime power order.  Thus, for example, the only possible 

abelian groups of order 8 are 8C , 4 2 2 4C C C C× ≅ × , and 2 2 2C C C× × .  And lastly, just 

because a group has small order (a small number of elements), never assume 

that you have exhausted everything you can learn about it.  And this goes even 

for the identity group.  He who has contemplated the identity group 100 times 

never knows as much as he who has contemplated it 101 times!  Enjoy! 
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How to use gap (part 4) 

 

In Part 4 of How to Use GAP, we’ve added on to the very end of our list some 

commands (in red) that will help you find conjugates of various sorts. 

 

 

1. How can I redisplay the previous command in order to edit it? 

 

Press down on the control key and then also press p.  In other words, “Ctrl p”. 

 

 

2. If the program gets in a loop and shows you the prompt “brk>” instead of 

“gap>”, how can I exit the loop? 

 

Press down on the control key and then also press d.  In other words, “Ctrl d”. 

 

 

3. How can I exit the program? 

 

Either click on the “close” box for the window, or type “quit;” and press 

“Enter.” 

 

 

4. How do I find the inverse of a permutation? 

 

gap> a:=(1,2,3,4); 

(1,2,3,4) 

gap> a^-1; 

(1,4,3,2) 
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5. How can I multiply permutations and raise permutations to powers? 

 

gap> (1,2)*(1,2,3); 

(1,3) 

 

gap> (1,2,3)^2; 

(1,3,2) 

 

gap> (1,2,3)^-1; 

(1,3,2) 

 

gap> (1,2,3)^-2; 

(1,2,3) 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> b:=(1,2); 

(1,2) 

 

gap> a*b; 

(2,3) 

 

gap> a^2; 

(1,3,2) 

 

gap> a^-2; 

(1,2,3) 

 

gap> a^3; 

() 
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gap> a^-3; 

() 

 

gap> (a*b)^2; 

() 

 

gap> (a*b)^3; 

(2,3) 

 

 

6. How can I create a group from permutations, find the size of the group, and 

find the elements in the group? 

 

gap> a:=(1,2); 

(1,2) 

 

gap> b:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a,b); 

Group([ (1,2), (1,2,3) ]) 

 

gap> Size(g1); 

6 

 

gap> Elements(g1); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> g2:=Group([(1,2),(1,2,3)]); 

Group([ (1,2), (1,2,3) ]) 
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gap> g3:=Group((1,2),(2,3,4)); 

Group([ (1,2), (2,3,4) ]) 

 

 

7. How can I create a cyclic group of order 3? 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a); 

Group([ (1,2,3) ]) 

 

gap> Size(g1); 

3 

 

gap> Elements(g1); 

[ (), (1,2,3), (1,3,2) ] 

 

gap> g2:=Group((1,2,3)); 

Group([ (1,2,3) ]) 

 
gap> g3:=CyclicGroup(IsPermGroup,3); 

Group([ (1,2,3) ]) 
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8. How can I create a multiplication table for the cyclic group of order 3 that I just 

created? 

 

gap> ShowMultiplicationTable(g1); 

 

*          | ()          (1,2,3)     (1,3,2) 

--------+--------------------------------- 

()         | ()          (1,2,3)     (1,3,2) 

(1,2,3) | (1,2,3)  (1,3,2)     () 

(1,3,2) | (1,3,2)  ()             1,2,3) 

 

 

9. How do I determine if a group is abelian? 

 

gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> IsAbelian(g1); 
true 
 
gap> g2:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 
gap> IsAbelian(g2); 
false 

 

 

10. What do I type in order to get help for a command like “Elements?” 

 

gap> ?Elements 

 

 

11. How do I find all subgroups of a group? 

 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=AllSubgroups(g); 
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]), 
Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ] 
 
gap> List(h,i->Elements(i)); 
[ [ () ], [ (), (2,3) ], [ (), (1,2) ], [ (), (1,3) ], [ (), (1,2,3), 
(1,3,2) ], [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] ] 
 
gap> Elements(h[1]); 
[ () ] 
 
gap> Elements(h[2]); 
[ (), (2,3) ] 
 
gap> Elements(h[3]); 
[ (), (1,2) ] 
 
gap> Elements(h[4]); 
[ (), (1,3) ] 
 
 
gap> Elements(h[5]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(h[6]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

 

12. How do I find the subgroup generated by particular permutations? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 

 

 

13. How do I determine if a subgroup is normal? 
 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 
gap> h1:=Group((1,2)); 
Group([ (1,2) ]) 
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gap> IsNormal(g,h1); 
 
gap> h2:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
 
gap> IsNormal(g,h2); 
true 

 

 
 
 
14. How do I find all normal subgroups of a group? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 

gap> n:=NormalSubgroups(g); 
[ Group([ (1,2), (1,2,3) ]), Group([ (1,3,2) ]), Group(()) ] 
 

gap> Elements(n[1]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> Elements(n[2]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(n[3]); 
[ () ] 

 

 

15. How do I determine if a group is simple? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> IsSimple(g); 
false 

 
gap> h:=Group((1,2)); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> IsSimple(h); 
true 
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16. How do I find the right cosets of a subset H of G? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> c:=RightCosets(g,h); 
[ RightCoset(Group( [ (1,2) ] ),()), RightCoset(Group( [ (1,2) ] ),(1,3,2)), 
RightCoset(Group( [ (1,2) ] ),(1,2,3)) ] 
 
gap> List(c,i->Elements(i)); 
[ [ (), (1,2) ], [ (2,3), (1,3,2) ], [ (1,2,3), (1,3) ] ] 
gap> Elements(c[1]); 
[ (), (1,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,3,2) ] 
 
 
gap> Elements(c[3]); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=RightCoset(h,(1,2,3)); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=h*(1,2,3); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 

 
 

17. How can I create a quotient (factor) group? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> n:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> Elements(n); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> IsNormal(g,n); 
true 
 
gap> c:=RightCosets(g,n); 
[ RightCoset(Group([ (1,2,3) ]),()), RightCoset(Group([ (1,2,3) ]),(2,3)) ] 
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gap> Elements(c[1]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,2), (1,3) ] 
 
gap> f:=FactorGroup(g,n); 
Group([ f1 ]) 
 
gap> Elements(f); 
[ <identity> of ..., f1 ] 
 
gap> ShowMultiplicationTable(f); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
 
 
 

 

18. How do I find the center of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Center(g); 
Group(()) 
 
gap> c:=Center(g); 
Group(()) 
 
gap> Elements(c); 
[ () ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> c:=Center(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 

 
 
19. How do I find the commutator (derived) subgroup of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3,2) ]) 
 
gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(d); 
[ (), (1,3)(2,4) ] 
 

 
20. How do I find all Sylow p-subgroups for a given group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> FactorsInt(6); 
[ 2, 3 ] 
 
gap> sylow2:=SylowSubgroup(g,2); 
Group([ (2,3) ]) 
 
gap> IsNormal(g,sylow2); 
false 
 
gap> c:=ConjugateSubgroups(g,sylow2); 
[ Group([ (2,3) ]), Group([ (1,3) ]), Group([ (1,2) ]) ] 
 
gap> Elements(c[1]); 
[ (), (2,3) ] 
 
gap> Elements(c[2]); 
[ (), (1,3) ] 
 
gap> Elements(c[3]); 
[ (), (1,2) ] 
 
gap> sylow3:=SylowSubgroup(g,3); 
Group([ (1,2,3) ]) 
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gap> IsNormal(g,sylow3); 
true 
 
gap> Elements(sylow3); 
[ (), (1,2,3), (1,3,2) ] 
 

 
 
21. How can I create the Rubik’s cube group using GAP? 

 

First you need to save the following permutations as a pure text file with the 

name rubik.txt to your C-drive before you can import it into GAP. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 

 

And now you can read the file into GAP and begin exploring. 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
 
 
22. How can I find the center of the Rubik’s cube group? 
 
 
gap> c:=Center(rubik); 
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45) 
(39,47) ] 
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23. How can I find the commutator (derived) subgroup of the Rubik’s cube group? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group with 5 generators> 
 
gap> Size(d); 
21626001637244928000 
 
gap> IsNormal(rubik,d); 
true 

 

 

24. How can I find the quotient (factor) group of the Rubik’s cube group by its 

commutator (derived) subgroup? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group of size 21626001637244928000 with 5 generators> 
 
gap> f:=FactorGroup(rubik,d); 
Group([ f1 ]) 
 
gap> Size(f); 
2 
 

 

25. How can I find some Sylow p-subgroups of the Rubik’s cube group? 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
gap> FactorsInt(43252003274489856000); 
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11 ] 
 
gap> sylow2:=SylowSubgroup(rubik,2); 
<permutation group of size 134217728 with 27 generators> 
 
gap> sylow3:=SylowSubgroup(rubik,3); 
<permutation group of size 4782969 with 14 generators> 
 
gap> sylow5:=SylowSubgroup(rubik,5); 
<permutation group of size 125 with 3 generators> 
 
gap> sylow7:=SylowSubgroup(rubik,7); 
<permutation group of size 49 with 2 generators> 
 
gap> sylow11:=SylowSubgroup(rubik,11); 
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ]) 
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gap> Elements(sylow11); 
[ (), (4,5,36,21,31,15,39,13,42,7,12)(10,26,29,28,45,44,47,20,23,18,37), 
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29), 
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26), 
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45), 
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47), 
(4,21,39,7,5,31,13,12,36,15,42)(10,28,47,18,26,45,20,37,29,44,23), 
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20), 
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18), 
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44), 
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ] 
 
gap> IsNormal(rubik,sylow2); 
false 
 
gap> IsNormal(rubik,sylow3); 
false 
 
 
gap> IsNormal(rubik,sylow5); 
false 
 
gap> IsNormal(rubik,sylow7); 
false 
 
gap> IsNormal(rubik,sylow11); 
false 
 
NOTE:  All of the Sylow p-subgroups found above have conjugates, but the 
sheer size of the Rubik’s cube group makes it too difficult to pursue them on a 
typical desktop computer. 
 

 

26. How do I determine if a group is cyclic? 

 
gap> a:=(1,2,3)*(4,5,6,7); 
(1,2,3)(4,5,6,7) 
 
gap> g:=Group(a); 
Group([ (1,2,3)(4,5,6,7) ]) 
 
gap> Size(g); 
12 
 
gap> IsCyclic(g); 
true 

 

 

27. How do I create a dihedral group with 2n elements for an n-sided regular 

polygon? 

 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
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gap> Elements(d4); 
[ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ] 
 

 

28. How can I express the elements of a dihedral group as rotations and flips 
rather than as permutations? 

 
 
gap> d3:=DihedralGroup(6); 
<pc group of size 6 with 2 generators> 
 
gap> Elements(d3); 
[ <identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2 ] 
 
gap> ShowMultiplicationTable(d3); 
*                 | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
------------------+---------------------------------------------------------------------------------------------------\ 
--------- 
<identity> of ... | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
f1                | f1                <identity> of ... f1*f2             f2                f1*f2^2           f2^2       
f2                | f2                f1*f2^2           f2^2              f1                <identity> of ... f1*f2      
f1*f2             | f1*f2             f2^2              f1*f2^2           <identity> of ... f1                f2         
f2^2              | f2^2              f1*f2             <identity> of ... f1*f2^2           f2                f1         
f1*f2^2           | f1*f2^2           f2                f1                f2^2              f1*f2             
<identity> of ... 

29. How do I create a symmetric group of degree n with n! elements? 
 
gap> s4:=SymmetricGroup(4); 
Sym( [ 1 .. 4 ] ) 
 
gap> Size(s4); 
24 
 
gap> Elements(s4); 
[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), 
(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), 
  (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), 
(1,4), (1,4,2,3), (1,4)(2,3) ] 

 
 
 

30. How do I create an alternating group of degree n with !
2
n  elements? 

 
gap> a4:=AlternatingGroup(4); 
Alt( [ 1 .. 4 ] ) 

 
gap> Size(a4); 
12 
gap> Elements(a4); 
[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), 
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ] 

 
 
 
31. How do I create a direct product of two or more groups? 
 
gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
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gap> g2:=Group((4,5)); 
Group([ (4,5) ]) 
 
gap> dp:=DirectProduct(g1,g2); 
Group([ (1,2,3), (4,5) ]) 
 
gap> Size(dp); 
6 
gap> Elements(dp); 
[ (), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) ] 
 
gap> ShowMultiplicationTable(dp); 
*            | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
-------------+---------------------------------------------------------------------------
--- 
()           | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
(4,5)        | (4,5)        ()           (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2) 
(1,2,3)      | (1,2,3)      (1,2,3)(4,5) (1,3,2)      (1,3,2)(4,5) ()           (4,5) 
(1,2,3)(4,5) | (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2)      (4,5)        () 
(1,3,2)      | (1,3,2)      (1,3,2)(4,5) ()           (4,5)        (1,2,3)      
(1,2,3)(4,5) 
(1,3,2)(4,5) | (1,3,2)(4,5) (1,3,2)      (4,5)        ()           (1,2,3)(4,5) (1,2,3) 

 
 

 
 

32. How can I create the Quaternion group? 
 
gap> a:=(1,2,5,6)*(3,8,7,4); 
(1,2,5,6)(3,8,7,4) 
 
gap> b:=(1,4,5,8)*(2,7,6,3); 
(1,4,5,8)(2,7,6,3) 
 
gap> q:=Group(a,b); 
Group([ (1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ]) 
 
gap> Size(q); 
8 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3), 
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8), 
  (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ] 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6), 
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7), 
  (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ] 
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33. How can I find a set of independent generators for a group? 
 
 
gap> c6:=CyclicGroup(IsPermGroup,6); 
Group([ (1,2,3,4,5,6) ]) 
 
gap> Size(c6); 
6 
 
gap> GeneratorsOfGroup(c6); 
[ (1,2,3,4,5,6) ] 

 
 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
 
gap> Size(d4); 
8 
 
gap> GeneratorsOfGroup(d4); 
[ (1,2,3,4), (2,4) ] 

 
 
gap> s5:=SymmetricGroup(5); 
Sym( [ 1 .. 5 ] ) 
 
 
gap> Size(s5); 
120 
 
gap> GeneratorsOfGroup(s5); 
[ (1,2,3,4,5), (1,2) ] 
 
 
gap> a5:=AlternatingGroup(5); 
Alt( [ 1 .. 5 ] ) 
 
gap> Size(a5); 
60 
 
gap> GeneratorsOfGroup(a5); 
[ (1,2,3,4,5), (3,4,5) ] 
 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
gap> GeneratorsOfGroup(q); 
[ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ] 
 
 
 

34. How do I find the conjugate of a permutation in the form 1ba b ab−= ? 
 
gap> a:=(1,2,3,4,5); 
(1,2,3,4,5) 

 
gap> b:=(2,4,5); 
(2,4,5) 
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gap> a^b; 
(1,4,3,5,2) 

 
gap> b^-1*a*b; 
(1,4,3,5,2) 
 
 
 
35. How do I divide up a group into classes of elements that are conjugate to one another?  

(Note that “conjugacy” is an equivalence relation on our group G.  That means that 
G can be separated into nonintersecting subsets that contain only elements that are 
conjugate to one another.) 

 
gap> d3:=DihedralGroup(IsPermGroup,6); 
Group([ (1,2,3), (2,3) ]) 

 
gap> Size(d3); 
6 

 
gap> Elements(d3); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 
gap> cc:=ConjugacyClasses(d3); 
[ ()^G, (2,3)^G, (1,2,3)^G ] 

 
gap> Elements(cc[1]); 
[ () ] 

 
gap> Elements(cc[2]); 
[ (2,3), (1,2), (1,3) ] 

 
gap> Elements(cc[3]); 
[ (1,2,3), (1,3,2) ] 
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Groups of order 1 
 
 

The only group of order 1 is the group that consists of a single element, the 

identify element.  Consequently, it’s a pretty simple group, and there is not much 

detail to give about it. 
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THE IDENTITY GROUP 

 
 

Generators: 
 
( )  
 
 
Elements: 
 
{ () } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 
( ){ }  

Normal, Center, Commutator Subgroup 
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Subgroup Lattice 
 
 
 

 
 

e



 23

Groups of order 2 
 
 

Just as there is only one group of order 1, there is also only one group, up to 

isomorphism, of order 2.  Also, when we use the phrase “up to isomorphism,” 

that means that even though we might use different names for the elements of 

the group and even though our binary operations may be defined differently in 

the different groups, the resulting multiplication tables all have the same 

algebraic structure.  That means that we can take the elements of one group, 

translate them into elements of the other group, and then the corresponding 

elements will combine with one another in the same way.  For example, below 

are four different looking multiplication tables that all represent the one  group of 

order 2 (up to isomorphism). 

 
0 1

0 0 1
1 1 0  

1 2
1 1 2
2 2 1  

 
a b

a a b
b b a  

no flip flip
no flip no flip flip

flip flip no flip  
 

For the last group multiplication table in our list, what we have in mind is a light 

switch and the 2-element group associated with it.  Doing nothing, not flipping the 

switch at all, is the identity element in this group.  The only other element in the 

group is represented by flipping the switch, and if we flip the switch twice, then 

the result is the same as not flipping the switch at all.  In other words, “flip times 

flip = no flip.” 
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THE CYCLIC GROUP OF ORDER 2 

2 2C ≅  

 
 

Generators: 
 
(1,2)  
 
 
Elements: 
 
{ (), (1,2) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 
( )

2(1,2)
C

⎧ ⎫
≅⎨ ⎬

⎩ ⎭
 

Normal, Center, Sylow 2-subgroup 
 
 
 
 
( ){ }  

Normal, Commutator Subgroup   
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Subgroup Lattice 
 
 
 

 
 
 

e

2C

e

2C
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Groups of order 3 
 
 

There is also only one group of order 3, and it is the cyclic group 3C .  Notice, too, 

that 3 is a prime number.  Whenever the order of a group is a prime such as 2 or 

3, then the only group of that order is going to be a cyclic group.  This is because 

for finite groups the order of any subgroup has to be a divisor of the order of the 

group, and the only divisors of a prime number are itself and 1.  Hence, the only 

subgroups of a group of prime order are the whole group and the identity, and 

they are also normal subgroups.  Furthermore, 3C  is simple since it doesn’t have 

any normal subgroups besides itself and the identity.  Notice, also, that for any 

given finite order, there always exists a cyclic group of that order.  Hence, when 

the order is prime, the only group that exists is the cyclic group of that prime 

order. 
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THE CYCLIC GROUP OF ORDER 3 

3 3C ≅  

 
 

Generators: 
 
(1,2,3)  
 
 
Elements: 
 
{ (), (1,2,3), (1,3,2) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )
3(1,2,3)

(1,3,2)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

 

Normal, Center, Sylow 3-subgroup 
 
 
 
 
( ){ }  

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 

 
 

 
 

e

3C

e

3C
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Groups of order 4 
 
 

There exist two groups of order 4 and both are abelian.  Consequently, we can 

apply the Fundamental Theorem of Finite Abelian Groups which tells us that 

each group can be expressed as a direct product of cyclic groups of prime power 

order.  In this case that means that the only two possible groups are the cyclic 

group 4C  and the direct product 2 2C C× .  The group 2 2C C×  is also known as the 

Klein 4-group or as Vierergruppe (German for 4-group).  Additionally, it is 

sometimes denoted by 4K  or by V , and a good representation for this group 

consists of two light switches each of which can be flipped on or off. Let 1f  

represent flipping the first switch, let 2f  represent flipping the second switch, and 

let 0 represent no flip at all.  Then using this notation we can represent the 

elements of the group as { }1 2 1 2(0,0),( ,0),(0, ), ( , )f f f f  where 2 2
1 20f f= = . 



 30

THE CYCLIC GROUP OF ORDER 4 

4 4C ≅  

 
 

Generators: 
 
(1,2,3,4)  
 
 
Elements: 
 
{ (), (1,2,3,4), (1,3)(2,4), (1,4,3,2) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

4
(1,2,3,4)
(1,3)(2,4)
(4,3,2,1)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Center, Sylow 2-subgroup 
 
 

( )
2(1,3)(2,4)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 

 
 

 
 

4C

e

2C

4C

e

2C
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THE KLEIN 4-GROUP 

2 2 2 2C C× ≅ ×  

 
 

Generators: 
 
(1,2),(3,4)  
 
 
Elements: 
 
{ (), (3,4), (1,2), (1,2)(3,4) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

2 2
(1,2)
(3,4)

(1,2)(3,4)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Center, Sylow 2-subgroup 
 
 
( )

(1,2)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
(3,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
2(1,2)(3,4)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal Normal Normal 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 

2 2C C×

e

2C
2C 2C

2 2C C×

e

2C
2C 2C



 34

Groups of order 5 
 
 

Since 5 is a prime number, the only group that exists of order 5 is the abelian 

cyclic group of order 5, 5C .  Furthermore, this group is simple since its only 

normal subgroups are itself and the identity. 
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THE CYCLIC GROUP OF ORDER 5 

5 5C ≅  

 
 

Generators: 
 
(1,2,3,4,5)  
 
 
Elements: 
 
{ (), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

5

(1,2,3,4,5)
(1,3,5,2,4)
(1,4,2,5,3)
(1,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Center, Sylow 5-subgroup 
 
 
( ){ }     

Normal. Commutator Subgroup 
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Subgroup Lattice 
 
 
 

 
 

 
 
 

e

5C

e

5C
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Groups of order 6 
 
 

Order 6 for groups is worthy of note because this is the first time we encounter a 

nonabelian group!  In fact, there exist just two groups of order 6 (two groups with 

six elements).  One is the cyclic group of order 6, 6C , and the other is the 

dihedral group of degree 3, 3D .  The dihedral group of degree 3 is the smallest 

nonabelian group there is, and yet it is interesting that all of its proper subgroups 

(subgroups not equal to the entire group) are abelian.  Notice, too, that 6 is not a 

prime number, but that we can write 6 as 2 3×  where 2 and 3 are relatively prime 

(that means that their only common factor is 1).  When that happens with the 

order of a cyclic group, that means that we can also write our cyclic group as the 

direct product of smaller cyclic groups of prime power order, and in this case we 

can write 6 3 2C C C≅ × .  The dihedral group 3D  has order 6, and recall that it 

represents the symmetries of an equilateral triangle.  In other words, it is the 

group generated by rotations of our triangle through angles that are integer 

multiples of 120°  and by flips about any of its three axes of symmetry.  

Furthermore, the number of permutations that can be made of 3 objects is 6, and 

that means that the symmetric group of degree 3, 3S , which is the group of all 

permutations that can be made of 3 objects is essentially identical or isomorphic 

with the dihedral group 3D , 3 3D S≅ .  Additionally, this is the only time something 

like this happens.  Since the order of nD  is 2n  and since the order of nS  is 

! ( 1)( 2) (1)n n n n= − − … , the only time these two computations are the same is when 

3n = .  Something else worth noting is that for any value of n there always exists a 

cyclic group of degree n, and for any value 2n  where 3n ≥ , there is always a 

dihedral group, nD , of that order, and for any dihedral group nD  it is also true that 

2n nD C C≅ >� .  Thus, 3 3 3 2D S C C≅ ≅ >� .  A lot of groups of higher order turn out to 

be either cyclic or dihedral.  And if we add to this list the symmetric groups, direct 

products, and semidirect products, then those are probably the majority of the 

groups we are likely to encounter.  Things will change though when we get to 
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order 8 and discover an interesting group called the Quaternion Group which is 

nonabelian and which falls into none of the aforementioned categories. 
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THE CYCLIC GROUP OF ORDER 6 

6 2 3 2 3 6C C C≅ × ≅ × ≅] ] ]  

 
 

Generators: 
 
(1,2),(3,4,5)  
 
 
Elements: 
 
{ (), (3,4,5), (3,5,4), (1,2), (1,2)(3,4,5), (1,2)(3,5,4) } 
 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

6

(3,4,5)
(3,5,4)
(1,2)

(1,2)(3,4,5)
(1,2)(3,5,4)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Center 
 
 

( )
3(3,4,5)

(3,5,4)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

    

Normal, Sylow 3-subgroup 
 
 
( )

2(1,2)
C

⎧ ⎫
≅⎨ ⎬

⎩ ⎭
   

Normal, Sylow 2-subgroup 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 

e

6C

3C

2C

e

6C

3C

2C
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THE DIHEDRAL/SYMMETRIC GROUP OF ORDER 6 

3 3 3 2 3 2D S C C≅ ≅ > ≅ >] �] �  

 
 

Generators: 
 
(1,2,3),(2,3)  
 
 
Elements: 
 
{ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) } 

 
 
Is Abelian? 
 
No 
 
 
Subgroups: 
 

( )

3

(1,2)
(1,3)
(2,3)

(1,2,3)
(1,3,2)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal 
 
 

( )
3(1,2,3)

(1,3,2)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

    

Normal, Commutator Subgroup, Sylow 3-subgroup 
 
 
( )

(1,2)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
(1,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

  ( )
2(2,3)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Conjugate, Sylow 2-subgroups 
 
 
 



 42

( ){ }     
Normal, Center 
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Subgroup Lattice 
 
 
 

e

3D

3C

2C 2C 2C

e

3D

3C

2C 2C 2C
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Groups of order 7 
 
 

The number 7 is prime, so you know what that means.  There exists only one 

group of order 7, and that is 7C , the cyclic group of order 7.  Furthermore, again 

since 7 is prime, its only subgroups are itself and the identity. 



 45

THE CYCLIC GROUP OF ORDER 7 

7 7C ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7)  
 
 
Elements: 
 
{ (), (1,2,3,4,5,6,7), (1,3,5,7,2,4,6), (1,4,7,3,6,2,5), (1,5,2,6,3,7,4), 
(1,6,4,2,7,5,3), (1,7,6,5,4,3,2) } 
 

 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

7

(1,2,3,4,5,6,7)
(1,3,5,7,2,4,6)
(1,4,7,3,6,2,5)
(1,5,2,6,3,7,4)
(1,6,4,2,7,5,3)
(1,7,6,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

    

Normal, Center, Sylow 7-subgroup 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 

 

e

7C

e

7C
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Groups of order 8 
 
 

Things get quite interesting once we get to 8.  There exist five groups of order 8, 

and three of them are abelian.  And by the Fundamental Theorem of Finite 

Abelian Groups, we can immediately identify the abelian groups as 8C , 4 2C C× , 

and 2 2 2C C C× × .  Of the two nonabelian groups, since 8 is even we automatically 

know that one of them is 4D .  The other nonabelian group, though, is called the 

Quaternion Group, and it is quite interesting since it is not one of our usual cyclic, 

dihedral, symmetric, direct product, or semidirect product groups.  It is something 

quite different, and a notable feature of this group is that all of its subgroups are 

normal in spite of it being nonabelian.  Also of interest is that quaternions were 

invented by the mathematician William Rowan Hamilton (1805-1865) as an 

extension of both vectors and imaginary numbers.  Thus, we have i, j, and k 

which resemble the unit vectors studied in trigonometry and advanced calculus, 

and these quantities are also like imaginary numbers since 2 2 2 1i j k= = = − .  

When I was younger, quaternions weren’t studied that much anymore, but these 

days there is renewed interest in the topic since they have turned out to be a 

useful mathematical tool for creating the kinds of computer generated effects that 

appear in many of today’s movies. 
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THE CYCLIC GROUP OF ORDER 8 

8 8C ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7,8)  
 
 
Elements: 
 
{ (), (1,2,3,4,5,6,7,8), (1,3,5,7)(2,4,6,8), (1,4,7,2,5,8,3,6), 
(1,5)(2,6)(3,7)(4,8), (1,6,3,8,5,2,7,4), (1,7,5,3)(2,8,6,4),  
(1,8,7,6,5,4,3,2) } 
 

 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

8

(1,2,3,4,5,6,7,8)
(1,3,5,7)(2,4,6,8)
(1,4,7,2,5,8,3,6)

(1,5)(2,6)(3,7)(4,8)
(1,6,3,8,5,2,7,4)
(1,7,5,3)(2,8,6,4)
(1,8,7,6,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

    

Normal, Center, Sylow 2-subgroup 
 
 

( )

4
(1,3,5,7)(2,4,6,8)

(1,5)(2,6)(3,7)(4,8)
(1,7,5,3)(2,8,6,4)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
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( )
2(1,5)(2,6)(3,7)(4,8)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 
8C

e

4C

2C

8C

e

4C

2C
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THE DIRECT PRODUCT 2 4C C×  

2 4 2 4C C× ≅ ×  

 
 

Generators: 
 
(1,2),(3,4,5,6)  
 
 
Elements: 
 
{ (), (3,4,5,6), (3,5)(4,6), (3,6,5,4), (1,2), (1,2)(3,4,5,6), (1,2)(3,5)(4,6), 
(1,2)(3,6,5,4) : 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

2 4

(3,4,5,6)
(3,5)(4,6)
(3,6,5,4)

(1,2)
(1,2)(3,4,5,6)
(1,2)(3,5)(4,6)
(1,2)(3,6,5,4)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

    

Normal, Center, Sylow 2-subgroup 
 
 

( )

4
(3,5)(4,6)

(1,2)(3,4,5,6)
(1,2)(3,6,5,4)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
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( )

4
(3,4,5,6)
(3,5)(4,6)
(3,6,5,4)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )

2 2
(3,5)(4,6)

(1,2)
(1,2)(3,5)(4,6)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )
2(1,2)(3,5)(4,6)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 

( )
2(3,5)(4,6)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 
( )

2(1,2)
C

⎧ ⎫
≅⎨ ⎬

⎩ ⎭
 

Normal 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 

 2 4C C×

e

4C
2 2C C× 4C

2C2C2C

2 4C C×

e

4C
2 2C C× 4C

2C2C2C

2 4C C×

e

4C
2 2C C× 4C

2C2C2C
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THE DIRECT PRODUCT 2 2 2C C C× ×  

2 2 2 2 2 2C C C× × ≅ × ×  

 
 

Generators: 
 
(1,2),(3,4),(5,6)  
 
 
Elements: 
 
{ (), (5,6), (3,4), (3,4)(5,6), (1,2), (1,2)(5,6), (1,2)(3,4), (1,2)(3,4)(5,6) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

2 2 2

(5,6)
(3,4)

(3,4)(5,6)
(1,2)

(1,2)(5,6)
(1,2)(3,4)

(1,2)(3,4)(5,6)

C C C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅ × ×⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

    

Normal, Center, Sylow 2-subgroup 
 
 

( )

2 2
(3,4)(5,6)
(1,2)(5,6)
(1,2)(3,4)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
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( )

2 2
(5,6)

(1,2)(3,4)
(1,2)(3,4)(5,6)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )

2 2
(3,4)

(1,2)(5,6)
(1,2)(3,4)(5,6)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )

2 2
(3,4)(5,6)

(1,2)
(1,2)(3,4)(5,6)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )

2 2
(5,6)
(1,2)

(1,2)(5,6)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )

2 2
(3,4)
(1,2)

(1,2)(3,4)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )

2 2
(5,6)
(3,4)

(3,4)(5,6)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
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( )
2(1,2)(3,4)(5,6)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 

( )
2(1,2)(3,4)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 

( )
2(1,2)(5,6)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 
( )

2(1,2)
C

⎧ ⎫
≅⎨ ⎬

⎩ ⎭
 

Normal 
 
 

( )
2(3,4)(5,6)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 
( )

2(3,4)
C

⎧ ⎫
≅⎨ ⎬

⎩ ⎭
 

Normal 
 
 
( )

2(5,6)
C

⎧ ⎫
≅⎨ ⎬

⎩ ⎭
 

Normal 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 

2 2 2C C C× ×

2 2C C×2 2C C× 2 2C C×2 2C C×2 2C C× 2 2C C× 2 2C C×

2C2C2C2C 2C 2C 2C

e

2 2 2C C C× ×

2 2C C×2 2C C× 2 2C C×2 2C C×2 2C C× 2 2C C× 2 2C C×

2C2C2C2C 2C 2C 2C

2 2 2C C C× ×

2 2C C×2 2C C× 2 2C C×2 2C C×2 2C C× 2 2C C× 2 2C C×

2 2 2C C C× ×

2 2C C×2 2C C× 2 2C C×2 2C C×2 2C C× 2 2C C× 2 2C C×

2C2C2C2C 2C 2C 2C2C2C2C2C 2C 2C 2C

ee
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THE DIHEDRAL GROUP 4D  

4 4 2 4 2D C C≅ > ≅ >  

 
 

Generators: 
 
(1,2,3,4),(2,4)  
 
 
Elements: 
 
{ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) } 

 
 
Is Abelian? 
 
No 
 
 
Subgroups: 
 

( )

4

(2,4)
(1,2)(3,4)
(1,2,3,4)

(1,3)
(1,3)(2,4)
(1,4,3,2)
(1,4)(2,3)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

    

Normal, Sylow 2-subgroup 
 
 

( )

2 2
(1,2)(3,4)
(1,3)(2,4)
(1,4)(2,3)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
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( )

4
(1,2,3,4)
(1,3)(2,4)
(1,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )

2 2
(2,4)
(1,3)

(1,3)(2,4)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal, Center, Commutator Subgroup 
 
 

( )
(1,4)(2,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
2(1,2)(3,4)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Conjugate 
 
 
 
( )

(1,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

  ( )
2(2,4)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Conjugate 
 
 
 

( )
2(1,3)(2,4)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 
( ){ }     

Normal 
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Subgroup Lattice 

 

 

4D

e

2 2C C×

2C

4C
2 2C C×

2C 2C2C 2C

4D

e

2 2C C×

2C

4C
2 2C C×

2C 2C2C 2C

4D

e

2 2C C×

2C

4C
2 2C C×

2C 2C2C 2C
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THE QUATERNION GROUP 8Q  

8Q  

 
 

Generators: 
 
(1,2,5,6)(3,8,7,4) , (1,4,5,8)(2,7,6,3)  
 
 
Elements: 
 
{ (), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3), 
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8), (1,7,5,3)(2,8,6,4), 
(1,8,5,4)(2,3,6,7) } 

 
 
Is Abelian? 
 
No 
 
 
Subgroups: 
 

( )

8

(1,2,5,6)(3,8,7,4)
(1,3,5,7)(2,4,6,8)
(1,4,5,8)(2,7,6,3)

(1,5)(2,6)(3,7)(4,8)
(1,6,5,2)(3,4,7,8)
(1,7,5,3)(2,8,6,4)
(1,8,5,4)(2,3,6,7)

Q

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

    

Normal, Sylow 2-subgroup 
 
 

( )

4
(1,3,5,7)(2,4,6,8)

(1,5)(2,6)(3,7)(4,8)
(1,7,5,3)(2,8,6,4)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
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( )

4
(1,2,5,6)(3,8,7,4)

(1,5)(2,6)(3,7)(4,8)
(1,6,5,2)(3,4,7,8)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )

4
(1,4,5,8)(2,7,6,3)

(1,5)(2,6)(3,7)(4,8)
(1,8,5,4)(2,3,6,7)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 

( )
2(1,5)(2,6)(3,7)(4,8)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal, Center, Commutator Subgroup 
 
 
( ){ }     

Normal 
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Subgroup Lattice 
 
 
 

8Q

e

4C
4C 4C

2C

8Q

e

4C
4C 4C

2C
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Groups of order 9 
 
 

There are just two groups of order 9, and they are both abelian.  One is the cyclic 

group of order 9, and the other, of course, is the direct product of two cyclic 

groups of order 3. 
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THE CYCLIC GROUP OF ORDER 9 

9 9C ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7,8,9)  
 
 
Elements: 
 
{ (), (1,2,3,4,5,6,7,8,9), (1,3,5,7,9,2,4,6,8), (1,4,7)(2,5,8)(3,6,9), 
(1,5,9,4,8,3,7,2,6), (1,6,2,7,3,8,4,9,5), (1,7,4)(2,8,5)(3,9,6), 
(1,8,6,4,2,9,7,5,3), (1,9,8,7,6,5,4,3,2) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

9

(1,2,3,4,5,6,7,8,9)
(1,3,5,7,9,2,4,6,8)

(1,4,7)(2,5,8)(3,6,9)
(1,5,9,4,8,3,7,2,6)
(1,6,2,7,3,8,4,9,5)

(1,7,4)(2,8,5)(3,6,9)
(1,8,6,4,2,9,7,5,3)
(1,9,8,7,6,5,4,3,2

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Center, Sylow 3-subgroup 
 
 

( )
3(1,4,7)(2,5,8)(3,6,9)

(1,7,4)(2,8,5)(3,9,6)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

    

Normal 
 
 
( ){ }     

Normal, Commutator Subgroup 



 66

Subgroup Lattice 
 
 
 

9C

e

3C

9C

e

3C
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THE DIRECT PRODUCT 3 3×  

3 3 3 3C C× ≅ ×  

 
 

Generators: 
 
(1,2,3),(4,5,6)  
 
 
Elements: 
 
{ (), (4,5,6), (4,6,5), (1,2,3), (1,2,3)(4,5,6), (1,2,3)(4,6,5), (1,3,2), 
(1,3,2)(4,5,6), (1,3,2)(4,6,5) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )

3 3

(4,5,6)
(4,6,5)
(1,2,3)

(1,2,3)(4,5,6)
(1,2,3)(4,6,5)

(1,3,2)
(1,3,2)(4,5,6)
(1,3,2)(4,6,5)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Center, Sylow 3-subgroup 
 
 

( )
3(1,2,3)(4,6,5)

(1,3,2)(4,5,6)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

    

Normal 
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( )
3(1,2,3)(4,5,6)

(1,3,2)(4,6,5)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

    

Normal 
 
 

( )
3(1,2,3)

(1,3,2)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

    

Normal 
 
 

( )
3(4,5,6)

(4,6,5)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

    

Normal 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 

3 3C C×

e

3C 3C3C 3C

3 3C C×

e

3C 3C3C 3C
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Groups of order 10 
 
 

Things are also pretty simple for groups of order 10.  We know that one group of 

order 10 is the abelian cyclic group 10 5 2C C C≅ × , and the other is the nonabelian 

group 5 5 2D C C≅ > . 
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THE CYCLIC GROUP OF ORDER 10 

10 2 5 2 5 10C C C≅ × ≅ × ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7,8,9,10)  
 
 
Elements: 
 
{ (), (1,2,3,4,5,6,7,8,9,10), (1,3,5,7,9)(2,4,6,8,10), (1,4,7,10,3,6,9,2,5,8), 
(1,5,9,3,7)(2,6,10,4,8),(1,6)(2,7)(3,8)(4,9)(5,10), (1,7,3,9,5)(2,8,4,10,6), 
(1,8,5,2,9,6,3,10,7,4), (1,9,7,5,3)(2,10,8,6,4), (1,10,9,8,7,6,5,4,3,2) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )
(1,2,3,4,5,6,7,8,9,10)
(1,3,5,7,9)(2,4,6,8,10)
(1,4,7,10,3,6,9,2,5,8)
(1,5,9,3,7)(2,6,10,4,8)

(1,6)(2,7)(3,8)(4,9)(5,10)
(1,7,3,9,5)(2,8,4,10,6)
(1,8,5,2,9,6,3,10,7,4)
(1,9,7,5,3)(2,10,8,6,4)
(1,10,9,8,7,6,5,

10

4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Center 
 
 

( )

5

(1,3,5,7,9)(2,4,6,8,10)
(1,5,9,3,7)(2,6,10,4,8)
(1,7,3,9,5)(2,8,4,10,6)
(1,9,7,5,3)(2,10,8,6,4)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Sylow 5-subgroup 
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( )
2(1,6)(2,7)(3,8)(4,9)(5,10)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

    

Normal, Sylow 2-subgroup 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 
 
 
 
 
 
 

 

10C

e

5C

2C

10C

e

5C

2C
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THE DIHEDRAL GROUP 5D  

5 5 2 5 2D C C≅ > ≅ >  

 
 

Generators: 
 
(1,2,3,4,5),(2,5)(3,4)  
 
 
Elements: 
 
{ (), (2,5)(3,4), (1,2)(3,5), (1,2,3,4,5), (1,3)(4,5), (1,3,5,2,4), (1,4)(2,3), 
(1,4,2,5,3), (1,5,4,3,2), (1,5)(2,4) } 
 
 
Is Abelian? 
 
No 
 
 
Subgroups: 
 

( )

5

(2,5)(3,4)
(1,2)(3,5)

(1,2,3,4,5)
(1,3)(4,5)

(1,3,5,2,4)
(1,4)(2,3)
(1,4,2,5,3)
(1,5,4,3,2)
(1,5)(2,4)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal 
 
 

( )

5

(1,2,3,4,5)
(1,3,5,2,4)
(1,4,2,5,3)
(1,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Commutator Subgroup, Sylow 5-subgroup 
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( )

(1,5)(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
(1,4)(2,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
(1,3)(4,5)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
(1,2)(3,5)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
2(2,5)(3,4)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Conjugate, Sylow 2-subgroups 
 
 
    
( ){ }     

Normal, Center 
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Subgroup Lattice 
 
 
 

5D

5C

2C 2C 2C 2C 2C

e

5D

5C

2C 2C 2C 2C 2C

e

5D

5C

2C 2C 2C 2C 2C

e
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Summary (part 4) 

 

In Part 4 we examined in detail the internal structure of groups from order 1 to 

order 10.  You want to be very familiar with these groups as well as the following 

concepts and notations. 

• Cyclic groups, n nC ≅  

• Dihedral groups, nD  

• Symmetric groups, nS  

• Alternating groups, nA  

• Direct products, 2 5C C×  

• Semidirect products, 3 2S C>  

• Quaternion group, 8Q  

• Normal subgroup, N G  

• Sylow p-subgroup 

• Center of a group, ( )Z G  

• Commutator or derived subgroup 

• Conjugate of an element, 1ba b ab−=  

• Conjugate of a subgroup, 1a Ha−  

• Subgroup lattice 

 

More and more of the dots are being filled in! 
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practice (part 4) 
 

Use GAP and the knowledge cleaned from the examples in this part in order to 

perform the following tasks. 

 

1. Using our analyses of the subgroup structure of groups of order 1 through 10 

as a guide, complete a similar analysis for all groups of order 11. 

 

2. Identify, up to isomorphism, all distinct abelian groups of order 12. 

 

3. There are 2 nonabelian groups of order 12.  Based upon our previous 

discussions in Part 3 on common types of groups, identify these two 

nonabelian groups. 

 

4. Using our analyses of the subgroup structure of groups of order 1 through 10 

as a guide, complete a similar analysis for the nonabelian groups of order 12. 
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practice (part 4) - answers 
 

Use GAP and the knowledge cleaned from the examples in this part in order to 

perform the following tasks. 

 

1. Using our analyses of the subgroup structure of groups of order 1 through 10 

as a guide, complete a similar analysis for all groups of order 11. 

 

Since 11 is prime, the only group of order 11 is 11C . 
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THE CYCLIC GROUP OF ORDER 11 

11 11C ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7,8,9,10,11)  
 
 
Elements: 
 
{ (), (1,2,3,4,5,6,7,8,9,10,11), (1,3,5,7,9,11,2,4,6,8,10), 
(1,4,7,10,2,5,8,11,3,6,9), (1,5,9,2,6,10,3,7,11,4,8), 
(1,6,11,5,10,4,9,3,8,2,7), (1,7,2,8,3,9,4,10,5,11,6), (1,8,4,11,7,3,10,6,2,9,5), 
(1,9,6,3,11,8,5,2,10,7,4), (1,10,8,6,4,2,11,9,7,5,3),(1,11,10,9,8,7,6,5,4,3,2) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )
(1,2,3,4,5,6,7,8,9,10,11)
(1,3,5,7,9,11,2,4,6,8,10)
(1,4,7,10,2,5,8,11,3,6,9)
(1,5,9,2,6,10,3,7,11,4,8)
(1,6,11,5,10,4,9,3,8,2,7)
(1,7,2,8,3,9,4,10,5,11,6)
(1,8,4,11,7,3,10,6,2,9,5)
(1,9,6,3,11,8,5,2,10,7,4)

11

(1,10,8,6,4,2,11,9,7,5,3)
(1,11,10,9,8,7,6,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

    

Normal, Center, Sylow 11-subgroup 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 

 

 

 

 

 

11C

e

11C

e



 82

2. Identify, up to isomorphism, all distinct abelian groups of order 12. 

 

Since 12 4 3 2 2 3= ⋅ = ⋅ ⋅ , it follows from the Fundamental Theorem of Finite 

Abelian Groups that there are two abelian groups of order 12, 12 4 3C C C≅ ×  and  

the direct product 2 2 3C C C× × . 
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3. Using our analyses of the subgroup structure of groups of order 1 through 10 

as a guide, complete a similar analysis for the cyclic group 12C . 
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THE CYCLIC GROUP OF ORDER 12 

12 3 4 3 4 12C C C≅ × ≅ × ≅  

 
 

Generators: 
 
(1,2,3,4,5,6,7,8,9,10,11,12)  
 
 
Elements: 
 
{ (), (1,2,3,4,5,6,7,8,9,10,11,12), (1,3,5,7,9,11)(2,4,6,8,10,12), 
(1,4,7,10)(2,5,8,11)(3,6,9,12), (1,5,9)(2,6,10)(3,7,11)(4,8,12), 
(1,6,11,4,9,2,7,12,5,10,3,8), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12), 
(1,8,3,10,5,12,7,2,9,4,11,6), (1,9,5)(2,10,6)(3,11,7)(4,12,8), 
(1,10,7,4)(2,11,8,5)(3,12,9,6), (1,11,9,7,5,3)(2,12,10,8,6,4), 
(1,12,11,10,9,8,7,6,5,4,3,2) } 

 
 
Is Abelian? 
 
Yes 
 
 
Subgroups: 
 

( )
(1,2,3,4,5,6,7,8,9,10,11,12)
(1,3,5,7,9,11)(2,4,6,8,10,12)
(1,4,7,10)(2,5,8,11)(3,6,9,12)
(1,5,9)(2,6,10)(3,7,11)(4,8,12)

(1,6,11,4,9,2,7,12,5,10,3,8)
(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)

(1,8,3,10,5,12,7,2,9,

12

4,11,6)
(1,9,5)(2,10,6)(3,11,7)(4,12,8)
(1,10,7,4)(2,11,8,5)(3,12,9,6)
(1,11,9,7,5,3)(2,12,10,8,6,4)
(1,12,11,10,9,8,7,6,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

    

Normal, Center 
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( )

6

(1,3,5,7,9,11)(2,4,6,8,10,12)
(1,5,9)(2,6,10)(3,7,11)(4,8,12)

(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)
(1,9,5)(2,10,6)(3,11,7)(4,12,8)
(1,11,9,7,5,3)(2,12,10,8,6,4)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 
 

( )

4
(1,4,7,10)(2,5,8,11)(3,6,9,12)

(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)
(1,10,7,4)(2,11,8,5)(3,12,9,6)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal, Sylow 2-subgroup 
 
 
 

( )
3(1,5,9)(2,6,10)(3,7,11)(4,8,12)

(1,9,5)(2,10,6)(3,11,7)(4,12,8)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

 

Normal, Sylow 3-subgroup 
 
 
 

( )
2(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal 
 
 
 
( ){ }     

Normal, Commutator Subgroup 
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Subgroup Lattice 

 

 

 

 
12C

6C

3C

2C

e

4C

12C

6C

3C

2C

e

4C

12C

6C

3C

2C

e

4C
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4. There are 3 nonabelian groups of order 12.  One is the semidirect product 

3 4> .  Now, based upon our previous discussions in part 3 on common 

types of groups, identify the other two nonabelian groups. 

 

The other two nonabelian groups of order 12 are 6D  and 4A . 
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5. Using our analyses of the subgroup structure of groups of order 1 through 10 

as a guide, complete a similar analysis for the two nonabelian groups of order 

12 you gave as your answer to the previous problem. 
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THE DIHEDRAL GROUP 6D  

6 6 2 6 2D C C≅ > ≅ >  

 
 

Generators: 
 
(1,2,3,4,5,6),(2,6)(3,5)  
 
 
Elements: 
 
{ (), (2,6)(3,5), (1,2)(3,6)(4,5), (1,2,3,4,5,6), (1,3)(4,6), (1,3,5)(2,4,6), 
(1,4)(2,3)(5,6), (1,4)(2,5)(3,6), (1,5)(2,4), (1,5,3)(2,6,4), (1,6,5,4,3,2), 
(1,6)(2,5)(3,4) } 
 
Is Abelian? 
 
No 
 
 
Subgroups: 
 

( )

6

(2,6)(3,5)
(1,2)(3,6)(4,5)
(1,2,3,4,5,6)

(1,3)(4,6)
(1,3,5)(2,4,6)
(1,4)(2,3)(5,6)
(1,4)(2,5)(3,6)

(1,5)(2,4)
(1,5,3)(2,6,4)
(1,6,5,4,3,2)

(1,6)(2,5)(3,4)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

   

Normal 
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( )

3

(1,2)(3,6)(4,5)
(1,3,5)(2,4,6)
(1,4)(2,3)(5,6)
(1,5,3)(2,6,4)
(1,6)(2,5)(3,4)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 
 

( )

6

(1,2,3,4,5,6)
(1,3,5)(2,4,6)
(1,4)(2,5)(3,6)
(1,5,3)(2,6,4)
(1,6,5,4,3,2)

C

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 
 

( )

3

(2,6)(3,5)
(1,3,)(4,6)

(1,3,5)(2,4,6)
(1,5)(2,4)

(1,5,3)(2,6,4)

D

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal 
 
 
 

( )
(1,3)(4,6)

(1,4)(2,5)(3,6)
(1,6)(2,5)(3,4)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

( )
(1,2)(3,6)(4,5)
(1,4)(2,5)(3,6)

(1,5)(2,4)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

( )

2 2
(2,6)(3,5)

(1,4)(2,3)(5,6)
(1,4)(2,5)(3,6)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Conjugate, Sylow 2-subgroup 
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( )
3(1,3,5)(2,4,6)

(1,5,3)(1,6,4)
C

⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

 

Normal, Sylow 3-subgroup 
 
 
 

( )
(1,6)(2,5)(3,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
(1,4)(2,3)(5,6)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
2(1,2)(3,6)(4,5)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Conjugate 
 
 
 

( )
2(1,4)(2,5)(3,6)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Normal, Commutator Subgroup, Center 
 
 
 

( )
(1,5)(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
(1,3)(4,6)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
2(2,6)(3,5)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Conjugate 
 
 
 
( ){ }     

Normal 
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Subgroup Lattice 
 
 

6D

3D 3D 6C

2 2C C×2 2C C× 2 2C C×

3C

2C2C2C2C 2C 2C 2C

e
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THE ALTERNATING GROUP OF DEGREE 4 4A  

4A  

 
 

Generators: 
 
(1,2,3),(2,3,4)  
 
 
Elements: 
 
{ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), 
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) } 

 
 
Is Abelian? 
 
No 
 
 
Subgroups: 
 

( )

4

(2,3,4)
(2,4,3)

(1,2)(3,4)
(1,2,3)
(1,2,4)
(1,3,2)
(1,3,4)

(1,3)(2,4)
(1,4,2)
(1,4,3)

(1,4)(2,3)

A

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

   

Normal 
 
 

( )

2 2
(1,2)(3,4)
(1,3)(2,4)
(1,4)(2,3)

C C

⎧ ⎫
⎪ ⎪
⎪ ⎪ ≅ ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

Normal, Commutator Subgroup, Sylow 2-subgroup 
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( )
(1,3,4)
(1,4,3)

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

 
( )

(1,2,4)
(1,4,2)

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

 
( )

(1,2,3)
(1,3,2)

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

 
( )

3(2,3,4)
(2,4,3)

C
⎧ ⎫
⎪ ⎪ ≅⎨ ⎬
⎪ ⎪
⎩ ⎭

 

Conjugate, Sylow 3-subgroup 
 
 
 
 

( )
(1,4)(2,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
(1,3)(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

 ( )
2(1,2)(3,4)

C
⎧ ⎫

≅⎨ ⎬
⎩ ⎭

 

Conjugate 
 
 
 
( ){ }     

Normal, Center 
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Subgroup Lattice 

 

 
4A

2 2C C×

3C 3C 3C 3C

2C 2C 2C

e

4A

2 2C C×

3C 3C 3C 3C

2C 2C 2C

e

4A

2 2C C×

3C 3C 3C 3C

2C 2C 2C

e



 
 

All time lords know group theory! 




