A GHTID: BADDEN OP GPOUPS

The Structure of Groups of Order 1 through 10

Creative Commons License

You are free to:

- Share this work
- Adapt this work
- Attribute all original materials to Doc Benton

You are not free to:

- Charge money for this work; Knowledge is free!

COATEMTS (RAMT M

Introduction (Part 4) 1
How to Use GAP (Part 4) 3
Groups of Order 1 20
Groups of Order 2 23
Groups of Order 3 26
Groups of Order 4 29
Groups of Order 5 34
Groups of Order 6 37
Groups of Order 7 44
Groups of Order 8 47
Groups of Order 9 64
Groups of Order 10 70
Summary (Part 4) 77
Practice (Part 4) 78
Practice (Part 4) - Answers 79

HNTMODUCTHON (PADT M)

We can never learn about all the numbers in our number system since there are an infinite number of them and we have only a finite amount of time to live. Nonetheless, because we know multiplication tables and lots of other facts about many small numbers, we feel that we know numbers in general and we have a good feel for what is true and what is not true about numbers. This same strategy can also be applied to the study of group theory. We can never know all there is to know about every single group, but if we study several groups of small order in detail, then that will gives us a good base of knowledge to draw upon when thinking about groups. Thus, in this part of our work we'll examine all groups of orders 1 through 10, and almost all of them will be either cyclic groups, dihedral groups, symmetric groups, alternating groups, direct products, or semidirect products.. More specifically, we'll identify permutations that generate each group, list the elements of the group, identify whether the group is abelian or not, list important subgroups of each group, draw the what's known as a subgroup lattice (a diagram that visually illustrates the subgroup structure of a group), and we'll identify whether each subgroup is normal or not. Also, if a subgroup H of a group G is not normal in G and if $a \in G$, then both $a a^{-1}$ and $a^{-1} \mathrm{Ha}$ are also subgroups of G called conjugates of H in G (see Part 2). Furthermore, if a subgroup is not normal, then we'll express that subgroup and its conjugates all in the same color in the charts that follow. Also, just as a subgroup can have conjugates by an element, so can we find the conjugate of a single element. Thus, if we have a subgroup H of a group G and if $a \in H$ and $b \in G$, then both $b a b^{-1}$ and $b^{-1} a b$ are called conjugates of a by b. Also, GAP software will define a^{b} as meaning $b^{-1} a b$, but be aware that some authors define a^{b} as meaning bab $^{-1}$. Additionally, if our group is abelian, then it's pretty easy to identify its internal structure thanks to the Fundamental Theorem of Finite Abelain Groups. This theorem tells us that every finite abelian group is a direct
product of groups of prime power order. Thus, for example, the only possible abelian groups of order 8 are $C_{8}, C_{4} \times C_{2} \cong C_{2} \times C_{4}$, and $C_{2} \times C_{2} \times C_{2}$. And lastly, just because a group has small order (a small number of elements), never assume that you have exhausted everything you can learn about it. And this goes even for the identity group. He who has contemplated the identity group 100 times never knows as much as he who has contemplated it 101 times! Enjoy!

HOW TO USE GAP (PADT M)

In Part 4 of How to Use GAP, we've added on to the very end of our list some commands (in red) that will help you find conjugates of various sorts.

1. How can I redisplay the previous command in order to edit it?

Press down on the control key and then also press p. In other words, "Ctrl p".
2. If the program gets in a loop and shows you the prompt "brk>" instead of "gap>", how can I exit the loop?

Press down on the control key and then also press d. In other words, "Ctrl d".
3. How can I exit the program?

Either click on the "close" box for the window, or type "quit;" and press "Enter."
4. How do I find the inverse of a permutation?
gap> $a:=(1,2,3,4)$;
(1,2,3,4)
gap> $a^{\wedge}-1$;
$(1,4,3,2)$
5. How can I multiply permutations and raise permutations to powers?
gap> $(1,2)^{\star}(1,2,3)$;
$(1,3)$
gap> (1,2,3)^2;
$(1,3,2)$
gap> (1,2,3) ${ }^{\wedge}-1$;
$(1,3,2)$
gap> $(1,2,3)^{\wedge}-2 ;$
$(1,2,3)$
gap> $\mathrm{a}:=(1,2,3)$;
$(1,2,3)$
gap> $\mathrm{b}:=(1,2)$;
$(1,2)$
gap> a*b;
$(2,3)$
gap> $a^{\wedge} 2 ;$
$(1,3,2)$
gap> $a^{\wedge}-2$;
$(1,2,3)$
gap> $a^{\wedge} 3 ;$
()
gap> $a^{\wedge}-3 ;$
0
gap> (a*b)^2;
0
gap> (a*b)^3;
$(2,3)$
6. How can I create a group from permutations, find the size of the group, and find the elements in the group?
gap> $a:=(1,2)$;
$(1,2)$
gap> b:=(1,2,3);
$(1,2,3)$
gap> g1:=Group(a,b);
Group([$(1,2),(1,2,3)])$
gap> Size(g1);
6
gap> Elements(g1);
[()$,(2,3),(1,2),(1,2,3),(1,3,2),(1,3)]$
gap> g2:=Group([(1,2),(1,2,3)]);
$\operatorname{Group}([(1,2),(1,2,3)])$
gap> g3:=Group((1,2),(2,3,4));
Group([$(1,2),(2,3,4)])$
7. How can I create a cyclic group of order 3?
gap> $a:=(1,2,3)$;
$(1,2,3)$
gap> g1:=Group(a);
Group([(1,2,3)])
gap> Size(g1);
3
gap> Elements(g1);
[()$,(1,2,3),(1,3,2)]$
gap> g2:=Group((1,2,3));
Group([$(1,2,3)])$
gap> g3: =CyclicGroup(IsPermGroup, 3);
Group([(1, 2, 3)])
8. How can I create a multiplication table for the cyclic group of order 3 that I just created?
gap> ShowMultiplicationTable(g1);

*	\| ()	$(1,2,3)$	$(1,3,2)$
()	()	$(1,2,3)$	$(1,3,2)$
$(1,2,3)$	$(1,2,3)$	$(1,3,2)$	()
$(1,3,2)$	$\mid(1,3,2)$	()	1,2,3)

9. How do I determine if a group is abelian?
```
gap> g1:=Group((1,2,3));
Group([ (1,2,3) ])
gap> IsAbelian(g1);
true
gap> g2:=Group((1,2),(1,2,3));
Group([ (1,2), (1,2,3) ])
gap> IsAbelian(g2);
false
```

10. What do I type in order to get help for a command like "Elements?"
gap> ?Elements
11. How do I find all subgroups of a group?
```
gap> a: = (1, 2, 3);
```

```
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2,3), (2,3) ])
gap> Size(g);
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> h:=Al|Subgroups(g);
[Group(()),Group([(2,3) ]), Group([ (1,2) ]), Group([ (1,3)]),
Group([(1,2,3)]), Group([(1,2,3),(2,3)])]
gap>List(h,i->E|ements(i));
[[() ], [ (), (2,3)],[(), (1, 2)], [ (), (1,3)], [ (), (1, 2, 3),
(1,3,2) ], [ (), (2,3),'(1,2)', (1,2,3)', (1,3,2),'(1,3) ] ]
gap> Elements(h[1]);
[() ]
gap> Elements(h[2]);
[(), (2,3) ]
gap> Elements(h[3]);
[(), (1,2) ]
gap> Elements(h[4]);
[ (), (1,3) ]
gap> Elements(h[5]);
[(), (1,2,3),(1,3,2) ]
gap> Elements(h[6]);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
```

12. How do I find the subgroup generated by particular permutations?
```
gap> g:=Group((1,2),(1,2,3));
Groupl[(1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> h:=Subgroup(g,[(1,2)]);
Group([ (1, 2) ])
gap> Elements(h);
[(), (1,2)]
```

13. How do I determine if a subgroup is normal?
```
gap> g:=Group((1,2),(1,2,3));
Group([ (1,2), (1,2,3) ])
gap> h1:=Group((1,2));
Group([ (1,2)])
```

```
gap> | sNormal(g,h1);
gap> h2:=Group((1,2,3));
Group([ (1, 2, 3) ])
gap> I sNormal(g,h2);
true
```

14. How do I find all normal subgroups of a group?
```
gap> g:=Group((1, 2),(1, 2,3));
Group([ (1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> n:=Normal Subgroups(g);
gap> Elements(n[1]);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> Elements(n[2]);
[(), (1,2,3),(1,3,2) ]
gap> Elements(n[3]);
[ () ]
```


15. How do I determine if a group is simple?

```
gap> g:=Group((1,2),(1, 2,3));
Group([ (1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> |sSimple(g);
false
gap> h:=Group((1,2));
Group([ (1,2)])
gap> Elements(h);
[(), (1,2) ]
gap> |ssimple(h);
true
```


16. How do I find the right cosets of a subset H of G ?

```
gap> g:=Group([(1, 2, 3), (1, 2)]);
Group([ (1,2,3), (1,2)'])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3),(1,3,2), (1,3)]
gap> h:=Subgroup(g,[(1,2)]);
Group([ (1,2) ])
gap> Elements(h);
gap> c:=RightCosets(g,h);
M,
gap> List(c,i->E| ements(i));
[[(),(1,2) ],[(2,3), (1,3,2) ], [ (1, 2,3), (1,3)] ]
gap> Elements(c[1]);
[ (), (1,2) ]
gap> Elements(c[2]);
gap> Elements(c[3]);
gap> rc:=RightCoset(h, (1, 2,3));
RightCoset(Group([ (1, 2) ]),(1, 2, 3))
gap> Elements(rc);
[(1,2,3), (1,3) ]
gap> rc:=h*(1, 2, 3);
RightCoset(Group(['(1,2) ]),(1, 2, 3))
gap> El ements(rc);
[(1,2,3), (1,3) ]
```


17. How can I create a quotient (factor) group?

```
gap> g:=Group([(1, 2, 3), (1, 2)]);
Group([ (1,2,3), (1,2) ])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> n:=Group((1,2,3));
Group([ (1, 2,3) ])
gap> Elements(n);
[(),(1,2,3),(1,3,2) ]
gap> | sNormal(g,n);
true
gap> c:=RightCosets(g,n);
[RightCoset(Group([(1,2,3) ]),()), RightCoset(Group([ (1, 2,3) ]),(2,3)) ]
```

```
gap> Elements(c[1]);
[(), (1,2,3), (1,3,2) ]
gap> Elements(c[2]);
[(2,3),(1,2),(1,3) ]
gap> f:=FactorGroup(g,n);
Group([ f1 ])
gap> Elements(f);
[ <identity> of ..., fl ]
gap> ShowMultiplicationTable(f);
* .l <identity> of ...f1
<identity> of ... < <identity> of ... f 1
fl fl fl <identity> of ...
```

18. How do I find the center of a group?
```
gap> a:=(1, 2,3);
(1,2,3)
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2, 3), (2,3) ])
gap> Center(g);
Group(())
gap> c:=Center(g);
Group(())
gap> Elements(c);
[ () ]
gap> a:=(1, 2,3,4);
(1, 2, 3, 4)
gap>b:=(1,3);
(1,3)
gap> g:=Group(a,b);
Group([ (1, 2,3,4),'(1,3) ])
gap> c:=Center(g);
Group([ (1,3)(2,4) ])
gap> Elements(c);
[(), (1,3)(2,4)]
```

19. How do I find the commutator (derived) subgroup of a group?
gap> a: $=(1,2,3)$;
(1, 2, 3)
```
gap> b:=(2,3);
(2,3)
gap>g:=Group(a,b);
Groupl[ (1, 2, 3),, (2,3) ])
gap> d:=DerivedSubgroup(g);
Group([ (1,3,2) ])
gap> Elements(d);
[(), (1,2,3), (1, 3, 2) ]
gap> a:=(1, 2,3,4);
(1, 2, 3,4)
gap> b:=(1,3);
(1,3)
gap>g:=Group(a,b);
Group([ (1,2,3,4), (1,3) ])
gap> d:=DerivedSubgroup(g);
Group([ (1,3)(2,4)])
gap> Elements(d);
[(), (1,3)(2,4)]
```


20. How do I find all Sylow p-subgroups for a given group?

```
gap> a:=(1, 2, 3);
(1,2,3)
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2, 3), (2,3) ])
gap>Size(g);
gap> Factorslnt(6);
[2, 3]
gap> sylow2:=SylowSubgroup(g,2);
gap> | sNormal(g,sy| ow2);
false
gap> c:=ConjugateSubgroups(g, sylow2);
[Group([(2,3) ]), Group([(1,3)])', Group([ (1,2) ])]
gap> Elements(c[1]);
[(), (2,3) ]
gap> Elements(c[2]);
[(), (1,3)]
gap> Elements(c[3]);
[ (), (1,2) ]
gap> sylow3:=SylowSubgroup(g, 3);
Group([ (1, 2,3) ])
```

```
gap> |sNormal(g,sy|ow3);
true
gap> El ements(sylow3);
[ (), (1,2,3), (1,3,2) ]
```

21. How can I create the Rubik's cube group using GAP?

First you need to save the following permutations as a pure text file with the name rubik.txt to your C-drive before you can import it into GAP.

```
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);
```

And now you can read the file into GAP and begin exploring.

```
gap> Read("C:/rubik.txt");
gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>
gap> Size(rubik);
432520003274489856000
```

22. How can I find the center of the Rubik's cube group?
```
gap> c:=Center(rubik);
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ])
gap> Size(c);
gap> Elements(c);
[ [39,47) [ ] (2)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29, 36)(31,45)
```

```
gap> d:=DerivedSubgroup(rubik);
<permutation group with 5 generators>
gap> Size(d);
2162600016372449280000
gap> |sNormal(rubik,d);
true
```

24. How can I find the quotient (factor) group of the Rubik's cube group by its commutator (derived) subgroup?
```
gap> d:=DerivedSubgroup(rubik);
<permutation group of size 21626001637244928000 with 5 generators>
gap> f:=FactorGroup(rubik,d);
Group([ f1 ])
gap> Size(f);
```

25. How can I find some Sylow p-subgroups of the Rubik's cube group?
```
gap> Read("C:/rubik.txt");
gap> rubik:=Group(r,I,u,d,f,b);
<permutation group with 6 generators>
gap> Size(rubik);
43252003274489856000
gap> Factorslnt(43252003274489856000);
[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11]
gap> sylow2:=SylowSubgroup(rubik, 2);
<permutation group of size 134217728 with 27 generators>
gap> sylow3:=SylowSubgroup(rubik,3);
<permutation group of size 4782969 with 14 generators>
gap> sylow5:=SylowSubgroup(rubik, 5);
<permutation group of size 125 with'3 generators>
gap> sylow7:=SylowSubgroup(rubik,7);
<permutation group of size 49 with 2 generators>
gap> sylow11:=SylowSubgroup(rubik,11);
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ])
```

```
gap> Elements(sylowl1);
(1), (4,5,36,21,31,15,39,13,42,7,12)(10, 26,29,28,45,44,47,20,23,18,37),
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29),
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26),
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45),
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47),
(4,21,39,7,5,31,13,12,36,15,42)(10, 28,47,18,26,45,20,37,29,44, 23),
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20),
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18),
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44),
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ]
gap> I sNormal(rubik, sylow2);
false
gap> IsNormal(rubik,sylow3);
false
gap> | sNormal(rubik, sylow5);
false
gap> |sNormal(rubik,sylow7);
false
gap> | sNormal(rubik,sylowl1);
false
```

NOTE: All of the Sylow p-subgroups found above have conjugates, but the sheer size of the Rubik's cube group makes it too difficult to pursue them on a typical desktop computer.

26. How do I determine if a group is cyclic?

```
gap> a:=(1,2,3)*(4,5,6,7);
(1,2,3)(4,5,6,7)
gap>g:=Group(a);
Group([ (1, 2,3)(4,5,6,7) ])
gap>Size(g);
12
gap> |sCyclic(g);
true
```

27. How do I create a dihedral group with $2 n$ elements for an n-sided regular polygon?
```
gap> d4:=Dihedral Group(|spermGroup,8);
Group([ (1, 2, 3,4), (2,4) ])
```

gap> Elements(d4);
$[(),(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(1,3)(2,4),(1,4,3,2),(1,4)(2,3)]$
28. How can I express the elements of a dihedral group as rotations and flips rather than as permutations?

```
gap> d3:=Di hedral Group(6);
<pc group of size 6 with 2 generators>
gap> Elements(d3);
[<identity> of ..., f1,f2,f1*f2,f2^2,f1*f2^2 ]
```


29. How do I create a symmetric group of degree n with n! elements?

```
gap> s 4:=SymmetricGroup(4);
gap> Size(s4);
24
gap> Elements(s4);
[(1, (3,4),(2,3),(2,3,4),}(2,4,3),(2,4),(1,2),(1,2)(3,4),(1,2,3)
(1,2,3,4),(1,2,4,3),(1,2,4),(1,3,2),
    (1,3,4,2),(1,3),(1,3,4),(1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3),
(1,4),(1,4,2,3),(1,4)(2,3) ]
```

30. How do I create an alternating group of degree n with $\frac{n!}{2}$ elements?
```
gap> 4:=AlternatingGroup(4);
Alt([1 .. 4 ] )
gap> Size(a4);
12
gap> Elements(a4);
[(1,3)(2,4), (2, 4),(1,4,4), (2),(1,4,2)(3,4),(1,4)(2,3), (1, ]), (1, 2,4), (1, 3, 2), (1, 3,4),
```


31. How do I create a direct product of two or more groups?

```
gap> g1:=Group((1,2,3));
Group([(1, 2,3)])
```

```
\(\left.\left.\begin{array}{l}\text { gap }>\text { g2: }=\operatorname{Group}((4,5)) \text {; } \\ \text { Group }([(4,5)\end{array}\right)\right)\)
gap>dp:=DirectProduct(g1,g2);
Groupl( \((1,2,3),(4,5)])\)
gap \(>\) Size(dp);
gap> El ements(dp);
\([(),(4,5),(1,2,3),(1,2,3)(4,5),(1,3,2),(1,3,2)(4,5)]\)
\(\underset{*}{\text { gap }}\) ) ShowMultiplicationTable \((4,5)(d p)\); \((1,2,3) \quad(1,2,3)(4,5)(1,3,2)\)
\((1,3,2)(4,5)\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline () 1 , 14,5 & () & \((4,5)\) & \((1,2,3)\) & \((1,2,3)(4,5)\) & \((1,3,2)\) & \\
\hline \((1,3,2)(4,5)\) & \((4,5)\) & & & \((1,2,3)\) & & \\
\hline (1, 2, 3) & (1, 2, 3) & \((1,2,3)(4,5)\) & \((1,3,2)\) & \((1,3,2)(4,5)\) & & \((4,5)\) \\
\hline \((1,2,3)(4,5)\) & \((1,2,3)(4,5)\) & \((1,2,3)\) & \((1,3,2)(4,5)\) & \((1,3,2)\) & \((4,5)\) & () \\
\hline \((1,3,2)\) & \((1,3,2)\) & \((1,3,2)(4,5)\) & () & \((4,5)\) & 1, 2, 3) & \\
\hline \[
\begin{aligned}
& (1,2,3)(4,5) \\
& (1,3,2)(4,5)
\end{aligned}
\] & \((1,3,2)(4,5)\) & \((1,3,2)\) & \((4,5)\) & () & \((1,2,3)(4,5)\) & \((1,2,3)\) \\
\hline
\end{tabular}
```


32. How can I create the Quaternion group?

```
gap> a: =( 1, 2,5,6)*(3,8,7,4);
(1,2,5,6)(3,8,7,4)
gap> b:=(1,4,5,8)*(2,7,6,3);
(1,4,5,8)(2,7,6,3)
gap> q:=Group(a,b);
Group([ (1, 2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ])
gap> Size(q);
gap> |sAbelian(q);
gap> Elements(q);
[(), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3),
(1,5) (2,6) (3,7)(4,8), (1,6,5,2) (3,4,7,8),
    (1,7,5,3)(2,8,6,4), (1,8,5,4)(2, 3,6,7) ]
gap> q:=QuaternionGroup(IsPermGroup, 8);
Group([ (1,5,3,7)(2, 8,4,6), (1, 2, 3,4)(5,6,7,8) ])
gap> Size(q);
gap> lsabelian(q);
gap> Elements(q);
[1),(1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6),
(1,5,3,7)(2,8,4,6),(1,6,3,8)(2,5,4,7)
    (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ]
```

33. How can I find a set of independent generators for a group?
```
gap> c6:=CyclicGroup(IsPermGroup,6);
Group([ (1, 2, 3,4,5,6) ])
gap> Size(c6);
gap> GeneratorsOf Group(c6);
[(1, 2, 3, 4,5,6)]
gap>d4:=Di hedral Group(Is sermGroup, 8);
Group([ (1, 2,3,4), (2,4) ])
g
gap> GeneratorsOf Group(d4);
[(1,2,3,4), (2,4)]
gap> s5:=SymmetricGroup(5);
Sym([1 .. 5] )
\120
gap> Generators Of Group(s5);
[(1,2,3,4,5),(1,2)
gap> a 5:=AlternatingGroup(5);
Alt([ 1 .. 5 ])
gap> Size(a5);
6
gap> GeneratorsOf Group(a5);
[(1,2,3,4,5),(3,4,5)]
gap> q:=QuaternionGroup(IsPermGroup, 8);
Group([ (1,5,3,7)(2,8,4,6),(1,2,3,4)(5,6,7,8) ])
gap> Size(q);
gap> GeneratorsOf Group(q);
[(1,5,3,7)(2,8,4,6),(1,2,3,4)(5,6,7,8)]
```

34. How do I find the conjugate of a permutation in the form $a^{b}=b^{-1} a b$?
```
gap> a:=(1, 2, 3,4,5);
\((1,2,3,4,5)\)
```

$\left\{\begin{array}{l}g a p> \\ (2,4,5)\end{array}\right)=(2,4,5) ;$
$g a p>a^{\wedge} b ;$
$(1,4,3,5,2)$
$g a p>b^{\wedge}-1^{*} a * b ;$
$(1,4,3,5,2)$
35. How do I divide up a group into classes of elements that are conjugate to one another? (Note that "conjugacy" is an equivalence relation on our group G. That means that G can be separated into nonintersecting subsets that contain only elements that are conjugate to one another.)

```
gap> d3: =DihedralGroup(|sPermGroup,6);
Group([ (1, 2, 3), (2,3) ])
gap> Size(d3);
gap> Elements(d3);
[(),(2,3),(1,2),(1,2,3),(1,3,2),(1,3)]
gap> cc:=ConjugacyCl asses(d3);
[()^G, (2,3)^^G, (1, 2,3)^GG]
gap> Elements(cc[1]);
gap> Elements(cc[2]);
[(2,3),(1,2), (1,3)]
gap> Elements(cc[3]);
[(1, 2, 3), (1, 3, 2)]'
```


BDOMPS OF OPDED

The only group of order 1 is the group that consists of a single element, the identify element. Consequently, it's a pretty simple group, and there is not much detail to give about it.

THE IDENTITY GROUP

Generators:

()

Elements:

\{() \}

Is Abelian?
Yes

Subgroups:
\{()\}
Normal, Center, Commutator Subgroup

Subgroup Lattice e

CBOMPS OP ORDER2

Just as there is only one group of order 1, there is also only one group, up to isomorphism, of order 2. Also, when we use the phrase "up to isomorphism," that means that even though we might use different names for the elements of the group and even though our binary operations may be defined differently in the different groups, the resulting multiplication tables all have the same algebraic structure. That means that we can take the elements of one group, translate them into elements of the other group, and then the corresponding elements will combine with one another in the same way. For example, below are four different looking multiplication tables that all represent the one group of order 2 (up to isomorphism).

	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	0	1
$\mathbf{1}$	1	0

	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{1}$	1	2
$\mathbf{2}$	2	1

	\mathbf{a}	\mathbf{b}
\mathbf{a}	a	b
\mathbf{b}	b	a

	no flip	flip
no flip	no flip	flip
flip	flip	no flip

For the last group multiplication table in our list, what we have in mind is a light switch and the 2-element group associated with it. Doing nothing, not flipping the switch at all, is the identity element in this group. The only other element in the group is represented by flipping the switch, and if we flip the switch twice, then the result is the same as not flipping the switch at all. In other words, "flip times flip = no flip."

THE CYCLIC GROUP OF ORDER 2

$$
C_{2} \cong \mathbb{Z}_{2}
$$

Generators:

$$
(1,2)
$$

Elements:

\{(), (1, 2) \}

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}(\mathrm{)} \\ (1,2)\end{array}\right\} \cong C_{2}$
Normal, Center, Sylow 2-subgroup
(c)

Normal, Commutator Subgroup

Subgroup Lattice
C_{2} e

CDODPS OF OPDEBe

There is also only one group of order 3, and it is the cyclic group C_{3}. Notice, too, that 3 is a prime number. Whenever the order of a group is a prime such as 2 or 3 , then the only group of that order is going to be a cyclic group. This is because for finite groups the order of any subgroup has to be a divisor of the order of the group, and the only divisors of a prime number are itself and 1. Hence, the only subgroups of a group of prime order are the whole group and the identity, and they are also normal subgroups. Furthermore, C_{3} is simple since it doesn't have any normal subgroups besides itself and the identity. Notice, also, that for any given finite order, there always exists a cyclic group of that order. Hence, when the order is prime, the only group that exists is the cyclic group of that prime order.

THE CYCLIC GROUP OF ORDER 3

$$
C_{3} \cong \mathbb{Z}_{3}
$$

Generators:

$(1,2,3)$

Elements:

$\{(),(1,2,3),(1,3,2)\}$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}(\mathrm{O}) \\ (1,2,3) \\ (1,3,2)\end{array}\right\} \cong C_{3}$
Normal, Center, Sylow 3-subgroup
(C)

Normal, Commutator Subgroup

Subgroup Lattice
C_{3} e

CDOHPS OF OPDEM

There exist two groups of order 4 and both are abelian. Consequently, we can apply the Fundamental Theorem of Finite Abelian Groups which tells us that each group can be expressed as a direct product of cyclic groups of prime power order. In this case that means that the only two possible groups are the cyclic group C_{4} and the direct product $C_{2} \times C_{2}$. The group $C_{2} \times C_{2}$ is also known as the Klein 4-group or as Vierergruppe (German for 4-group). Additionally, it is sometimes denoted by K_{4} or by V, and a good representation for this group consists of two light switches each of which can be flipped on or off. Let f_{1} represent flipping the first switch, let f_{2} represent flipping the second switch, and let 0 represent no flip at all. Then using this notation we can represent the elements of the group as $\left\{(0,0),\left(f_{1}, 0\right),\left(0, f_{2}\right),\left(f_{1}, f_{2}\right)\right\}$ where $f_{1}^{2}=0=f_{2}{ }^{2}$.

THE CYCLIC GROUP OF ORDER 4

$$
C_{4} \cong \mathbb{Z}_{4}
$$

Generators:

(1, 2,3,4)

Elements:

$\{(),(1,2,3,4),(1,3)(2,4),(1,4,3,2)\}$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}\left(\begin{array}{c}) \\ (1,2,3,4) \\ (1,3)(2,4) \\ (4,3,2,1)\end{array}\right\} \cong C_{4},\end{array}\right.$
Normal, Center, Sylow 2-subgroup
$\left\{\begin{array}{c}() \\ (1,3)(2,4)\end{array}\right\} \cong C_{2}$
Normal
(C)

Normal, Commutator Subgroup

Subgroup Lattice

$$
C_{4}
$$

\square
C_{2}
e

THE KLEIN 4-GROUP

$$
C_{2} \times C_{2} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Generators:

$(1,2),(3,4)$

Elements:

$\{(),(3,4),(1,2),(1,2)(3,4)\}$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}(1) \\ (1,2) \\ (3,4) \\ (1,2)(3,4)\end{array}\right\} \cong C_{2} \times C_{2}$
Normal, Center, Sylow 2-subgroup
$\begin{array}{lll}\begin{array}{cc}\left\{\begin{array}{c}(~) \\ (1,2)\end{array}\right\} & \left\{\begin{array}{c}(~) \\ (3,4)\end{array}\right\}\end{array} & \left\{\begin{array}{c}() \\ (1,2)(3,4)\end{array}\right\} \cong C_{2}\end{array}$
\{()\}
Normal, Commutator Subgroup

CPOUPS OF OPDEB

Since 5 is a prime number, the only group that exists of order 5 is the abelian cyclic group of order $5, C_{5}$. Furthermore, this group is simple since its only normal subgroups are itself and the identity.

THE CYCLIC GROUP OF ORDER 5

$$
C_{5} \cong \mathbb{Z}_{5}
$$

Generators:

(1, 2, 3, 4,5)

Elements:

$\{(),(1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2)\}$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}(~) \\ (1,2,3,4,5) \\ (1,3,5,2,4) \\ (1,4,2,5,3) \\ (1,5,4,3,2)\end{array}\right\} \cong C_{5}$
Normal, Center, Sylow 5-subgroup
(C)

Normal. Commutator Subgroup

Subgroup Lattice
C_{5}
e

CPOUPS OF OPDEB

Order 6 for groups is worthy of note because this is the first time we encounter a nonabelian group! In fact, there exist just two groups of order 6 (two groups with six elements). One is the cyclic group of order 6, C_{6}, and the other is the dihedral group of degree $3, D_{3}$. The dihedral group of degree 3 is the smallest nonabelian group there is, and yet it is interesting that all of its proper subgroups (subgroups not equal to the entire group) are abelian. Notice, too, that 6 is not a prime number, but that we can write 6 as 2×3 where 2 and 3 are relatively prime (that means that their only common factor is 1). When that happens with the order of a cyclic group, that means that we can also write our cyclic group as the direct product of smaller cyclic groups of prime power order, and in this case we can write $C_{6} \cong C_{3} \times C_{2}$. The dihedral group D_{3} has order 6 , and recall that it represents the symmetries of an equilateral triangle. In other words, it is the group generated by rotations of our triangle through angles that are integer multiples of 120° and by flips about any of its three axes of symmetry. Furthermore, the number of permutations that can be made of 3 objects is 6 , and that means that the symmetric group of degree $3, S_{3}$, which is the group of all permutations that can be made of 3 objects is essentially identical or isomorphic with the dihedral group $D_{3}, D_{3} \cong S_{3}$. Additionally, this is the only time something like this happens. Since the order of D_{n} is $2 n$ and since the order of S_{n} is $n!=n(n-1)(n-2) \ldots(1)$, the only time these two computations are the same is when $n=3$. Something else worth noting is that for any value of n there always exists a cyclic group of degree n, and for any value $2 n$ where $n \geq 3$, there is always a dihedral group, D_{n}, of that order, and for any dihedral group D_{n} it is also true that $D_{n} \cong C_{n}>\triangleleft C_{2}$. Thus, $D_{3} \cong S_{3} \cong C_{3}>\triangleleft C_{2}$. A lot of groups of higher order turn out to be either cyclic or dihedral. And if we add to this list the symmetric groups, direct products, and semidirect products, then those are probably the majority of the groups we are likely to encounter. Things will change though when we get to
order 8 and discover an interesting group called the Quaternion Group which is nonabelian and which falls into none of the aforementioned categories.

THE CYCLIC GROUP OF ORDER 6

$$
C_{6} \cong C_{2} \times C_{3} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{6}
$$

Generators:

$(1,2),(3,4,5)$

Elements:

$\{(),(3,4,5),(3,5,4),(1,2),(1,2)(3,4,5),(1,2)(3,5,4)\}$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}() \\ (3,4,5) \\ (3,5,4) \\ (1,2) \\ (1,2)(3,4,5) \\ (1,2)(3,5,4)\end{array}\right\} \cong C_{6}$

Normal, Center

$$
\left\{\begin{array}{c}
(\mathrm{r}) \\
(3,4,5) \\
(3,5,4)
\end{array}\right\} \cong C_{3}
$$

Normal, Sylow 3-subgroup
$\left\{\begin{array}{c}(\mathrm{c}) \\ (1,2)\end{array}\right\} \cong C_{2}$
Normal, Sylow 2-subgroup
\{()\}
Normal, Commutator Subgroup

Subgroup Lattice

THE DIHEDRAL/SYMMETRIC GROUP OF ORDER 6

$$
D_{3} \cong S_{3} \cong \mathbb{Z}_{3}>\triangleleft \mathbb{Z}_{2} \cong C_{3}>\triangleleft C_{2}
$$

Generators:

$(1,2,3),(2,3)$

Elements:

$\{(),(2,3),(1,2),(1,2,3),(1,3,2),(1,3)\}$

Is Abelian?
No

Subgroups:
$\left.\begin{array}{l}\left.\begin{array}{c}(~) \\ (1,2) \\ (1,3)\end{array}\right\} \cong D_{3} \\ (2,3) \\ (1,2,3) \\ (1,3,2)\end{array}\right\}$
Normal
$\left\{\begin{array}{c}(\mathrm{r}) \\ (1,2,3) \\ (1,3,2)\end{array}\right\} \cong C_{3}$
Normal, Commutator Subgroup, Sylow 3-subgroup
$\left\{\begin{array}{c}(\mathrm{c}) \\ (1,2)\end{array}\right\} \quad\left\{\begin{array}{c}(\mathrm{c}) \\ (1,3)\end{array}\right\} \quad\left\{\begin{array}{c}(\mathrm{c} \\ (2,3)\end{array}\right\} \cong C_{2}$
Conjugate, Sylow 2-subgroups
(C)

Normal, Center

Subgroup Lattice

CDOMPS OF OPDEM

The number 7 is prime, so you know what that means. There exists only one group of order 7, and that is C_{7}, the cyclic group of order 7. Furthermore, again since 7 is prime, its only subgroups are itself and the identity.

THE CYCLIC GROUP OF ORDER 7

$$
C_{7} \cong \mathbb{Z}_{7}
$$

Generators:

(1, 2, 3, 4,5,6,7)

Elements:
$\{(),(1,2,3,4,5,6,7),(1,3,5,7,2,4,6),(1,4,7,3,6,2,5),(1,5,2,6,3,7,4)$, $(1,6,4,2,7,5,3),(1,7,6,5,4,3,2)\}$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}() \\ (1,2,3,4,5,6,7) \\ (1,3,5,7,2,4,6) \\ (1,4,7,3,6,2,5) \\ (1,5,2,6,3,7,4) \\ (1,6,4,2,7,5,3) \\ (1,7,6,5,4,3,2)\end{array}\right\} \cong C_{7}$

Normal, Center, Sylow 7-subgroup
(C)

Normal, Commutator Subgroup

Subgroup Lattice
C_{7} e

GPOUPS OF OPDEP

Things get quite interesting once we get to 8. There exist five groups of order 8, and three of them are abelian. And by the Fundamental Theorem of Finite Abelian Groups, we can immediately identify the abelian groups as $C_{8}, C_{4} \times C_{2}$, and $C_{2} \times C_{2} \times C_{2}$. Of the two nonabelian groups, since 8 is even we automatically know that one of them is D_{4}. The other nonabelian group, though, is called the Quaternion Group, and it is quite interesting since it is not one of our usual cyclic, dihedral, symmetric, direct product, or semidirect product groups. It is something quite different, and a notable feature of this group is that all of its subgroups are normal in spite of it being nonabelian. Also of interest is that quaternions were invented by the mathematician William Rowan Hamilton (1805-1865) as an extension of both vectors and imaginary numbers. Thus, we have i, j, and k which resemble the unit vectors studied in trigonometry and advanced calculus, and these quantities are also like imaginary numbers since $i^{2}=j^{2}=k^{2}=-1$. When I was younger, quaternions weren't studied that much anymore, but these days there is renewed interest in the topic since they have turned out to be a useful mathematical tool for creating the kinds of computer generated effects that appear in many of today's movies.

THE CYCLIC GROUP OF ORDER 8

$$
C_{8} \cong \mathbb{Z}_{8}
$$

Generators:

(1, 2, 3, 4, 5, 6, 7,8)

Elements:
$\{(),(1,2,3,4,5,6,7,8),(1,3,5,7)(2,4,6,8),(1,4,7,2,5,8,3,6)$, $(1,5)(2,6)(3,7)(4,8),(1,6,3,8,5,2,7,4),(1,7,5,3)(2,8,6,4)$, $(1,8,7,6,5,4,3,2)\}$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}(~) \\ (1,2,3,4,5,6,7,8) \\ (1,3,5,7)(2,4,6,8) \\ (1,4,7,2,5,8,3,6) \\ (1,5)(2,6)(3,7)(4,8) \\ (1,6,3,8,5,2,7,4) \\ (1,7,5,3)(2,8,6,4) \\ (1,8,7,6,5,4,3,2)\end{array}\right\} \cong C_{8}$

Normal, Center, Sylow 2-subgroup
$\left\{\begin{array}{c}\left(\begin{array}{c}) \\ (1,3,5,7)(2,4,6,8) \\ (1,5)(2,6)(3,7)(4,8) \\ (1,7,5,3)(2,8,6,4)\end{array}\right\} \cong C_{4}, ~\end{array}\right.$

Normal
$\left\{\begin{array}{c}() \\ (1,5)(2,6)(3,7)(4,8)\end{array}\right\} \cong C_{2}$
Normal
\{()\}
Normal, Commutator Subgroup

Subgroup Lattice

$$
\begin{gathered}
C_{8} \\
C_{4}
\end{gathered}
$$

C_{2}
e

THE DIRECT PRODUCT $C_{2} \times C_{4}$

$$
C_{2} \times C_{4} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}
$$

Generators:

(1, 2), (3, 4,5,6)

Elements:
$\{(),(3,4,5,6),(3,5)(4,6),(3,6,5,4),(1,2),(1,2)(3,4,5,6),(1,2)(3,5)(4,6)$, $(1,2)(3,6,5,4):$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}() \\ (3,4,5,6) \\ (3,5)(4,6) \\ (3,6,5,4) \\ (1,2) \\ (1,2)(3,4,5,6) \\ (1,2)(3,5)(4,6) \\ (1,2)(3,6,5,4)\end{array}\right\} \cong C_{2} \times C_{4}$
Normal, Center, Sylow 2-subgroup
$\left\{\begin{array}{c}\left(\begin{array}{c}) \\ (3,5)(4,6) \\ (1,2)(3,4,5,6) \\ (1,2)(3,6,5,4)\end{array}\right\} \cong C_{4},\end{array}\right.$
Normal
$\left\{\begin{array}{c}() \\ (3,4,5,6) \\ (3,5)(4,6) \\ (3,6,5,4)\end{array}\right\} \cong C_{4}$

Normal
$\left\{\begin{array}{c}() \\ (3,5)(4,6) \\ (1,2) \\ (1,2)(3,5)(4,6)\end{array}\right\} \cong C_{2} \times C_{2}$
Normal
$\left\{\begin{array}{c}() \\ (1,2)(3,5)(4,6)\end{array}\right\} \cong C_{2}$
Normal
$\left\{\begin{array}{c}() \\ (3,5)(4,6)\end{array}\right\} \cong C_{2}$
Normal

$$
\left\{\begin{array}{c}
(\mathrm{y}) \\
(1,2)
\end{array}\right\} \cong C_{2}
$$

Normal
$\{()\}$
Normal, Commutator Subgroup

Subgroup Lattice

THE DIRECT PRODUCT $C_{2} \times C_{2} \times C_{2}$

$$
C_{2} \times C_{2} \times C_{2} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Generators:

$(1,2),(3,4),(5,6)$

Elements:

$\{(),(5,6),(3,4),(3,4)(5,6),(1,2),(1,2)(5,6),(1,2)(3,4),(1,2)(3,4)(5,6)\}$

Is Abelian?

Yes

Subgroups:

$\left\{\begin{array}{c}() \\ (5,6) \\ (3,4) \\ (3,4)(5,6) \\ (1,2) \\ (1,2)(5,6) \\ (1,2)(3,4) \\ (1,2)(3,4)(5,6)\end{array}\right\} \cong C_{2} \times C_{2} \times C_{2}$

Normal, Center, Sylow 2-subgroup

$$
\left\{\begin{array}{c}
() \\
(3,4)(5,6) \\
(1,2)(5,6) \\
(1,2)(3,4)
\end{array}\right\} \cong C_{2} \times C_{2}
$$

Normal
$\left\{\begin{array}{c}() \\ (5,6) \\ (1,2)(3,4) \\ (1,2)(3,4)(5,6)\end{array}\right\} \cong C_{2} \times C_{2}$

Normal

$$
\left\{\begin{array}{c}
() \\
(3,4) \\
(1,2)(5,6) \\
(1,2)(3,4)(5,6)
\end{array}\right\} \cong C_{2} \times C_{2}
$$

Normal

$$
\begin{aligned}
& \left\{\begin{array}{c}
() \\
(3,4)(5,6) \\
(1,2) \\
(1,2)(3,4)(5,6)
\end{array}\right\} \cong C_{2} \times C_{2} \\
& \text { Normal }
\end{aligned}
$$

$$
\left\{\begin{array}{c}
() \\
(5,6) \\
(1,2) \\
(1,2)(5,6)
\end{array}\right\} \cong C_{2} \times C_{2}
$$

Normal

$$
\left\{\begin{array}{c}
() \\
(3,4) \\
(1,2) \\
(1,2)(3,4)
\end{array}\right\} \cong C_{2} \times C_{2}
$$

Normal
$\left\{\begin{array}{c}() \\ (5,6) \\ (3,4) \\ (3,4)(5,6)\end{array}\right\} \cong C_{2} \times C_{2}$
Normal
$\left\{\begin{array}{c}() \\ (1,2)(3,4)(5,6)\end{array}\right\} \cong C_{2}$
Normal
$\left\{\begin{array}{c}() \\ (1,2)(3,4)\end{array}\right\} \cong C_{2}$
Normal
$\left\{\begin{array}{c}() \\ (1,2)(5,6)\end{array}\right\} \cong C_{2}$
Normal
$\left\{\begin{array}{c}(\mathrm{c}) \\ (1,2)\end{array}\right\} \cong C_{2}$
Normal
$\left\{\begin{array}{c}() \\ (3,4)(5,6)\end{array}\right\} \cong C_{2}$
Normal
$\left\{\begin{array}{c}(\mathrm{e}) \\ (3,4)\end{array}\right\} \cong C_{2}$
Normal
$\left\{\begin{array}{c}(\mathrm{c}) \\ (5,6)\end{array}\right\} \cong C_{2}$
Normal
())
Normal, Commutator Subgroup

Subgroup Lattice

THE DIHEDRAL GROUP D_{4}

$$
D_{4} \cong C_{4}>\triangleleft C_{2} \cong \mathbb{Z}_{4}>\triangleleft \mathbb{Z}_{2}
$$

Generators:

$(1,2,3,4),(2,4)$

Elements:

$\{(),(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(1,3)(2,4),(1,4,3,2),(1,4)(2,3)\}$

Is Abelian?
No

Subgroups:
$\left\{\begin{array}{c}()^{\prime} \\ (2,4) \\ (1,2)(3,4) \\ (1,2,3,4) \\ (1,3) \\ (1,3)(2,4) \\ (1,4,3,2) \\ (1,4)(2,3)\end{array}\right\} \cong D_{4}$

Normal, Sylow 2-subgroup

$$
\left\{\begin{array}{c}
() \\
(1,2)(3,4) \\
(1,3)(2,4) \\
(1,4)(2,3)
\end{array}\right\} \cong C_{2} \times C_{2}
$$

Normal
$\left\{\begin{array}{c}(~) \\ (1,2,3,4) \\ (1,3)(2,4) \\ (1,4,3,2)\end{array}\right\} \cong C_{4}$

Normal
$\left\{\begin{array}{c}(1) \\ (2,4) \\ (1,3) \\ (1,3)(2,4)\end{array}\right\} \cong C_{2} \times C_{2}$
Normal, Center, Commutator Subgroup

$$
\left\{\begin{array}{c}
() \\
(1,4)(2,3)
\end{array}\right\} \quad\left\{\begin{array}{c}
() \\
(1,2)(3,4)
\end{array}\right\} \cong C_{2}
$$

Conjugate

$$
\left\{\begin{array}{c}
(\mathrm{u}) \\
(1,3)
\end{array}\right\} \quad\left\{\begin{array}{c}
(\mathrm{r}) \\
(2,4)
\end{array}\right\} \cong C_{2}
$$

Conjugate
$\left\{\begin{array}{c}() \\ (1,3)(2,4)\end{array}\right\} \cong C_{2}$
Normal
\{()\}
Normal

THE QUATERNION GROUP Q_{8}

Q_{8}

Generators:

$(1,2,5,6)(3,8,7,4),(1,4,5,8)(2,7,6,3)$

Elements:

$\{(),(1,2,5,6)(3,8,7,4),(1,3,5,7)(2,4,6,8),(1,4,5,8)(2,7,6,3)$, $(1,5)(2,6)(3,7)(4,8),(1,6,5,2)(3,4,7,8),(1,7,5,3)(2,8,6,4)$, $(1,8,5,4)(2,3,6,7) \quad\}^{\prime}$

Is Abelian?

No

Subgroups:

$\left\{\begin{array}{c}() \\ (1,2,5,6)(3,8,7,4) \\ (1,3,5,7)(2,4,6,8) \\ (1,4,5,8)(2,7,6,3) \\ (1,5)(2,6)(3,7)(4,8) \\ (1,6,5,2)(3,4,7,8) \\ (1,7,5,3)(2,8,6,4) \\ (1,8,5,4)(2,3,6,7)\end{array}\right\} \cong Q_{8}$

Normal, Sylow 2-subgroup

$$
\left\{\begin{array}{c}
() \\
(1,3,5,7)(2,4,6,8) \\
(1,5)(2,6)(3,7)(4,8) \\
(1,7,5,3)(2,8,6,4)
\end{array}\right\} \cong C_{4}
$$

Normal
$\left\{\begin{array}{c}\left(\begin{array}{c}) \\ (1,2,5,6)(3,8,7,4) \\ (1,5)(2,6)(3,7)(4,8) \\ (1,6,5,2)(3,4,7,8)\end{array}\right\} \cong C_{4}, ~\end{array}\right.$

Normal
$\left\{\begin{array}{c}\left(\begin{array}{c}) \\ (1,4,5,8)(2,7,6,3) \\ (1,5)(2,6)(3,7)(4,8) \\ (1,8,5,4)(2,3,6,7)\end{array}\right\} \cong C_{4}, ~\end{array}\right.$

Normal
$\left\{\begin{array}{c}\left(\begin{array}{c}) \\ (1,5)(2,6)(3,7)(4,8)\end{array}\right\} \cong C_{2}, ~(1) ~\end{array}\right.$
Normal, Center, Commutator Subgroup
$\{()\}$
Normal

GPOMP OF ORDE

There are just two groups of order 9, and they are both abelian. One is the cyclic group of order 9 , and the other, of course, is the direct product of two cyclic groups of order 3.

THE CYCLIC GROUP OF ORDER 9

$$
C_{9} \cong \mathbb{Z}_{9}
$$

Generators:

(1,2,3, 4, 5, 6, 7, 8,9)

Elements:

$\{(),(1,2,3,4,5,6,7,8,9),(1,3,5,7,9,2,4,6,8),(1,4,7)(2,5,8)(3,6,9)$,
$(1,5,9,4,8,3,7,2,6),(1,6,2,7,3,8,4,9,5),(1,7,4)(2,8,5)(3,9,6)$,
$(1,8,6,4,2,9,7,5,3), \quad(1,9,8,7,6,5,4,3,2)\}$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}(,) \\ (1,2,3,4,5,6,7,8,9) \\ (1,3,5,7,9,2,4,6,8) \\ (1,4,7)(2,5,8)(3,6,9) \\ (1,5,9,4,8,3,7,2,6) \\ (1,6,2,7,3,8,4,9,5) \\ (1,7,4)(2,8,5)(3,6,9) \\ (1,8,6,4,2,9,7,5,3) \\ (1,9,8,7,6,5,4,3,2\end{array}\right\} \cong C_{9}$
Normal, Center, Sylow 3-subgroup
$\left\{\begin{array}{c}\left(\begin{array}{c}) \\ (1,4,7)(2,5,8)(3,6,9) \\ (1,7,4)(2,8,5)(3,9,6)\end{array}\right\} \cong C_{3}, ~\end{array}\right.$
Normal
\{()\}
Normal, Commutator Subgroup

Subgroup Lattice
C_{9}
C_{3}
e

THE DIRECT PRODUCT $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$

$$
\mathbb{Z}_{3} \times \mathbb{Z}_{3} \cong C_{3} \times C_{3}
$$

Generators:

(1, 2,3),(4,5,6)

Elements:
$\{(),(4,5,6),(4,6,5),(1,2,3),(1,2,3)(4,5,6),(1,2,3)(4,6,5),(1,3,2)$, $(1,3,2)(4,5,6),(1,3,2)(4,6,5)\}$

Is Abelian?
Yes

Subgroups:
$\left\{\begin{array}{c}() \\ (4,5,6) \\ (4,6,5) \\ (1,2,3) \\ (1,2,3)(4,5,6) \\ (1,2,3)(4,6,5) \\ (1,3,2) \\ (1,3,2)(4,5,6) \\ (1,3,2)(4,6,5)\end{array}\right\} \cong C_{3} \times C_{3}$
Normal, Center, Sylow 3-subgroup
$\left\{\begin{array}{c}() \\ (1,2,3)(4,6,5) \\ (1,3,2)(4,5,6)\end{array}\right\} \cong C_{3}$
Normal

$$
\left\{\begin{array}{c}
(~) \\
(1,2,3)(4,5,6) \\
(1,3,2)(4,6,5)
\end{array}\right\} \cong C_{3}
$$

Normal
$\left\{\begin{array}{c}(\mathrm{O} \\ (1,2,3) \\ (1,3,2)\end{array}\right\} \cong C_{3}$
Normal

$$
\left\{\begin{array}{c}
(\mathrm{s}) \\
(4,5,6) \\
(4,6,5)
\end{array}\right\} \cong C_{3}
$$

Normal
\{()\}
Normal, Commutator Subgroup

GOOPS OF OPDED

Things are also pretty simple for groups of order 10. We know that one group of order 10 is the abelian cyclic group $C_{10} \cong C_{5} \times C_{2}$, and the other is the nonabelian group $D_{5} \cong C_{5}>\triangleleft C_{2}$.

THE CYCLIC GROUP OF ORDER 10

$$
C_{10} \cong C_{2} \times C_{5} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{10}
$$

Generators:

(1, 2, 3, 4, 5, 6, 7,8,9,10)

Elements:

$\{(),(1,2,3,4,5,6,7,8,9,10),(1,3,5,7,9)(2,4,6,8,10),(1,4,7,10,3,6,9,2,5,8)$, $(1,5,9,3,7)(2,6,10,4,8),(1,6)(2,7)(3,8)(4,9)(5,10),(1,7,3,9,5)(2,8,4,10,6)$, $(1,8,5,2,9,6,3,10,7,4),(1,9,7,5,3)(2,10,8,6,4),(1,10,9,8,7,6,5,4,3,2)\}$

Is Abelian?

Yes

Subgroups:
$\left\{\begin{array}{c}() \\ (1,2,3,4,5,6,7,8,9,10) \\ (1,3,5,7,9)(2,4,6,8,10) \\ (1,4,7,10,3,6,9,2,5,8) \\ (1,5,9,3,7)(2,6,10,4,8) \\ (1,6)(2,7)(3,8)(4,9)(5,10) \\ (1,7,3,9,5)(2,8,4,10,6) \\ (1,8,5,2,9,6,3,10,7,4) \\ (1,9,7,5,3)(2,10,8,6,4) \\ (1,10,9,8,7,6,5,4,3,2)\end{array}\right\} \cong C_{10}$

Normal, Center
$\left\{\begin{array}{c}(~) \\ (1,3,5,7,9)(2,4,6,8,10) \\ (1,5,9,3,7)(2,6,10,4,8) \\ (1,7,3,9,5)(2,8,4,10,6) \\ (1,9,7,5,3)(2,10,8,6,4)\end{array}\right\} \cong C_{5}$

Normal, Sylow 5-subgroup
$\left\{\begin{array}{c}() \\ (1,6)(2,7)(3,8)(4,9)(5,10)\end{array}\right\} \cong C_{2}$
Normal, Sylow 2-subgroup
\{()\}
Normal, Commutator Subgroup

THE DIHEDRAL GROUP D_{5}

$$
D_{5} \cong \mathbb{Z}_{5}>\triangleleft \mathbb{Z}_{2} \cong C_{5}>\triangleleft C_{2}
$$

Generators:

$(1,2,3,4,5),(2,5)(3,4)$

Elements:

$\{(),(2,5)(3,4),(1,2)(3,5),(1,2,3,4,5),(1,3)(4,5),(1,3,5,2,4),(1,4)(2,3)$, $(1,4,2,5,3), \quad(1,5,4,3,2),(1,5)(2,4)\}$

Is Abelian?

No

Subgroups:
$\left\{\begin{array}{c}() \\ (2,5)(3,4) \\ (1,2)(3,5) \\ (1,2,3,4,5) \\ (1,3)(4,5) \\ (1,3,5,2,4) \\ (1,4)(2,3) \\ (1,4,2,5,3) \\ (1,5,4,3,2) \\ (1,5)(2,4)\end{array}\right\} \cong D_{5}$

Normal
$\left\{\begin{array}{c}(~) \\ (1,2,3,4,5) \\ (1,3,5,2,4) \\ (1,4,2,5,3) \\ (1,5,4,3,2)\end{array}\right\} \cong C_{5}$

Normal, Commutator Subgroup, Sylow 5-subgroup

Conjugate, Sylow 2-subgroups
($)$)
Normal, Center

SUPAMADY (PADT G)

In Part 4 we examined in detail the internal structure of groups from order 1 to order 10. You want to be very familiar with these groups as well as the following concepts and notations.

- Cyclic groups, $C_{n} \cong \mathbb{Z}_{n}$
- Dihedral groups, D_{n}
- Symmetric groups, S_{n}
- Alternating groups, A_{n}
- Direct products, $C_{2} \times C_{5}$
- Semidirect products, $S_{3}>\triangleleft C_{2}$
- Quaternion group, Q_{8}
- Normal subgroup, $N \triangleleft G$
- Sylow p-subgroup
- Center of a group, $Z(G)$
- Commutator or derived subgroup
- Conjugate of an element, $a^{b}=b^{-1} a b$
- Conjugate of a subgroup, $a^{-1} \mathrm{Ha}$
- Subgroup lattice

More and more of the dots are being filled in!

PRACTITE (PAPT M)

Use GAP and the knowledge cleaned from the examples in this part in order to perform the following tasks.

1. Using our analyses of the subgroup structure of groups of order 1 through 10 as a guide, complete a similar analysis for all groups of order 11.
2. Identify, up to isomorphism, all distinct abelian groups of order 12.
3. There are 2 nonabelian groups of order 12. Based upon our previous discussions in Part 3 on common types of groups, identify these two nonabelian groups.
4. Using our analyses of the subgroup structure of groups of order 1 through 10 as a guide, complete a similar analysis for the nonabelian groups of order 12.

PRACTTEE (PADT M) - ANSW Meq

Use GAP and the knowledge cleaned from the examples in this part in order to perform the following tasks.

1. Using our analyses of the subgroup structure of groups of order 1 through 10 as a guide, complete a similar analysis for all groups of order 11.

Since 11 is prime, the only group of order 11 is C_{11}.

THE CYCLIC GROUP OF ORDER 11

$$
C_{11} \cong \mathbb{Z}_{11}
$$

Generators:

(1,2,3, 4, 5, 6, 7,8,9,10,11)

Elements:

$\{(),(1,2,3,4,5,6,7,8,9,10,11),(1,3,5,7,9,11,2,4,6,8,10)$,
$(1,4,7,10,2,5,8,11,3,6,9),(1,5,9,2,6,10,3,7,11,4,8)$,
$(1,6,11,5,10,4,9,3,8,2,7), \quad(1,7,2,8,3,9,4,10,5,11,6), \quad(1,8,4,11,7,3,10,6,2,9,5)$,
$(1,9,6,3,11,8,5,2,10,7,4), \quad(1,10,8,6,4,2,11,9,7,5,3),(1,11,10,9,8,7,6,5,4,3,2) \quad$, $\}$

Is Abelian?

Yes

Subgroups:
$\left\{\begin{array}{c}() \\ (1,2,3,4,5,6,7,8,9,10,11) \\ (1,3,5,7,9,11,2,4,6,8,10) \\ (1,4,7,10,2,5,8,11,3,6,9) \\ (1,5,9,2,6,10,3,7,11,4,8) \\ (1,6,11,5,10,4,9,3,8,2,7) \\ (1,7,2,8,3,9,4,10,5,11,6) \\ (1,8,4,11,7,3,10,6,2,9,5) \\ (1,9,6,3,11,8,5,2,10,7,4) \\ (1,10,8,6,4,2,11,9,7,5,3) \\ (1,11,10,9,8,7,6,5,4,3,2)\end{array}\right\} \cong C_{11}$

Normal, Center, Sylow 11-subgroup
(C)

Normal, Commutator Subgroup

Subgroup Lattice
C_{11}
e
2. Identify, up to isomorphism, all distinct abelian groups of order 12.

Since $12=4 \cdot 3=2 \cdot 2 \cdot 3$, it follows from the Fundamental Theorem of Finite Abelian Groups that there are two abelian groups of order $12, C_{12} \cong C_{4} \times C_{3}$ and the direct product $C_{2} \times C_{2} \times C_{3}$.
3. Using our analyses of the subgroup structure of groups of order 1 through 10 as a guide, complete a similar analysis for the cyclic group C_{12}.

THE CYCLIC GROUP OF ORDER 12

$$
C_{12} \cong C_{3} \times C_{4} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{12}
$$

Generators:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12)

Elements:

$\{(),(1,2,3,4,5,6,7,8,9,10,11,12),(1,3,5,7,9,11)(2,4,6,8,10,12)$,
$(1,4,7,10)(2,5,8,11)(3,6,9,12),(1,5,9)(2,6,10)(3,7,11)(4,8,12)$,
$(1,6,11,4,9,2,7,12,5,10,3,8),(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$,
$(1,8,3,10,5,12,7,2,9,4,11,6),(1,9,5)(2,10,6)(3,11,7)(4,12,8)$,
$(1,10,7,4)(2,11,8,5)(3,12,9,6),(1,11,9,7,5,3)(2,12,10,8,6,4)$,
$(1,12,11,10,9,8,7,6,5,4,3,2)\}$

Is Abelian?

Yes

Subgroups:

$$
\left\{\begin{array}{c}
(~) \\
(1,2,3,4,5,6,7,8,9,10,11,12) \\
(1,3,5,7,9,11)(2,4,6,8,10,12) \\
(1,4,7,10)(2,5,8,11)(3,6,9,12) \\
(1,5,9)(2,6,10)(3,7,11)(4,8,12) \\
(1,6,11,4,9,2,7,12,5,10,3,8) \\
(1,7)(2,8)(3,9)(4,10)(5,11)(6,12) \\
(1,8,3,10,5,12,7,2,9,4,11,6) \\
(1,9,5)(2,10,6)(3,11,7)(4,12,8) \\
(1,10,7,4)(2,11,8,5)(3,12,9,6) \\
(1,11,9,7,5,3)(2,12,10,8,6,4) \\
(1,12,11,10,9,8,7,6,5,4,3,2)
\end{array}\right\} \cong C_{12}
$$

Normal, Center
$\left\{\begin{array}{c}() \\ (1,3,5,7,9,11)(2,4,6,8,10,12) \\ (1,5,9)(2,6,10)(3,7,11)(4,8,12) \\ (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) \\ (1,9,5)(2,10,6)(3,11,7)(4,12,8) \\ (1,11,9,7,5,3)(2,12,10,8,6,4)\end{array}\right\} \cong C_{6}$

Normal
$\left\{\begin{array}{c}\left(\begin{array}{c}(\\ (1,4,7,10)(2,5,8,11)(3,6,9,12) \\ (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) \\ (1,10,7,4)(2,11,8,5)(3,12,9,6)\end{array}\right\} \cong C_{4} .4 .\end{array}\right.$

Normal, Sylow 2-subgroup
$\left\{\begin{array}{c}() \\ (1,5,9)(2,6,10)(3,7,11)(4,8,12)) \\ (1,9,5)(2,10,6)(3,11,7)(4,12,8)\end{array}\right\} \cong C_{3}$
Normal, Sylow 3-subgroup
$\left\{\begin{array}{c}() \\ (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)\end{array}\right\} \cong C_{2}$
Normal
$\{()\}$
Normal, Commutator Subgroup

4. There are 3 nonabelian groups of order 12. One is the semidirect product $\mathbb{Z}_{3}>\triangleleft \mathbb{Z}_{4}$. Now, based upon our previous discussions in part 3 on common types of groups, identify the other two nonabelian groups.

The other two nonabelian groups of order 12 are D_{6} and A_{4}.
5. Using our analyses of the subgroup structure of groups of order 1 through 10 as a guide, complete a similar analysis for the two nonabelian groups of order 12 you gave as your answer to the previous problem.

THE DIHEDRAL GROUP D_{6}

$$
D_{6} \cong \mathbb{Z}_{6}>\triangleleft \mathbb{Z}_{2} \cong C_{6}>\triangleleft C_{2}
$$

Generators:

$(1,2,3,4,5,6),(2,6)(3,5)$

Elements:

$\{(),(2,6)(3,5),(1,2)(3,6)(4,5),(1,2,3,4,5,6),(1,3)(4,6),(1,3,5)(2,4,6)$, $(1,4)(2,3)(5,6),(1,4)(2,5)(3,6),(1,5)(2,4),(1,5,3)(2,6,4),(1,6,5,4,3,2)$, $(1,6)(2,5)(3,4)\}$

Is Abelian?
No

Subgroups:
$\left\{\begin{array}{c}\left(\begin{array}{c}(\\ (2,6)(3,5) \\ (1,2)(3,6)(4,5) \\ (1,2,3,4,5,6) \\ (1,3)(4,6) \\ (1,3,5)(2,4,6) \\ (1,4)(2,3)(5,6) \\ (1,4)(2,5)(3,6) \\ (1,5)(2,4) \\ (1,5,3)(2,6,4) \\ (1,6,5,4,3,2) \\ (1,6)(2,5)(3,4)\end{array}\right) \cong D_{6} \\ \text { Normal }\end{array}\right.$.

$$
\left\{\begin{array}{c}
(~) \\
(1,2)(3,6)(4,5) \\
(1,3,5)(2,4,6) \\
(1,4)(2,3)(5,6) \\
(1,5,3)(2,6,4) \\
(1,6)(2,5)(3,4)
\end{array}\right\} \cong D_{3}
$$

Normal

$$
\left\{\begin{array}{c}
(~) \\
(1,2,3,4,5,6) \\
(1,3,5)(2,4,6) \\
(1,4)(2,5)(3,6) \\
(1,5,3)(2,6,4) \\
(1,6,5,4,3,2)
\end{array}\right\} \cong C_{6}
$$

Normal

$$
\left\{\begin{array}{c}
(~) \\
(2,6)(3,5) \\
(1,3,)(4,6) \\
(1,3,5)(2,4,6) \\
(1,5)(2,4) \\
(1,5,3)(2,6,4)
\end{array}\right\} \cong D_{3}
$$

Normal

Conjugate, Sylow 2-subgroup

$$
\left\{\begin{array}{c}
(~) \\
(1,3,5)(2,4,6) \\
(1,5,3)(1,6,4)
\end{array}\right\} \cong C_{3}
$$

Normal, Sylow 3-subgroup

Conjugate
$\left\{\begin{array}{c}\left(\begin{array}{c}) \\ (1,4)(2,5)(3,6)\end{array}\right\} \cong C_{2}, ~\end{array}\right.$
Normal, Commutator Subgroup, Center
$\left\{\begin{array}{c}\left(\begin{array}{c}) \\ (1,5)(2,4)\end{array}\right\} \quad\left\{\begin{array}{c}() \\ (1,3)(4,6)\end{array}\right\} \quad\left\{\begin{array}{c}() \\ (2,6)(3,5)\end{array}\right\} \cong C_{2}, ~\end{array}\right.$
Conjugate
(c) $\}$

Normal

Subgroup Lattice

THE ALTERNATING GROUP OF DEGREE $4 A_{4}$

A_{4}

Generators:

$(1,2,3),(2,3,4)$

Elements:
$\{(),(2,3,4),(2,4,3),(1,2)(3,4),(1,2,3),(1,2,4),(1,3,2),(1,3,4)$, $(1,3)(2,4),(1,4,2),(1,4,3),(1,4)(2,3)\}$

Is Abelian?
No

Subgroups:
$\left\{\begin{array}{c}()^{2} \\ (2,3,4) \\ (2,4,3) \\ (1,2)(3,4) \\ (1,2,3) \\ (1,2,4) \\ (1,3,2) \\ (1,3,4) \\ (1,3)(2,4) \\ (1,4,2) \\ (1,4,3) \\ (1,4)(2,3)\end{array}\right\} \cong A_{4}$

Normal
$\left\{\begin{array}{c}() \\ (1,2)(3,4) \\ (1,3)(2,4) \\ (1,4)(2,3)\end{array}\right\} \cong C_{2} \times C_{2}$
Normal, Commutator Subgroup, Sylow 2-subgroup
$\left\{\begin{array}{c}() \\ (1,3,4) \\ (1,4,3)\end{array}\right\} \quad\left\{\begin{array}{c}(~) \\ (1,2,4) \\ (1,4,2)\end{array}\right\} \quad\left\{\begin{array}{c}()^{\prime} \\ (1,2,3) \\ (1,3,2)\end{array}\right\} \quad\left\{\begin{array}{c}(~) \\ (2,3,4) \\ (2,4,3)\end{array}\right\} \cong C_{3}$
Conjugate, Sylow 3-subgroup
$\left\{\begin{array}{c}() \\ (1,4)(2,3)\end{array}\right\} \quad\left\{\begin{array}{c}(~) \\ (1,3)(2,4)\end{array}\right\} \quad\left\{\begin{array}{c}() \\ (1,2)(3,4)\end{array}\right\} \cong C_{2}$
Conjugate
(1)

Normal, Center

Subgroup Lattice

ALH THAE LOPDS BOOM GPOUP THEOMV

