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Introduction (part 3) 

 

There is so much about groups that we have covered, and yet there is so much 

that is still left to cover.  We will never exhaust the well of what is already known!  

Nonetheless, in this third part we do add some very important pieces to the 

puzzle.  Primarily, we begin to look at the different types of groups that you may 

encounter.  We’ve already discussed cyclic groups and how we can think of all 

groups as being built from cycles that either commute with one another or don’t.  

In this portion, we’ll add a little bit more to what we’ve already learned about 

cyclic groups and we’ll introduce some other very important classes of groups 

such as the dihedral groups, the symmetric groups, the alternating groups, direct 

products of groups, and semidirect products of groups.  Following this, we’ll 

introduce you to the quaternion group which doesn’t fit into any of the more 

familiar patterns, and we’ll also talk about generators for a group.  Additionally, 

we look at how we may use GAP software to explore some of these new items 

that we introduce.  There is much to enjoy in Part 3! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2

cyclic GROUPS 
 

We introduced cyclic groups back in Part 1 along with the notion that cycles are 

found everywhere within our lives.  In Part 3, we are just going to add a little 

more to what we have already seen.  In particular, a finite group is cyclic if we 

can generate it by multiplying just a single element by itself over and over again 

until things begin to repeat.  Also, the length of a cycle tells us beforehand what 

the size or order of the group will be.  For example, the cycle ( )1,2  generates a 

cyclic group with just two elements, ( )  and ( )1,2 .  However, what may not be 

immediately apparent is that the permutation ( )( )1,2 3,4  also generates a group 

with two elements, ( )  and ( )( )1,2 3,4 .  We can easily verify this using GAP. 

 
gap> a:=(1,2); 
(1,2) 
 
gap> g1:=Group(a); 
Group([ (1,2) ]) 
 
gap> Size(g1); 
2 
 
gap> Elements(g1); 
[ (), (1,2) ] 
 
gap> a:=(1,2)*(3,4); 
(1,2)(3,4) 
 
gap> g2:=Group(a); 
Group([ (1,2)(3,4) ]) 
 
gap> Size(g2); 
2 
 
gap> Elements(g2); 
[ (), (1,2)(3,4) ] 
 

 

Similarly, if we wanted to generate a cyclic group of order 6 from scratch, the 

most obvious thing to do would be to look a multiples of ( )1,2,3,4,5,6 .  However, 

the permutation ( )1,2)(3,4,5  will also generate a cyclic group of order 6, and you 

can see this by noting that ( )1,2)(3,4,5  is the product of a 2-cycle and a 3-cycle.  

Hence, since 6 is the least common multiple of 2 and 3, it will take 6 applications 
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of this permutation before we arrive at the identity element.  Also, here is some 

confirmation from GAP. 

 
gap> a:=(1,2,3,4,5,6); 
(1,2,3,4,5,6) 
 
gap> g:=Group(a); 
Group([ (1,2,3,4,5,6) ]) 
 
gap> Size(g); 
6 
 
gap> IsCyclic(g); 
true 
 
gap> a:=(1,2)*(3,4,5); 
(1,2)(3,4,5) 
 
gap> g:=Group(a); 
Group([ (1,2)(3,4,5) ]) 
 
gap> Size(g); 
6 
 
gap> IsCyclic(g); 
true 
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Dihedral groups 

 
 

There are a few basic types of groups that we need to be familiar with.  The first 

type, cyclic groups, we’ve already talked about, and we’ve seen that every cyclic 

group is generated by a single element.  And in many ways, cyclic groups or 

cycles are the building blocks from which all groups are made.  The next class of 

groups we want to learn about are the dihedral groups.  These are the groups 

related to the symmetry of a regular polygon (i.e. a polygon such that all the 

sides have the same length), and they are pretty simple. 

 

The word “dihedral” basically means “two faces,” and this term comes from the 

fact that when we take a regular polygon, the group corresponding to the 

symmetry of that regular polygon consists of all the rotations about its center and 

all reflections about axes of symmetry that “flip” the top and bottom faces while 

leaving the orientation of the polygon appearing unchanged.  We’ve already 

looked at, for example, rotations through multiples of 120°  for an equilateral 

triangle, but if we add to this reflections across axes of symmetry, then six 

possible orientations are possible.  And by labeling the vertices, we can easily 

display each possible orientation that results from a rotation, a flip, or a 

combination of both. 
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To generate the group corresponding to the symmetries in this triangle, we rotate 

the triangle through angles that are integer multiples of 120° , and we do 

reflections about each of the three axes of symmetry.  The result is what is called 

the dihedral group 3D  , and notice that the subscript of three refers to the number 

of sides in our regular polygon, and the order or number of elements of 3D  is 

3 2 3 6D = ⋅ = .  In general, every dihedral group is generated this way.  That is, by 

looking at the permutations of the corner points that can be created either 

through rotations or reflections about axes of symmetry, and if our regular 

polygon has n sides, then 2nD n= .  Furthermore, it can be shown that every 

dihedral group can be generated by combining the rotations with a flip about a 

single axis of symmetry.  So, for example, let’s do this with our equilateral 

triangle.  Let e be the identity (no rotations or flips), let r be a clockwise rotation 

through an angle of 120° , and let f be the flip about the vertical axis.  Then we 

can write the elements of 3D  as follows, and as usual, we do all multiplication 

from left to right, though remember that many others do it from right to left.  

Hence, be prepared to switch when necessary! 
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( )

2

2

(1,2,3)

(1,3,2)
(2,3)
(2,3)(1,2,3) (1,2)

(2,3)(1,3,2) (1,3)

e
r

r
f
fr

fr

=

=

=
=
= =

= =

 

 

Notice, too, that 2(1,2,3)(2,3) (1,3)rf fr= = =  and 2 (1,3,2)(2,3) (1,2)r f fr= = = .  In other 

words, 2rf fr=  and 2r f fr= .  We might also add to this list that 3 2r e f= = , and 

equations such as these are often referred to as relations within a group.  One 

way of specifying a group is by giving not only a list of elements that generate the 

group through the various products that can be formed, but also a list of 

equations or relations that, along with the generators, define that group. 

 

Below is a square with the corner vertices labeled, and we can easily list all the 

elements in the dihedral group 4D  in terms of combinations of clockwise rotations 

through angles of 90°  and flips about the vertical axis. And we can represent 

each group element as a permutation of the vertices.  Notice that the group 

generated by these movements has order 4 2 4 8D = ⋅ = . 
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Notice also that, 

 
3
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Hence, we have the following relations in this group. 
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Additionally, below is a multiplication table for 4D  generated by GAP.  You might 

need a magnifying glass! 

 
*          | ()         (2,4)      (1,2)(3,4) (1,2,3,4)  (1,3)      (1,3)(2,4) (1,4,3,2)  (1,4)(2,3) 
-----------+---------------------------------------------------------------------------------------- 
()         | ()         (2,4)      (1,2)(3,4) (1,2,3,4)  (1,3)      (1,3)(2,4) (1,4,3,2)  (1,4)(2,3) 
(2,4)      | (2,4)      ()         (1,2,3,4)  (1,2)(3,4) (1,3)(2,4) (1,3)      (1,4)(2,3) (1,4,3,2) 
(1,2)(3,4) | (1,2)(3,4) (1,4,3,2)  ()         (1,3)      (1,2,3,4)  (1,4)(2,3) (2,4)      (1,3)(2,4) 
(1,2,3,4)  | (1,2,3,4)  (1,4)(2,3) (2,4)      (1,3)(2,4) (1,2)(3,4) (1,4,3,2)  ()         (1,3) 
(1,3)      | (1,3)      (1,3)(2,4) (1,4,3,2)  (1,4)(2,3) ()         (2,4)      (1,2)(3,4) (1,2,3,4) 
(1,3)(2,4) | (1,3)(2,4) (1,3)      (1,4)(2,3) (1,4,3,2)  (2,4)      ()         (1,2,3,4)  (1,2)(3,4) 
(1,4,3,2)  | (1,4,3,2)  (1,2)(3,4) (1,3)      ()         (1,4)(2,3) (1,2,3,4)  (1,3)(2,4) (2,4) 
(1,4)(2,3) | (1,4)(2,3) (1,2,3,4)  (1,3)(2,4) (2,4)      (1,4,3,2)  (1,2)(3,4) (1,3)      () 
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Recall now that since 4 2 4 8D = ⋅ = , every subgroup of 4D  must have an order that 

is a divisor of 8, and hence, the only possible orders for subgroups are 1, 2, 4, or 

8.  As it turns out, 4D  has 10 subgroups, and since 4D  has 8 elements, that 

means that we can generate eight cyclic groups from those elements.  However, 

as we’ll see, some of those cyclic subgroups are the same.  Also, another 

subgroup is 4D , the entire group, which, in this case, is not cyclic.  We can list the 

cyclic subgroups generated by the eight elements as follows. 

 

( ) ( ){ }e = =  

( ){ }(1,2,3,4 ,(1,2,3,4),(1,3)(2,4),(1,4,3,2r = =  

( ){ }2 (1,3)(2,4) ,(1,3)(2,4)r = =  

( ){ }3 (1,4,3,2) ,(1,2,3,4),(1,3)(2,4),(1,4,3,2r r= = =  

( ){ }(1,2)(3,4) ,(1,2)(3,4)f = =  

( ){ }(1,3 ,(1,3)fr = =  

( ){ }2 (1,4)(2,3) ,(1,4)(2,3)fr = =  

( ){ }3 (2,4) ,(2,4)fr = =  

 

Additionally,  

 

( ){ }
4 , (1,2)(3,4),(1,2,3,4)

,(1,2,3,4),(1,3)(2,4),(1,4,3,2),(1,2)(3,4),(1,3),(1,4)(2,3),(2,4)

D f r= =

=
 

 

Since ( ){ } 3, (1,2,3,4),(1,3)(2,4),(1,4,3,2r r= = , this list of cyclic groups plus 4D  

gives us only eight distinct subgroups, and so we still need to find two more.  The 

two additional groups are, 

 

 ( ){ }2, (1,2)(3,4),(1,4)(2,3) ,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)f fr = =  
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( ){ }2 , (1,3)(2,4),(1,3) ,(2,4),(1,3),(1,3)(2,4)r fr = =  

 

Again, notice that all of these subgroups have orders which divide 8, the order of 

4D . 
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SYMMETRIC GROUPS 
 

So far we’ve talked about two main classes of groups – cyclic groups which can 

be generated by a single element, and dihedral groups which arise from the 

rotational and mirror symmetry of regular polygons.  Now we want to learn about 

a third class of groups, the symmetric groups. 

 

The symmetric group nS  is essentially the group of all permutations that can be 

made of a set of n objects.  There are a couple of things, though, that we should 

realize at the start.  First, this is yet another example of a group acting on a set.  

Our underlying set X is a set containing n objects, and our group nS  is the group 

of all permutations we can make of those n objects.  For example, if { }, ,X a b c= , 

then the group 3S  represents the number of permutations we can make of these 

three letters.  In this case, if 3( , , )a b c S∈ , then we’ll interpret that permutation as 

meaning the letter a becomes b, the letter b changes to c, and the letter c 

becomes a.  This permutation would, thus, change abc  to bca .   

 

A question we want to ask now, however, is how many elements are in a group 

like nS ?  Fortunately, this is easy to answer.  Just consider 3S  acting on 

{ }, ,X a b c= .  If we want to count up how many different permutations there are of 

the three letters a, b, and c, then we just need to think about how we would 

construct a single permutation.  To do this we need to pick a first letter and then 

a second letter and then the third letter.  However, when we start, we have 3 

choices for the first letter, and then only 2 choices left for the second letter, and 

then just 1 choice for the third letter.  Thus, the number of distinct permutations 

we can make from these three letters is 3 2 1 6⋅ ⋅ = .  Furthermore, we can easily list 

all six permutations. 

 

abc acb bac bca cab cba  
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Additionally, we have a special notation for a product like 3 2 1⋅ ⋅ .  We call it “3 

factorial,” and we write it as 3! 3 2 1= ⋅ ⋅ .  Also, the tree diagram below provides a 

good visual explanation as to why the number of permutations you can make of 

three objects is equal to 3! 3 2 1 6= ⋅ ⋅ = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

You might recall that 3D , the group of rotational and mirror symmetries of an 

equilateral triangle, also contains six elements.  Since we can think of the 

rotations and reflections in 3D  as creating permutations of the three vertices and 

since the number of permutations in 3D  is the same as the total number of 

possible permutations of three objects, it must follow that 3D  is isomorphic to 3S .  

Thus, 3D  and 3S  are essentially the same group expressed through different 

notations, and in mathematics we denote the fact that they are isomorphic by 

writing 3 3D S≅ . 

 

{ }3 3 ( ),(1,2,3),(1,3,2),(1,2),(2,3),(1,3)D S≅ =  
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Since 3 3D S≅ , an obvious question to ask is are symmetric groups always 

basically the same as the dihedral groups?  Well, the answer is no, and all we 

have to do to see that is to determine the size of 4S , the group of permutations of 

4 objects.  Let’s let our set of objects be { }1,2,3,4X = , and once again let’s think 

about how many permutations we can make of these four objects.  If we are 

constructing a single permutation, then we have 4 choices for the first number, 3 

choices for the next one, 2 choices for the third number, and only 1 choice left for 

the last number.  Hence, the number of permutations we can make of four 

objects is 4! 4 3 2 1 24= ⋅ ⋅ ⋅ = , and, thus, 4 24S = .  However, since 4 8D = , it should 

be clear that 4D  is not isomorphic to 4S .  Also, since the elements of both groups 

represent permutations of four objects, we can consider 4D  to be a subgroup of 

4S .  And more generally, we always have that !nS n= , and nD  is always a 

subgroup of nS . 

 

Now let’s examine something rather interesting.  First, let’s consider the following 

three permutations  - (1,2,3),(1,4),  and (5,6) .  The latter two permutations, 

(1,4),  and (5,6) , are called transpositions since each one switches only two 

elements.  We also say that those two particular permutations are disjoint since 

they move entirely different elements, and when two permutations are disjoint, 

they commute with one another.  In other words, (1,4)(5,6) (5,6)(1,4)= .  On the 

other hand, (1,2,3) and (1,4)  are not disjoint and they do not commute with one 

another since when we multiply left to right, (1,2,3)(1,4) (1,2,3,4)= , but 

(1,4)(1,2,3) (1,4,2,3)= .   

 

Now for the good part.  Every permutation can be written as a product of 

transpositions, and there’s an easy way to do it.  We’ll illustrate with the 

permutation (1,2,3)  from 3S .  All you have to do is write (1,2,3) (1,2)(1,3)= .  And 

now there are two things to notice.  First, the transpositions on the right are not 

disjoint, and second, we have an even number of transpositions.  In general, we’ll 
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call a permutation an even permutation if it can be written as the product of an 

even number of transpositions, and we’ll call a permutation an odd permutation if 

it can be written as an odd number of transpositions using the method indicated 

above.  Notice that since we can often write the identity as a product of two 

tranpositions such as ( ) (1,2)(1,2)= , we will also think of the identity as being an 

even permutation.  By the way, there exists a theorem that says that if you can 

write a permutation as a product of transpositions in more than one way, then all 

those various ways will contain either an even number of transpositions or an 

odd number of transpositions.  And now what is quite remarkable is that the set 

of all even permutations in nS  forms a subgroup of nS  that we call the alternating 

group, nA .  To verify that this is a subgroup, it suffices to show that the product of 

two even permutations is even.  The reason this is all you need to show is 

because (1) we get the associative law for free since we’re already working 

within a group, and (2) if your group is finite, then if we pick any even permutation 

and start multiplying it by itself over and over again, we will eventually begin 

repeating values.  In particular, before you repeat your original value, you will get 

a product that is equal to the identity, and that means that the product before that 

one is the inverse of your even permutation. And now, it should be obvious that 

the product of any two even permutations is an even permutation since if you 

multiply an even number of transpositions by an even number of transpositions, 

you still have an even number of transpositions.  Thus, the set of even 

permutations is closed under multiplication, and for any finite group, closure 

under multiplication is all you need to verify to show that some subset of the 

group forms a subgroup.  Here now are the elements in the alternating group 3A . 

 

{ }3 ( ),(1,2,3) (1,2)(1,3),(1,3,2) (1,3)(1,2)A = = =  

 

Notice that this subgroup contains 3 elements, and that is half of the 6 elements 

in 3S .  That is no accident.  In any symmetric group nS  with 2n ≥ , half of the 
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elements will be even permutations and half will be odd.  Thus, it is always true, 

for 2n ≥ , that 2n

n

S
A

= . 

 

And finally, one important bit of information in closing is that 3 3D S≅  is the 

smallest example one can find of a nonabelian group.  In other words, 

3 3 6D S= = , and any group of smaller order will automatically be abelian! 
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alternating GROUPS 
 

 

We’ll now examine something I find rather interesting.  First, let’s consider the 

following three permutations  - (1,2,3),(1,4),  and (5,6) .  The latter two permutations, 

(1,4),  and (5,6) , are called transpositions since each one switches only two 

elements.  We also say that those two particular permutations are disjoint since 

they move entirely different elements, and when two permutations are disjoint, 

they commute with one another.  In other words, (1,4)(5,6) (5,6)(1,4)= .  On the 

other hand, (1,2,3) and (1,4)  are not disjoint and they do not commute with one 

another since when we multiply left to right, (1,2,3)(1,4) (1,2,3,4)= , but 

(1,4)(1,2,3) (1,4,2,3)= .   

 

Now for the good part.  Every permutation can be written as a product of 

transpositions, and there’s an easy way to do it.  We’ll illustrate with the 

permutation (1,2,3)  from 3S .  All you have to do is write (1,2,3) (1,2)(1,3)= .  And 

now there are two things to notice.  First, the transpositions on the right are not 

disjoint, and second, we have an even number of transpositions.  In general, we’ll 

call a permutation an even permutation if it can be written as the product of an 

even number of transpositions, and we’ll call a permutation an odd permutation if 

it can be written as an odd number of transpositions using the method indicated 

above.  Notice that since we can often write the identity as a product of two 

tranpositions such as ( ) (1,2)(1,2)= , we will also think of the identity as being an 

even permutation.  By the way, there exists a theorem that says that if you can 

write a permutation as a product of transpositions in more than one way, then all 

those various ways will contain either an even number of transpositions or an 

odd number of transpositions.  And now what is quite remarkable is that the set 

of all even permutations in nS  forms a subgroup of nS  that we call the alternating 

group, nA .  To verify that this is a subgroup, it suffices to show that the product of 
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two even permutations is even.  The reason this is all you need to show is 

because (1) we get the associative law for free since we’re already working 

within a group, and (2) if your group is finite, then if we pick any even permutation 

and start multiplying it by itself over and over again, we will eventually begin 

repeating values.  In particular, before you repeat your original value, you will get 

a product that is equal to the identity, and that means that the product before that 

one is the inverse of your even permutation. And now, it should be obvious that 

the product of any two even permutations is an even permutation since if you 

multiply an even number of transpositions by an even number of transpositions, 

you still have an even number of transpositions.  Thus, the set of even 

permutations is closed under multiplication, and for any finite group, closure 

under multiplication is all you need to verify to show that some subset of the 

group forms a subgroup.  Here now are the elements in the alternating group 3A . 

 

{ }3 ( ),(1,2,3) (1,2)(1,3),(1,3,2) (1,3)(1,2)A = = =  

 

Notice that this subgroup contains 3 elements, and that is half of the 6 elements 

in 3S .  That is no accident.  In any symmetric group nS  with 2n ≥ , half of the 

elements will be even permutations and half will be odd.  Thus, it is always true, 

for 2n ≥ , that 2n

n

S
A

= . 

 

And finally, one important bit of information in closing is that 3 3D S≅  is the 

smallest example one can find of a nonabelian group.  In other words, 

3 3 6D S= = , and any group of smaller order will automatically be abelian! 
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DIRECT PRODUCTS 

 

So far we’ve talked about cyclic groups, dihedral groups, and symmetric groups.  

Now we’re going to learn a standard way to construct new groups from old that’s 

called a direct product of groups.  The idea behind it is very simple.  We simply 

take two groups and form coordinate pairs where the first element comes from 

one group and the second element comes from the other group.  Next, we add or 

multiply group elements by doing it coordinatewise using the addition or 

multiplication for each individual group.   

 

As an example, let’s consider the direct product of the integers modulo 2 with the 

integers modulo 2.  This is essentially the same as the direct product of the cyclic 

group of order two with itself, but in the integers modulo 2 we tend to specify our 

operation by addition rather than multiplication.  Thus, recall that if { }2 0,1= , 

then addition is defined such that 1 1 0+ = .  Hence, we get the following addition 

table. 

 

+ 0 1
0 0 1
1 1 0  

 

The general notation for the direct product of 2  with 2  is 2 2× , but when 

both groups are abelian, i.e. comnmutative, you also see it written as 2 2⊕ .  

We’ll stick with the former notation, though.  Also, as a set, 2 2×  is going to 

consist of all ordered pairs we can form where the first element comes from 2  

and the second element also comes from 2 .  That’s going to give us four 

ordered pairs in all.  In the particular, the elements in this direct product will be 

{ }2 2 (0,0,),(1,0),(0,1),(1,1)× = .  And the multiplication (addition) table for this 

group is as follows. 
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+ (0,0) (1,0) (0,1) (1,1)
(0,0) (0,0) (1,0) (0,1) (1,1)
(1,0) (1,0) (0,0) (1,1) (0,1)
(0,1) (0,1) (1,1) (0,0) (1,0)
(1,1) (1,1) (0,1) (1,0) (0,0)  

 

Notice that each non-identity element in this group has order 2.  That means that 

when you multiply (add) any element by itself, you get back the identity which in 

this case is (0,0) .  Another way to say that is that each non-identity element 

generates a cyclic subgroup of order 2.  Also, notice that based upon the mirror 

symmetry with respect to the diagonal in our multiplication table, we can 

definitely say that this group is abelian.  However, since this group has four 

elements and since none of them generate the whole group, this group is not 

cyclic.  In fact, this is the smallest example one can find of an abelian group that 

is not cyclic.  And finally, this group has a special name in mathematics.  It is 

known as the Klein 4-group.  Also, if we replace (0,0) by e, (1,0) by a, 0,1) by b, 

and (1,1) by c, then we can rewrite the multiplication table for our Klein 4-group 

as follows. 
* e a b c
e e a b c
a a e c b
b b c e a
c c b a e  

 

Now comes the tricky part (or the good part, as I say).  Below are the two 

multiplication tables we’ve constructed, and on the one hand, since they use 

different notations, we could say that they are two different groups.  But on the 

other hand, the multiplication tables suggest that the two groups have essentially 

the same structure.  In other words, we can establish a correspondence between 

the elements in such a way that addition in the first table corresponds to 

multiplication in the second table.  For example, with a corresponding to (1,0), b 

corresponding to (0,1), and c corresponding to (1,1),  we can see from the tables 

that just as (1,0) (0,1) (1,1)+ = , so does a b c∗ = .  Hence, our two groups are 

essentially the same, but expressed using different notations.  Recall that when 
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this happens, we say that the two groups are isomorphic.  That is just a nice 

word that means “equal shape.”  Additionally, we can use the multiplication 

tables below to verify that our correspondence or coding works for other 

elements, too.  Using our coding, we’ll always have that a sum of elements in the 

first group corresponds to a product of elements in the second group. 

 

+ (0,0) (1,0) (0,1) (1,1)
(0,0) (0,0) (1,0) (0,1) (1,1)
(1,0) (1,0) (0,0) (1,1) (0,1)
(0,1) (0,1) (1,1) (0,0) (1,0)
(1,1) (1,1) (0,1) (1,0) (0,0)  

 
* e a b c
e e a b c
a a e c b
b b c e a
c c b a e  

 

 

We can also give a real-world example of a Klein 4-group.  Below is a picture of 

two light switches. 

 

 
 

Clearly, we can flip each switch independently of the other.  Thus, let’s define 

some operations as follows: 
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1

2

1 2

 means that you flip no switches
 means that you flip the first switch
 means that you flip the second switch

 means that you flip both switches

e
f
f
f f

 

 

These operations will now generate the following multiplication table for a group.  

By studying the multiplication table, you can see that this group is isomorphic to 

the Klein 4-group. 

 

* e f1 f2 f1f2

e e f1 f2 f1f2
f1 f1 e f1f2 f2
f2 f2 f1f2 e f1

f1f2 f1f2 f2 f1 e  
 

Here are another couple of examples of direct products.  If we look at 2 3× , 

then we are going to get a group with 6 elements since the first group has 2 

elements and the second group has 3.  Specifically, 

{ }2 3 (0,0,),(1,0),(0,1),(0,2),(1,1),(1,2)× = .  Furthermore, if you do addition modulo 2 

with the first coordinate and addition modulo 3 with the second coordinate, then 

you can verify that (1,1) generates the group.  Hence, 2 3×  is isomorphic to 6C , 

the cyclic group of order 6, and we usually denote this by writing 2 3 6C× ≅ .  

This result also illustrates an important theorem.  Namely, if a cyclic group has 

order mn where m and n are relatively prime (in other words, their only common 

divisor is 1), then our cyclic group is isomorphic to m n× . 

 

We can also form the direct product of more than two groups just by extending 

our earlier definitions.  Thus, for example, 2 2 2× ×  has 8 elements, and 

{ }2 2 2 (0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1)× × = .  Notice, again, 

that every non-identity element in this direct product has order 2, and so it is not 

a cyclic group.  However, it is abelian.   
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But if you want to construct a direct product that is not abelian, then all you have 

to do is throw in a factor that is nonabelian such as is the case with 2 3D× .  Also, 

notice that we can consider both 2  and 3D  not only as subgroups of 2 3D×  but 

also as normal subgroups, even though, technically, we would write the elements 

of these groups in this case as { }2 (0,0),(1,0)=  and 

{ }2
3 1 2 3(0,0),(0, ),(0, ),(0, ),(0, ),(0, )D r r f f f= .  Furthermore, it’s not that difficult to see 

that the elements of 2  and 3D  generate the group 2 3D×  by multiplying 

elements from the two subgroups together, and that the only element 2  and 3D  

have in common is the identity element, 2 3 (0,0)D =∩ .  There is a theorem in 

group theory that says that whenever something like this happens, that is 

whenever we have a group G with two normal subgroups M and N such that 

MN G=  and M N e=∩ , then we can think of G as the direct product of M and N, 

G M N≅ × . 

 

And as a final note, you’ve probably noticed that the notation for an element of a 

direct product (for example, 2 3(1,2)∈ × ) looks just like what we write for a 

permutation expressed in cycle notation.  Consequently, you will only know from 

the context whether we are talking about a permutation in cycle notation or an 

element of a direct product expressed in coordinate notation. 
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semiDIRECT PRODUCTS 

 

At this point we’ve learned about three very important classes of groups: cyclic 

groups, dihedral groups, and symmetric groups.  We’ve also leaned in the past 

about factor or quotient groups, and we’ve more recently learned how to 

construct new groups from old by forming direct products of groups.  We’ve also 

pointed out that if a group G has two normal subgroups M and N such that 

MN G=   and M N e=∩ , then we can think of G as the direct product of M and N.  

What we really mean by this is that G is isomorphic to M N× , and we’ll often just 

write this as an equality, G M N= × .  However, let’s now suppose that we have 

two subgroups M and N of a group G such that MN G=   and M N e=∩ , but only 

M is a normal subgroup of G, M G .  In this case, we call G a semidirect product 

of M and N, and we write G M N= >  where we put the normal subgroup first. 

 

If you come across a semidirect product, then nine times out of ten it will be a 

dihedral group.  In particular, while not every semidirect product is a dihedral 

group, every dihedral group is a semidirect product of its rotation subgroup with 

the subgroup generated by a flip about one of its axes of symmetry.  Thus, for 

example, we think of 3 3D R F= >  and 4 4D R F= > , where nR  represents the 

subgroup generated by n rotations, and F represents the subgroup generated by 

a flip about an axis of symmetry.  Furthermore, semidirect products are always 

nonabelian. 
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The quaternion group 
 

 

The quaternion group is a very special group that consists of eight elements.  It 

can be generated by the permutations (1,2,5,6)(3,8,7,4)  and (1,4,5,8)(2,7,6,3)  acting 

on the set { }1,2,3,4,5,6,7,8 .  What makes the quaternion group special is that it 

doesn’t fit into any of the convenient categories that many of the other groups 

you explore will likely fit into.  For example, it’s a nonabelian group and yet all of 

its subgroups are normal.  In fact, it’s the smallest nonabelian group to have this 

property.  In particular, for a nonabelian group such ubiquitous normality is quite 

abnormal!  The quaternion group is also not a cyclic, dihedral, symmetric, or 

alternating group, and it’s not a direct product or semidirect product of simpler 

groups.  In GAP we can create the quaternion group in at least two different ways.  

One is by using the generators above to create the group, and the other is to use 

the special “QuaternionGroup” command.  Notice, though, that the version of the 

quaternion group generated by this command uses different generators than the 

ones given above.  Also, the other permutations in the group also look different, 

but, nonetheless, the two groups are isomorphic to one another.  Recall that that 

means that their multiplication tables are essentially the same except for how the 

elements are labled. 

 
gap> a:=(1,2,5,6)*(3,8,7,4); 
(1,2,5,6)(3,8,7,4) 
 
gap> b:=(1,4,5,8)*(2,7,6,3); 
(1,4,5,8)(2,7,6,3) 
 
gap> q:=Group(a,b); 
Group([ (1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ]) 
 
gap> Size(q); 
8 
gap> Elements(q); 
[ (), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3), 
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8), 
  (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ] 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
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gap> Elements(q); 
[ (), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6), 
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7), 
  (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ] 
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generators 
 

 

We’ve talked before about generators for a group, and this refers to a set of 

elements in the group whose finite products with one another give us back or 

“generate” the entire group.  Now clearly the set of all elements in a group will 

generate that group, but usually we are looking for something smaller.  For 

example, one requirement that we generally want for our set of generators is that 

they are essentially independent of one another, and by that we mean that if a 

group is generated by elements a, b, and c, then we don’t want to be able to 

write, for instance, c as a finite product of combinations of a and b.  Clearly, if we 

are able to do that, then we don’t need c in our set of generators since a and b by 

themselves could generate c and, hence, the entire group.  Another way to 

express this condition would be to say that our generators are independent of 

one another if the removal of any one element from our set leaves us with 

something that can no longer generate the whole group.  Also, you would think 

that a set of independent generators as described above would guarantee that 

our set of generators is as small as possible, but that is not necessarily the case.  

For example, the set { }(1,2),(3,4,5)  consists of two independent generators that 

generate 6C , a cyclic group of order 6, but then again one element sets like 

{ }(1,2)(3,4,5)  or { }(1,2,3,4,5,6)  also generate cyclic groups of order 6.  Hence, 

knowing that your generators are independent from one another doesn’t always 

mean that you’ve picked the smallest possible set of generators. 

 

Most of the time when using GAP, we know some specific generators for a group 

because we begin by using those generators  to construct our group as in the 

example below. 

 
gap> a:=(1,2); 
(1,2) 
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gap> b:=(3,4,5); 
(3,4,5) 
 
gap> g:=Group(a,b); 
Group([ (1,2), (3,4,5) ]) 
 
 
If, however, we have used specific commands, rather than generators, in GAP to 

create a group, then it may not be entirely clear what we might use as generators 

for that group.  In such a case, we can use GAP to apply the command 

GeneratorsOfGroup to find a set of independent generators. 

 
gap> g:=AlternatingGroup(3); 
Alt( [ 1 .. 3 ] ) 
 
gap> Size(g); 
3 
gap> GeneratorsOfGroup(g); 
[ (1,2,3) ] 

 
gap> g:=AlternatingGroup(4); 
Alt( [ 1 .. 4 ] ) 
 
gap> Size(g); 
12 
 
gap> GeneratorsOfGroup(g); 
[ (1,2,3), (2,3,4) ] 
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How to use gap (part 3) 

 

For both convenience and continuity, we will always include the GAP commands 

presented in earlier parts of this book in black followed by the new commands 

which are printed in red. 

 

 

1. How can I redisplay the previous command in order to edit it? 

 

Press down on the control key and then also press p.  In other words, “Ctrl p”. 

 

 

2. If the program gets in a loop and shows you the prompt “brk>” instead of 

“gap>”, how can I exit the loop? 

 

Press down on the control key and then also press d.  In other words, “Ctrl d”. 

 

 

3. How can I exit the program? 

 

Either click on the “close” box for the window, or type “quit;” and press 

“Enter.” 

 

 

4. How do I find the inverse of a permutation? 

 

gap> a:=(1,2,3,4); 

(1,2,3,4) 

gap> a^-1; 

(1,4,3,2) 
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5. How can I multiply permutations and raise permutations to powers? 

 

gap> (1,2)*(1,2,3); 

(1,3) 

 

gap> (1,2,3)^2; 

(1,3,2) 

 

gap> (1,2,3)^-1; 

(1,3,2) 

 

gap> (1,2,3)^-2; 

(1,2,3) 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> b:=(1,2); 

(1,2) 

 

gap> a*b; 

(2,3) 

 

gap> a^2; 

(1,3,2) 

 

gap> a^-2; 

(1,2,3) 

 

gap> a^3; 

() 



 29

gap> a^-3; 

() 

 

gap> (a*b)^2; 

() 

 

gap> (a*b)^3; 

(2,3) 

 

 

6. How can I create a group from permutations, find the size of the group, and 

find the elements in the group? 

 

gap> a:=(1,2); 

(1,2) 

 

gap> b:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a,b); 

Group([ (1,2), (1,2,3) ]) 

 

gap> Size(g1); 

6 

 

gap> Elements(g1); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> g2:=Group([(1,2),(1,2,3)]); 

Group([ (1,2), (1,2,3) ]) 
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gap> g3:=Group((1,2),(2,3,4)); 

Group([ (1,2), (2,3,4) ]) 

 

 

7. How can I create a cyclic group of order 3? 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a); 

Group([ (1,2,3) ]) 

 

gap> Size(g1); 

3 

 

gap> Elements(g1); 

[ (), (1,2,3), (1,3,2) ] 

 

gap> g2:=Group((1,2,3)); 

Group([ (1,2,3) ]) 
 
gap> g3:=CyclicGroup(IsPermGroup,3); 
Group([ (1,2,3) ]) 
 
 
 

8. How can I create a multiplication table for the cyclic group of order 3 that I just 

created? 
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gap> ShowMultiplicationTable(g1); 

 

*          | ()          (1,2,3)     (1,3,2) 

--------+--------------------------------- 

()         | ()          (1,2,3)     (1,3,2) 

(1,2,3) | (1,2,3)  (1,3,2)     () 

(1,3,2) | (1,3,2)  ()             1,2,3) 

 

 

9. How do I determine if a group is abelian? 

 

gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> IsAbelian(g1); 
true 
 
gap> g2:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 
gap> IsAbelian(g2); 
false 

 

 

10. What do I type in order to get help for a command like “Elements?” 

 

gap> ?Elements 

 

 

11. How do I find all subgroups of a group? 

 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
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gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=AllSubgroups(g); 
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]), 
Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ] 
 
gap> List(h,i->Elements(i)); 
[ [ () ], [ (), (2,3) ], [ (), (1,2) ], [ (), (1,3) ], [ (), (1,2,3), 
(1,3,2) ], [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] ] 
 
gap> Elements(h[1]); 
[ () ] 
 
gap> Elements(h[2]); 
[ (), (2,3) ] 
 
gap> Elements(h[3]); 
[ (), (1,2) ] 
 
gap> Elements(h[4]); 
[ (), (1,3) ] 
 
 
gap> Elements(h[5]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(h[6]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

 

12. How do I find the subgroup generated by particular permutations? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 

 

 

13. How do I determine if a subgroup is normal? 
 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 
gap> h1:=Group((1,2)); 
Group([ (1,2) ]) 
gap> IsNormal(g,h1); 
 
gap> h2:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
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gap> IsNormal(g,h2); 
true 

 

 
 
 
14. How do I find all normal subgroups of a group? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 

gap> n:=NormalSubgroups(g); 
[ Group([ (1,2), (1,2,3) ]), Group([ (1,3,2) ]), Group(()) ] 
 

gap> Elements(n[1]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> Elements(n[2]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(n[3]); 
[ () ] 

 

 

15. How do I determine if a group is simple? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> IsSimple(g); 
false 

 
gap> h:=Group((1,2)); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> IsSimple(h); 
true 

 

 

16. How do I find the right cosets of a subset H of G? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
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gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> c:=RightCosets(g,h); 
[ RightCoset(Group( [ (1,2) ] ),()), RightCoset(Group( [ (1,2) ] ),(1,3,2)), 
RightCoset(Group( [ (1,2) ] ),(1,2,3)) ] 
 
gap> List(c,i->Elements(i)); 
[ [ (), (1,2) ], [ (2,3), (1,3,2) ], [ (1,2,3), (1,3) ] ] 
gap> Elements(c[1]); 
[ (), (1,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,3,2) ] 
 
 
gap> Elements(c[3]); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=RightCoset(h,(1,2,3)); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=h*(1,2,3); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 

 
 

17. How can I create a quotient (factor) group? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> n:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> Elements(n); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> IsNormal(g,n); 
true 
 
gap> c:=RightCosets(g,n); 
[ RightCoset(Group([ (1,2,3) ]),()), RightCoset(Group([ (1,2,3) ]),(2,3)) ] 
 
gap> Elements(c[1]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,2), (1,3) ] 
 
gap> f:=FactorGroup(g,n); 
Group([ f1 ]) 
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gap> Elements(f); 
[ <identity> of ..., f1 ] 
 
gap> ShowMultiplicationTable(f); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
 
 
 

 

18. How do I find the center of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Center(g); 
Group(()) 
 
gap> c:=Center(g); 
Group(()) 
 
gap> Elements(c); 
[ () ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> c:=Center(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 

 
 
19. How do I find the commutator (derived) subgroup of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3,2) ]) 
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gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(d); 
[ (), (1,3)(2,4) ] 
 

 
20. How do I find all Sylow p-subgroups for a given group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> FactorsInt(6); 
[ 2, 3 ] 
 
gap> sylow2:=SylowSubgroup(g,2); 
Group([ (2,3) ]) 
 
gap> IsNormal(g,sylow2); 
false 
 
gap> c:=ConjugateSubgroups(g,sylow2); 
[ Group([ (2,3) ]), Group([ (1,3) ]), Group([ (1,2) ]) ] 
 
gap> Elements(c[1]); 
[ (), (2,3) ] 
 
gap> Elements(c[2]); 
[ (), (1,3) ] 
 
gap> Elements(c[3]); 
[ (), (1,2) ] 
 
gap> sylow3:=SylowSubgroup(g,3); 
Group([ (1,2,3) ]) 
 
gap> IsNormal(g,sylow3); 
true 
 
gap> Elements(sylow3); 
[ (), (1,2,3), (1,3,2) ] 
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21. How can I create the Rubik’s cube group using GAP? 

 

First you need to save the following permutations as a pure text file with the 

name rubik.txt to your C-drive before you can import it into GAP. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 

 

And now you can read the file into GAP and begin exploring. 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
 
 
22. How can I find the center of the Rubik’s cube group? 
 
 
gap> c:=Center(rubik); 
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45) 
(39,47) ] 

 
 

23. How can I find the commutator (derived) subgroup of the Rubik’s cube group? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group with 5 generators> 
 
gap> Size(d); 
21626001637244928000 
 
gap> IsNormal(rubik,d); 
true 
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24. How can I find the quotient (factor) group of the Rubik’s cube group by its 

commutator (derived) subgroup? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group of size 21626001637244928000 with 5 generators> 
gap> f:=FactorGroup(rubik,d); 
Group([ f1 ]) 
 
gap> Size(f); 
2 
 

 

25. How can I find some Sylow p-subgroups of the Rubik’s cube group? 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
gap> FactorsInt(43252003274489856000); 
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11 ] 
 
gap> sylow2:=SylowSubgroup(rubik,2); 
<permutation group of size 134217728 with 27 generators> 
 
gap> sylow3:=SylowSubgroup(rubik,3); 
<permutation group of size 4782969 with 14 generators> 
 
gap> sylow5:=SylowSubgroup(rubik,5); 
<permutation group of size 125 with 3 generators> 
 
gap> sylow7:=SylowSubgroup(rubik,7); 
<permutation group of size 49 with 2 generators> 
 
gap> sylow11:=SylowSubgroup(rubik,11); 
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ]) 
 
gap> Elements(sylow11); 
[ (), (4,5,36,21,31,15,39,13,42,7,12)(10,26,29,28,45,44,47,20,23,18,37), 
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29), 
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26), 
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45), 
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47), 
(4,21,39,7,5,31,13,12,36,15,42)(10,28,47,18,26,45,20,37,29,44,23), 
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20), 
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18), 
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44), 
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ] 
 
gap> IsNormal(rubik,sylow2); 
false 
 
gap> IsNormal(rubik,sylow3); 
false 
 
 
gap> IsNormal(rubik,sylow5); 
false 
 
gap> IsNormal(rubik,sylow7); 
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false 
 
gap> IsNormal(rubik,sylow11); 
false 
 
NOTE:  All of the Sylow p-subgroups found above have conjugates, but the 
sheer size of the Rubik’s cube group makes it too difficult to pursue them on a 
typical desktop computer. 
 

 

26. How do I determine if a group is cyclic? 

 
gap> a:=(1,2,3)*(4,5,6,7); 
(1,2,3)(4,5,6,7) 
 
gap> g:=Group(a); 
Group([ (1,2,3)(4,5,6,7) ]) 
 
gap> Size(g); 
12 
 
gap> IsCyclic(g); 
true 

 

 

27. How do I create a dihedral group with 2n elements for an n-sided regular 

polygon? 

 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
 
gap> Elements(d4); 
[ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ] 
 

 

28. How can I express the elements of a dihedral group as rotations and flips 
rather than as permutations? 

 
 
gap> d3:=DihedralGroup(6); 
<pc group of size 6 with 2 generators> 
 
gap> Elements(d3); 
[ <identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2 ] 
 
gap> ShowMultiplicationTable(d3); 
*                 | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
------------------+---------------------------------------------------------------------------------------------------\ 
--------- 
<identity> of ... | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
f1                | f1                <identity> of ... f1*f2             f2                f1*f2^2           f2^2       
f2                | f2                f1*f2^2           f2^2              f1                <identity> of ... f1*f2      
f1*f2             | f1*f2             f2^2              f1*f2^2           <identity> of ... f1                f2         
f2^2              | f2^2              f1*f2             <identity> of ... f1*f2^2           f2                f1         
f1*f2^2           | f1*f2^2           f2                f1                f2^2              f1*f2             
<identity> of ... 
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29. How do I create a symmetric group of degree n with n! elements? 
 
gap> s4:=SymmetricGroup(4); 
Sym( [ 1 .. 4 ] ) 
 
gap> Size(s4); 
24 
 
gap> Elements(s4); 
[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), 
(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), 
  (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), 
(1,4), (1,4,2,3), (1,4)(2,3) ] 

 
 
 

30. How do I create an alternating group of degree n with !
2
n  elements? 

 
gap> a4:=AlternatingGroup(4); 
Alt( [ 1 .. 4 ] ) 

 
gap> Size(a4); 
12 
gap> Elements(a4); 
[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), 
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ] 

 
 
 
31. How do I create a direct product of two or more groups? 
 
gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> g2:=Group((4,5)); 
Group([ (4,5) ]) 
 
gap> dp:=DirectProduct(g1,g2); 
Group([ (1,2,3), (4,5) ]) 
 
gap> Size(dp); 
6 
gap> Elements(dp); 
[ (), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) ] 
 
gap> ShowMultiplicationTable(dp); 
*            | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
-------------+---------------------------------------------------------------------------
--- 
()           | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
(4,5)        | (4,5)        ()           (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2) 
(1,2,3)      | (1,2,3)      (1,2,3)(4,5) (1,3,2)      (1,3,2)(4,5) ()           (4,5) 
(1,2,3)(4,5) | (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2)      (4,5)        () 
(1,3,2)      | (1,3,2)      (1,3,2)(4,5) ()           (4,5)        (1,2,3)      
(1,2,3)(4,5) 
(1,3,2)(4,5) | (1,3,2)(4,5) (1,3,2)      (4,5)        ()           (1,2,3)(4,5) (1,2,3) 
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32. How can I create the Quaternion group? 
 
gap> a:=(1,2,5,6)*(3,8,7,4); 
(1,2,5,6)(3,8,7,4) 
 
gap> b:=(1,4,5,8)*(2,7,6,3); 
(1,4,5,8)(2,7,6,3) 
 
gap> q:=Group(a,b); 
Group([ (1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ]) 
 
gap> Size(q); 
8 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3), 
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8), 
  (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ] 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6), 
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7), 
  (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ] 
 
 
 
33. How can I find a set of independent generators for a group? 
 
 
gap> c6:=CyclicGroup(IsPermGroup,6); 
Group([ (1,2,3,4,5,6) ]) 
 
gap> Size(c6); 
6 
 
gap> GeneratorsOfGroup(c6); 
[ (1,2,3,4,5,6) ] 

 
 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
 
gap> Size(d4); 
8 
 
gap> GeneratorsOfGroup(d4); 
[ (1,2,3,4), (2,4) ] 

 
 
gap> s5:=SymmetricGroup(5); 
Sym( [ 1 .. 5 ] ) 
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gap> Size(s5); 
120 
 
gap> GeneratorsOfGroup(s5); 
[ (1,2,3,4,5), (1,2) ] 
 
 
gap> a5:=AlternatingGroup(5); 
Alt( [ 1 .. 5 ] ) 
 
gap> Size(a5); 
60 
 
gap> GeneratorsOfGroup(a5); 
[ (1,2,3,4,5), (3,4,5) ] 
 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
gap> GeneratorsOfGroup(q); 
[ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ] 
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Summary (part 3) 

 

In part 3 we explored some of the main types of groups you are likely to 

encounter.  In particular, in addition to cyclic groups, you should now be familiar 

with the following the following: 

• Cyclic groups 

• Dihedral groups. 

• Symmetric groups. 

• Alternating groups. 

• Direct products. 

• Semidirect products. 

• The group 3 3D S≅  of order 6 is the smallest nonabelian group there is. 

• Since 3 3D S≅  is the smallest nonabelian group, that automatically means 

that all of its proper subgroups are abelian. 

• The quaternion group 8Q  is the first group we encounter that doesn’t fit 

into the classification scheme given above.  Furthermore, it is the first 

group encountered that is nonabelian and yet all of its subgroups are 

normal. 

• Generators for a group 

• nD  

• nS  

• nA  

• A B×  

• A B>  

• 8Q  
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practice (part 3) 
 

Consider the regular polygon below. 

 

 

 

 

 

 

 

1. Find 5D . 

 

2. Find the elements in 5D .  List these elements as permutations. 

 

3. What are the possible orders for subgroups of 5D ? 

 

4. The dihedral group 5D  has 8 subgroups.  Find all the subgroups of 5D . 
 
 

5. Find the number of elements in 5 6 7, ,  and S S S . 

 

6. Find the number of elements in 5 6 7, ,  and A A A . 

 

7. Find 5 6 7

5 6 7
, ,  and 

S S S
A A A

. 

 

1

2

34

5

1

2

34

5
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8. Below is a list of the 24 elements in 4S .  Find the 12 elements in 4A . 

4S  = { (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4), 

(1,2,4,3), (1,2,4), (1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), 

(1,4,2), (1,4,3), (1,4), (1,4,2,3), (1,4)(2,3) } 

 

9. Below is a multiplication table for 3D  where R represents a rotation and F 

represents a flip of an equilateral triangle. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

a. How many elements are in 2 3D× ? 
 

b. List in coordinate form the elements in 2 3D× . 
 

c. Is 2 3D×  abelian?  If not, then give two elements that do not 
commute with one another along with their products. 
 

10. What two cyclic groups can we write 10  as a direct product of? 
 

11. With 10  expressed as a product of two cyclic groups, list the elements in 10  
in coordinate form. 
 

12. Using your answer to the previous problem, find an element that generates 
10 . 

 
13. What is the order of 3 3× ? 

 
14. What is the order of every non-identity element in 3 3× ?  Conclude that 

3 3×  is not isomorphic to 9  since it has no element of order nine. 

2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

e R R F FR FR

e e R R F FR FR

R R R e FR F FR

R R e R FR FR F

F F FR FR e R R

FR FR FR F R e R

FR FR F FR R R e
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Below is the subgroup lattice for 4D , the dihedral group of order 8 that is 
associated with the symmetries of a square. 
 

 
4D  = { (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let { }2 ( ),(1,3)C =  and let { }4 ( ), (1,2,3,4),(1,3)(2,4),(1,4,3,2)C = . 
 
15. Verify that 2 3 ( )C C =∩ , that the identity is the only element in the intersection 

of the two subgroups. 
 

16. Verify that 2 3 4C C D⋅ = , that the product of the two subgroups gives us back the 
entire group. 
 

17. Verify that { }2 ( ),(1,3)C =  is not a normal subgroup of 4D . 
 

18. Verify that { }4 ( ),(1,2,3,4),(1,3)(2,4),(1,4,3,2)C =  is a normal subgroup of 4D . 
 

 { }( ), (2,4),(1,2)(3,4),(1,2,3,4),(1,3),(1,3)(2,4),(1,4,3,2),(1,4)(2,3)

( )
(1,3)
(2,4)

(1,3)(2,4)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,3)(2,4)
(1,2)(3,4)
(1,4)(2,3)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,2,34)

(1,3)(2,4)
(1,4,3,2)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,4)(2,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,2)(3,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,3)(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

{ }( )

{ }( ),(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(1,3)(2,4),(1,4,3,2),(1,4)(2,3)

( )
(1,3)
(2,4)

(1,3)(2,4)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,3)(2,4)
(1,2)(3,4)
(1,4)(2,3)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,2,34)

(1,3)(2,4)
(1,4,3,2)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,4)(2,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,2)(3,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,3)(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

{ }( )
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19. Conclude that 4D  is isomorphic to the semidirect product of 4C  by 2C , 
4 4 2D C C≅ > . 
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practice (part 3) - Answers 
 

Consider the regular polygon below. 

 

 

 

 

 

 

 

1. Find 5D . 

 

5 10D =  

 

 

2. Find the elements in 5D .  List these elements as permutations. 

 

5
( ), (1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2),
(2,5)(3,4),(1,3)(4,5),(2,4)(1,5),(1,2)(3,5),(1,4)(2,3)

D
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 

 

3. What are the possible orders for subgroups of 5D ? 

 
1,2,5,  or 10  

 

 

1

2

34

5

1

2

34

5
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4. The dihedral group 5D  has 8 subgroups.  Find all the subgroups of 5D . 
 

{ }( ) ( )=  
{ }(1,2,3,4,5) ( ),(1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2)=  
{ }(1,3,5,2,4) ( ),(1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2)=  
{ }(1,4,2,5,3) ( ),(1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2)=  
{ }(1,5,4,3,2) ( ),(1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2)=  
{ }(2,5)(3,4) (),(2,5)(3,4)=  
{ }(1,3)(4,5) (),(1,3)(4,5)=  
{ }(2,4)(1,5) (),(2,4)(1,5)=  
{ }(1,2)(3,5) (1,2)(3,5)=  
{ }(1,4)(2,3) (1,4)(2,3)=  

5
(),(1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2),

(1,2,3,4,5),(2,5)(3,4)
(2,5)(3,4),(1,3)(4,5),(2,4)(1,5),(1,2)(3,5),(1,4)(2,3)

D
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 
In the list above, we have 7 distinct cyclic groups. That plus the entire group 

5D , gives us eight subgroups in all.  Thus, all eight subgroups of 5D  are 
accounted for. 
 
 

5. Find the number of elements in 5 6 7, ,  and S S S . 

 

5 5! 5 4 3 2 1 120S = = ⋅ ⋅ ⋅ ⋅ =  

6 6! 6 5 4 3 2 1 720S = = ⋅ ⋅ ⋅ ⋅ ⋅ =  

7 7! 7 6 5 4 3 2 1 5040S = = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  

 

 

6. Find the number of elements in 5 6 7, ,  and A A A . 

 

5
5

120 60
2 2
S

A = = =  

6
6

720 360
2 2
S

A = = =  

6
6

5040 2520
2 2
S

A = = =  
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7. Find 5 6 7

5 6 7
, ,  and 

S S S
A A A

. 

 

5

5
2

S
A

=  

6

6

2
S
A

=  

7

7

2
S
A

=  

 

 

8. Below is a list of the 24 elements in 4S .  Find the 12 elements in 4A . 

4S  = { (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4), 

(1,2,4,3), (1,2,4), (1,3,2), (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), 

(1,4,2), (1,4,3), (1,4), (1,4,2,3), (1,4)(2,3) } 

 

4A  = { (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), (1,3)(2,4), (1,4,2), 

(1,4,3), (1,4)(2,3) } 

 

 

9. Below is a multiplication table for 3D  where R represents a rotation and F 

represents a flip of an equilateral triangle. 

 

 

 
 
 
 
 
 
 
 
 
 

2 2

2 2

2 2

2 2 2

2 2

2 2

2 2 2

e R R F FR FR

e e R R F FR FR

R R R e FR F FR

R R e R FR FR F

F F FR FR e R R

FR FR FR F R e R

FR FR F FR R R e
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a. How many elements are in 2 3D× ? 
 

2 3 2 3 2 6 12D D× = ⋅ = ⋅ =  
 

b. List in coordinate form the elements in 2 3D× . 
 

2 2

2 3 2 2

(0, ),(0, ),(0, ), (0, ), (0, ),(0, ),

(1, ), (1, ), (1, ), (1, ), (1, ), (1, )

e R R F FR FR
D

e R R F FR FR

⎧ ⎫⎪ ⎪× = ⎨ ⎬
⎪ ⎪⎩ ⎭

 

 
c. Is 2 3D×  abelian?  If not, then give two elements that do not 

commute with one another along with their products. 
 
No, it’s not abelian since 2(0, ) * (0, ) (0, )R F FR= , but (0, ) * (0, ) (0, )F R FR= . 
 
 
 

10. What two cyclic groups can we write 10  as a direct product of? 
 

10 2 5≅ ×  
 
 

11. With 10  expressed as a product of two cyclic groups, list the elements in 10  
in coordinate form. 
 

{ }10 2 5 (0,0),(0,1),(0,2),(0,3),(0,4),(1,0),(1,1),(1,2),(1,3),(1,4)≅ × =  
 
 

12. Using your answer to the previous problem, find an element that generates 
10 . 

 
(1,1) (1,1)
(1,1) (1,1) (0,2)
(1,1) (1,1) (1,1) (1,3)
(1,1) (1,1) (1,1) (1,1) (0,4)
(1,1) (1,1) (1,1) (1,1) (1,1) (1,0)
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (0,1)
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1

=
+ =
+ + =
+ + + =
+ + + + =
+ + + + + =
+ + + + + + = ,2)

(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (0,3)
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,4)
(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (0,0)

+ + + + + + + =
+ + + + + + + + =
+ + + + + + + + + =
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Therefore, 10(1,1) ≅  
 
 

13. What is the order of 3 3× ? 
 

2 3 2 3 3 3 9× = ⋅ = ⋅ =  
 
 

14. What is the order of every non-identity element in 3 3× ?  Conclude that 
3 3×  is not isomorphic to 9  since it has no element of order nine. 

 
Every non-identity element in 3 3×  has order 3.  Therefore, it can’t be isomorphic 
to 9  which has an element of order 9. 
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Below is the subgroup lattice for 4D , the dihedral group of order 8 that is 

associated with the symmetries of a square. 

 

 

4D  = { (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let { }2 ( ),(1,3)C =  and let { }4 ( ), (1,2,3,4),(1,3)(2,4),(1,4,3,2)C = . 

 

15. Verify that 2 3 ( )C C =∩ , that the identity is the only element in the intersection 

of the two subgroups. 

 

Direct examination of the elements of the two subgroups confirms that 

 { }( ), (2,4),(1,2)(3,4),(1,2,3,4),(1,3),(1,3)(2,4),(1,4,3,2),(1,4)(2,3)

( )
(1,3)
(2,4)

(1,3)(2,4)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,3)(2,4)
(1,2)(3,4)
(1,4)(2,3)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,2,34)

(1,3)(2,4)
(1,4,3,2)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,4)(2,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,2)(3,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,3)(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

{ }( )

{ }( ),(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(1,3)(2,4),(1,4,3,2),(1,4)(2,3)

( )
(1,3)
(2,4)

(1,3)(2,4)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,3)(2,4)
(1,2)(3,4)
(1,4)(2,3)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,2,34)

(1,3)(2,4)
(1,4,3,2)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

( )
(1,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,4)(2,3)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,2)(3,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

( )
(1,3)(2,4)
⎧ ⎫
⎨ ⎬
⎩ ⎭

{ }( )
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2 3 ( )C C =∩ . 

 

 

16. Verify that 2 3 4C C D⋅ = , that the product of the two subgroups gives us back the 

entire group. 

 

( )( ) ( )
( )(1,2,3,4) (1,2,3,4)
( )(1,3)(2,4) (1,3)(2,4)
( )(1,4,3,2) (1,4,3,2)

(1,3)( ) (1,3)
(1,3)(1,2,3,4) (1,4)(3,2)
(1,3)(1,3)(2,4) (2,4)
(1,3)(1,4,3,2) (1,2)(3,4)

=
=
=
=
=
=
=
=

 

 

Therefore, 2 3 4C C D⋅ = . 

 

 

17. Verify that { }2 ( ),(1,3)C =  is not a normal subgroup of 4D . 

 

If (1,2)a = , then 1
2 2

( ) ( )
(1,2) (1,2)

(1,3) (2,3)
a C a C− ⎧ ⎫ ⎧ ⎫

= = ≠⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

.  Hence, 2C  is not a 

normal subgroup of 4D . 

 

 

18. Verify that { }4 ( ), (1,2,3,4),(1,3)(2,4),(1,4,3,2)C =  is a normal subgroup of 4D . 

 

Every element of 4D  can be written as a product of an element in 2C  and an 

element in 4C .  Hence, if ab is an element of 4D  where a is an element of 2C  

and b is an element of 4C , then we need to argue that 
1 1 1

4 4 4( ) ( )ab C ab b a C ab C− − −= = .  Well, it’s clear that conjugation of 4C  by the 
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identity gives us back 4C , so we can assume that (1,3)a =   and 

4 4

( ) (1,3)( )(1,3) ( )
(1,2,3,4) (1,3)(1,2,3,4)(1,3) (1,4,3,2)

(1,3) (1,3) (1,3) (1,3)
(1,3)(2,4) (1,3)(1,3)(2,4)(1,3) (1,3)(2,4)
(1,4,3,2) (1,3)(1,4,3,2)(1,3) (1,2,3,4)

C C

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

.  And 

finally, since b is an element of 4C , conjugation of 4C  by b must also give us 

back 4C . Hence, 1 1 1
4 4 4( ) ( )ab C ab b a C ab C− − −= = , and 4C  is a normal subgroup of 

4D . 

 

 

 

19. Conclude that 4D  is isomorphic to the semidirect product of 4C  by 2C , 

4 4 2D C C≅ > . 

 

Since 2 3 ( )C C =∩ , 2 3 4C C D⋅ = , and 4C  is a normal subgroup of 4D  while 2C  

isn’t, it follows that 4D  is the semidirect product of 4C  by 2C , 4 4 2D C C= > . 

 



 
 

Symmetric group man! 




