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Introduction (part 2) 

 

In part 1 of this book, we introduced the concept of a mathematical group, cyclic 

groups, the connection between groups, permutations, and symmetry, some of 

the basics of GAP software, group actions, and the relationship between group 

theory and Rubik’s cube.  In this second part we’ll build upon the introduction to 

group theory given in part 1.  In particular, we’ll introduce both the concept of a 

subgroup and that of a quotient or factor group.  At the same time, we’ll also 

introduce additional commands for the software program GAP, and we’ll use 

GAP to do some additional analysis of Rubik’s cube.  Everything builds upon 

everything else, so it’s important to have first mastered the lessons in part 1.  

Nonetheless, even though several more parts will follow, if you make it through 

part 2, then you will definitely be in the top 1% as far a group theory knowledge 

goes!  Enjoy! 
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SUBGROUPS 

 

Recall that the Rubik’s cube group contains 43,252,003,274,489,856,000  distinct 

elements and that these elements correspond to the number of distinct 

permutations or “scramblings” that are possible of the colored facelets on Rubik’s 

cube.  Recall also that all the elements of this group can be generated by the 

moves R, L, U, D, F, and B where each of these moves corresponds, 

respectively, to a clockwise quarter-turn of the right, left, up, down, front, or back 

face of the cube.   

 

Now, however, let’s consider just those elements of the Rubik’s cube group that 

can be generated by rotating only the right face a quarter-turn clockwise (R).  

Multiples of this sort will generate a cyclic group of four elements where the 

distinct elements can be denoted by ( ){ }2 3, , ,R R R .  The primary thing to learn 

from this example, though, is that it is possible for a smaller group to be 

contained within a larger group just as our newly found four element group 

( ){ }2 3, , ,R R R  is a part of the complete Rubik’s cube group of 

43,252,003,274,489,856,000  elements.  Whenever this happens, we say that the 

smaller group is a subgroup of the larger group.  Furthermore, if we denote the 

smaller group by H and the larger group by G, then we write H G≤  to indicate 

that H is a subgroup of G.  Also, if we want to emphasize that H is a subgroup of 

G that is not equal to all of G, then we write H G<  instead, and we say that H is a 

proper subgroup of G. 

 

Every group G has at least two subgroups, itself and the subgroup consisting of 

the identity element, G and ( ){ } { }e= .  Also, if we take any element a of a group 

G and if we start looking at all the distinct integer powers of that element, 

( ){ }2 1, 0 1 2, , , , ,a a a e a a a− − = = =… … , then those powers will form either a finite or an 

infinite cyclic group that will also be a subgroup of G.  Furthermore, the subgroup 
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generated by a single element a is frequently written as a , and a subgroup 

generated by two elements a and b is denoted by ,a b .  Likewise, a group or 

subgroup generated by three elements a, b, and c is denoted by , ,a b c . 

 

Now let’s take a look at the following multiplication table for a permutation group 

G that can be generated by two elements, (1,2) and (1,3). 

 
gap> a:=(1,2); 
(1,2) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2), (1,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> ShowMultiplicationTable(g); 
*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
--------+------------------------------------------------ 
()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2) 
(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3) 
(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2) 
(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3) 
(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   () 

 

Using the notation that we just introduced for a group that is generated by one or 

more elements, we could write that (1,2),(1,3) G= .  Additionally, each particular 

element of this group G will generate a cyclic subgroup of G.  Below are the 

results which we may obtain either through direct multiplication of permutations 

from left to right, or from using the multiplication table to do our calculations. 
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( ) ( ){ } { }
( ) ( ){ }
( ) ( ){ }

( ){ }
( ){ }

( ){ }

2,3 ,(2,3)

1,2 ,(1,2)

(1,2,3) (1,2,3),(1,3,2)

     one element

    two elements

     two elements

     three elements

     three elements

,

(1,3,2) (1,3,2),(1,2,3),

(1,3) (1,3),       two elements

e= =

=

=

=

=

=

 

 

Notice that we are able to generate one subgroup of order 1, three distinct 

subgroups of order 2, and only one distinct subgroup of order 3 since the cycles 

(1,2,3) and (1,3,2) generate the same group.  Also notice that no single element 

generates the entire group G, and, thus, G is not itself a cyclic group.   

Nonetheless, each element of the group generates a cycle, and the interaction 

between the elements in the cycle generated by (1,2) and the cycle generated by 

(1,3) is enough to generate the entire group.  This is why I like to think of cycles 

as the building blocks for all groups just as the Rubik’s cube group is generated 

by the cycles produced by R, L, U, D, F, and B.  Furthermore, on Rubik’s cube 

the right and left faces operate independently of one another.  In other words, if 

you first rotate the right face a quarter-turn clockwise followed by a similar 

quarter-turn clockwise of the left face, then the result is the same as if you had 

first turned the left face and then the right face.  Turns, respectively, of the right 

and left faces of Rubik’s cube commute with one another!  On the other hand, 

there is an interaction between turns of the right face and turns of the up face, 

and by that I mean that if you do a quarter-turn clockwise of the right face of 

Rubik’s cube followed by a quarter-turn clockwise of the up face, then the 

resulting pattern on the cube is different from what would result if you had done 

the turn of the up face first.  These turns do not commute with one another, and 

order makes a difference.  The bottom line is that the moves R and L generate a 

subgroup, ,R L , of the Rubik’s cube group that is abelian while the moves R and 

U generate a subgroup, ,R U , that is nonabelian. 
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                    RL = LR                            RU                                UR 

 

Recall now that a group is a nonempty set with a binary operation that possesses 

four algebraic properties – closure, associativity, existence of an identity, and 

existence of inverses.  If we have a nonempty subset of a group G such that all 

four properties are present under the group multiplication, then our subset forms 

a subgroup.  However, if we want to prove that some nonempty subset is a 

subgroup, then we don’t need to worry about associativity because we get that 

one for free.  Since our nonempty subset lies within a group, we automatically 

know that the associative law is going to hold under the given group 

multiplication.  And in fact, we only need to verify that two properties are 

present – closure and existence of inverses.  For example, suppose H is a 

nonempty subset of a group G and that the elements of satisfy both the closure 

property and the existence of inverses property.  Then if a H∈  (a is an element 

of H), it follows that 1a H− ∈ , too.  Hence, given the closure property, we can now 

conclude that 1a a e H−⋅ = ∈ .  Thus, H contains the identity element, and since we 

already know that the associative law holds, it follows that H is a subgroup of G, 

H G≤ . 
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Right cosets 

 

In our answers to “Practice (Part 1)” we gave the multiplication table for the 

following group generated by the cycles (1,2) and (1,3). 

 
gap> a:=(1,2); 
(1,2) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2), (1,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> ShowMultiplicationTable(g); 
*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
--------+------------------------------------------------ 
()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2) 
(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3) 
(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2) 
(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3) 
(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   () 
   

This group G that is generated would usually be written horizontally as 

( ){ }, (2,3),(1,2),(1,2,3),(1,3,2),(1,3)G = , but for this topic, I find it better to write it 

vertically as follows: 

 

( )
(2,3)
(1,2)

(1,2,3)
(1,3,2)
(1,3)

G

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

Also, let’s consider the subgroup H of G that is generated by the cycle (1,2,3).  

The elements of H are: 
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( )
(1,2,3)
(1,3,2)

H
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 

 

And now we’re going to give a very important definition, that of a right coset. 

 

Definition:  If G is a group and if H is a subgroup of G and if g G∈ , then 

{ }|Hg h g h H= ⋅ ∈ .  In this case, we call Hg a right coset of H in G. 

 

Let’s illustrate this using the subgroup H above.  If the element g that we pick 

from G is also an element of H, then Hg H=  as illustrated below. Notice, too, that 

even though we get back the same coset H, the elements of H can be in different 

orders as a result of our multiplication.  In general, that is to be expected. 

 

( )
( )

( )
( ) ( )

( )
( )

( )
(1,2,3) (1,2,3) (1,2,3)
(1,3,2) (1,3,2) (1,3,2)

H H
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⋅
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅ = ⋅ = ⋅ = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

 

( ) ( ) ( )

( )

(1,2,3) 1,2,3
(1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,3,2)

(1,3,2) (1,3,2) (1,2,3)
H H

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⋅
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅ = ⋅ = ⋅ = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

 

( ) ( ) ( )
( )

( )

(1,3,2) 1,3,2
(1,3,2) (1,2,3) (1,3,2) (1,2,3) (1,3,2)

(1,3,2) (1,3,2) (1,3,2) 1,2,3
H H

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⋅
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅ = ⋅ = ⋅ = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

 

 

On the other hand, if g is not an element of G, then we’ll get something 

completely different from H. 
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( )
( )

( )
( ) ( )

( )
( )

( )1,2 1,2
1,2 (1,2,3) 1,2 (1,2,3) 1,2 (2,3)

(1,3,2) (1,3,2) 1,2 (1,3)
H

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⋅
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅ = ⋅ = ⋅ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

( )
( )

( )
( ) ( )

( )
( )

( )1,3 1,3
1,3 (1,2,3) 1,3 (1,2,3) 1,3 (1,2)

(1,3,2) (1,3,2) 1,3 (2,3)
H

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⋅
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅ = ⋅ = ⋅ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

 

( )
( )

( )
( ) ( )

( )
( )

( )2,3 2,3
2,3 (1,2,3) 2,3 (1,2,3) 2,3 (1,3)

(1,3,2) (1,3,2) 2,3 (1,2)
H

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⋅
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅ = ⋅ = ⋅ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

 

 

And now, there’s a whole bunch of important things to notice.  First, we’ve found 

only two distinct right cosets that are given below. 

 

 

( )
( )

(1,2,3)
(1,3,2)

H H
⎧ ⎫
⎪ ⎪= ⋅ = ⎨ ⎬
⎪ ⎪
⎩ ⎭

 

 

( )
( )2,3

2,3 (1,3)
(1,2)

H
⎧ ⎫
⎪ ⎪⋅ = ⎨ ⎬
⎪ ⎪
⎩ ⎭

 

 

Of these right cosets, only H is a subgroup of G.  We know immediately that 

(2,3)H ⋅  is not a subgroup of G since the set does not contain the identity element.  

However, do notice that each right coset contains the same number of elements 

and that every element of G belongs in one or the other of these two right cosets.  

In particular, that means that the total number of elements in G is equal to the 

number of elements in H times the number of right cosets of H in G.  In this case, 

the equation comes out to 6 3 2= × .  Furthermore, this sort of thing is going to 

happen all the time, and in group theory this result is known as Lagrange’s 
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Theorem.  Thus, in general, this means that for any group G with subgroup H, we 

have that “the number of elements in G” equals “the number of elements in H” 

times “the number of right cosets of H in G”.  And a spectacular and very 

important consequence of this is that the number of elements in a subgroup of a 

group G must be a divisor of the number of elements of G.  Thus, in this example, 

the order or number of elements in G is six, the order or number of elements in H 

is three, and three divides evenly into six.  In modern notation, we usually write it 

this way where G  represents the number of elements in the a group G: 

 

6, 3, 2
G

G H
H

= = =  

 

Again, Lagrange’s Theorem is a very important result that says the order of a 

subgroup always divides the order of the group. However, the converse of 

Lagrange’s Theorem is not necessarily true.  That is, just because, for example, 

10 divides 20, that doesn’t mean that every group of order 20 has a subgroup of 

order 10.  It only means that whatever subgroups of a group of order 20 exist, the 

only possible orders for them are 1, 2, 4, 5, 10, an 20 since these are the only 

natural numbers that divide evenly into 20 with no remainder.  Nonetheless, there 

is another advanced theorem called the Sylow Theorem tells us that if a prime 

number raised to a power divides the order of a group, then our group does 

indeed contain a subgroup composed of that many elements.  Thus, for example, 

a group G of order 8 must contain subgroups of orders 02 1= , 12 2= , 22 4= , and 
32 8= . 

 

The second less spectacular but equally important thing to notice from our 

example is that if 1g  and 2g  belong to the same right coset of H in G, then 

1 2Hg Hg= .  This is something that’ll always happen, and in a later part of this 

series we will give a proof of this fact.  Additionally, this implies that distinct 

cosets never have any elements in common! 
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Now let’s look at a second subgroup ( ){ }1 (1,2) ,(1,2)H = =  and its right cosets in 

( ){ }, (2,3),(1,2),(1,2,3),(1,3,2),(1,3)G = .  When we do, we get the following distinct 

cosets: 

 

( )
1 (1,2)

H
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 

( ) ( )
1

(1,3)(1,3)
(1,3) (1,3)

(1,2,3)(1,2) (1,2) (1,3)
H

⎧ ⎫ ⎧ ⎫⋅ ⎧ ⎫
= ⋅ = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⋅ ⎩ ⎭⎩ ⎭ ⎩ ⎭
 

 

( ) ( )
1

(2,3)(2,3)
(2,3) (2,3)

(1,3,2)(1,2) (1,2) (2,3)
H

⎧ ⎫ ⎧ ⎫⋅ ⎧ ⎫
= ⋅ = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⋅ ⎩ ⎭⎩ ⎭ ⎩ ⎭
 

 

Notice that once again we have that the set G is equal to the union of all three 

right cosets, written as [ ] [ ]1 1 1(1,3) (2,3)G H H H= ⋅ ⋅∪ ∪ , and that the order or number 

of elements in G, written as G , is given by: 

 

16 2 3  (the number of right cosets of  in )G H H G= = ⋅ = ⋅ . 

 

Again, the order of our subgroup is a divisor of the order of G, and since 6G = , 

this means that it’s conceivable that G might have subgroups of orders, 1, 2, 3, 

and 6, but there is no way that it could have a subgroup of order 4 or 5.  The 

order of a subgroup must always be a divisor of the order ot the group! 

 

Now let’s do one more example to show how easy it is to construct all the right 

cosets if we are dealing with a group G that is not too terribly large.  Thus, this 

time let’s start with the following subgroup 2H  of our original group G with 6 

elements: 

 



 11

( )
2 (1,3)

H
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 

To construct a right coset of 2H , just pick an element of G that hasn’t been used 

yet such as (1,2).  This choice gives us the following result: 

 

( ) ( )
2

(1,2)(1,2)
(1,2) (1,2)

(1,3,2)(1,3) (1,3) (1,2)
H

⎧ ⎫ ⎧ ⎫⋅ ⎧ ⎫
= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⋅ ⎩ ⎭⎩ ⎭ ⎩ ⎭
 

 

Our original subgroup 2H  and the subsequent right coset account now for 4, but 

not all, of the elements of G.  Thus, we can continue.  Just pick an element of G 

that hasn’t been used yet, and construct yet another right coset.  In this case, I 

pick (2,3) and get the following: 

 

( ) ( )
2

(2,3)(2,3)
(2,3) (2,3)

(1,2,3)(1,3) (1,3) (2,3)
H

⎧ ⎫ ⎧ ⎫⋅ ⎧ ⎫
= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⋅ ⎩ ⎭⎩ ⎭ ⎩ ⎭
 

 

And now, each element of G belongs to one of the three cosets, 2H , 2 (1,2)H , 

or 2 (2,3)H , and we’re done! 
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left cosets 

 

Let’s begin with the same multiplication table that we examined previously for the 

group G that is generated by the cycles (1,2) and (1,3). 

 
gap> a:=(1,2); 
(1,2) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2), (1,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> ShowMultiplicationTable(g); 
*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
--------+------------------------------------------------ 
()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2) 
(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3) 
(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2) 
(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3) 
(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   () 
   

If H is a subgroup of the group G, then we previously defined a right coset of H 

as { }|Hg h g h H= ⋅ ∈ , where g G∈ .  Notice that we could just as easily have 

defined a left coset of H as { }|gH g h h H= ⋅ ∈ , where g G∈ .  Furthermore, most 

textbooks have a preference for talking in terms of left cosets over right cosets.  

However, this preference is just a personal bias on the part of other authors, and 

since the software program GAP favors right cosets over left cosets, so will we.  

Nonetheless, let’s compare some right versus left cosets for a couple of different 

subgroups of G.  First we have the following: 
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( )
(2,3)
(1,2)

(1,2,3)
(1,3,2)
(1,3)

G

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

     ( )
(1,2)

H
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

   

 

( ) (1,3)
(1,3) (1,3)

(1,2,3)(1,2)
H

⎧ ⎫ ⎧ ⎫
= ⋅ =⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
  ( ) (1,3)

(1,3) (1,3)
(1,3,2)(1,2)

H
⎧ ⎫ ⎧ ⎫

= ⋅ =⎨ ⎬ ⎨ ⎬
⎩ ⎭⎩ ⎭

 

 

The most important thing to observe in this result is that the above right and left 

cosets are not the same!  And this is, indeed, what often happens.  However, 

sometimes things work out otherwise.  For example, let’s take a different 

subgroup H of G and again examine the right and left cosets of H by element 

(1,3). 

 

( )
(1,2,3)
(1,3,2)

H
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 

 

( ) ( )1,3
(1,3) (1,2,3) (1,3) (1,2)

(1,3,2) (3,2)
H

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= ⋅ =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

  
( ) ( )1,3

(1,3) (1,3) (1,2,3) (2,3)
(1,3,2) (1,2)

H
⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= ⋅ =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

 

 

In this case, we do get back the same result for both cosets, after noticing both 

that (3,2) (2,3)=  and that the elements appear in different orders in the two cosets.  

Furthermore, if we look at any other right and left cosets of H in G, the same 

thing would happen.  The right and left cosets in this case are always the same, 

and when that happens with a subgroup like H, it is special and so we give H a 

special name.  We call H a normal subgroup of G, and we write H G .  We will 

point out that every group has at least two normal subgroups, itself and the 

identity.  But if these are a groups only normal subgroups, then we call it simple. 
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Quotient groups 

 

Recall that at the end of our chapter on left cosets we said that a subgroup H is 

called a normal subgroup of a group G if for every g G∈ , we have that the right 

coset Hg  is identical to the left coset gH .  In other words, if Hg gH=  for every 

g G∈ .  We’ll now reveal why normal subgroups are so important.  It’s because 

it’s only if a subgroup is normal that are we assured that the cosets (either the left 

or the right) will form a group where the multiplication (for right cosets) is defined 

by Ha Hb H ab⋅ = ⋅ .  Let’s illustrate this with the same multiplication table that we 

examined previously for the group G generated by the cycles (1,2) and (1,3). 

 
gap> a:=(1,2); 
(1,2) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2), (1,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> ShowMultiplicationTable(g); 
*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
--------+------------------------------------------------ 
()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2) 
(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3) 
(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2) 
(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3) 
(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   () 
   

First, though, let’s make just one quick definition that we’ll need.  In particular, if 

M and N are both subsets of a group G, then we’ll define the product MN as 

{ }|  and MN mn m M n N= ∈ ∈ .  In other words, MN consists of all products we can 

make where the first factor comes from M and the second factor comes from N.  

Now let’s do some calculations with the following subset H which is a normal 

subgroup of G. 
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( )
(1,2,3)
(1,3,2)

H
⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 

 

We’ll now compute both (1,3) (1,2)H H⋅  and (1,3)(1,2)H ⋅  in order to show that the 

results are equal. 

 

( ) ( ) ( ) ( )1,3 1,2
(1,3) (1,2) (1,2,3) (1,3) (1,2,3) (1,2) (1,2) (2,3)

(1,3,2) (1,3,2) (3,2) (1,3)
H H

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅ = ⋅ ⋅ ⋅ = ⋅⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

( )

( )
( )
( )

( )

(1,3)(1,2) (1,3,2)
(1,2)(1,2)
(3,2)(1,2) (3,1,2)
(1,3)(2,3) (1,3,2)

(1,2,3)(1,2)(2,3) 1,3,2
(3,2)(2,3)
(1,3)(1,3)
(1,2)(1,3) (1,2,3)
(3,2)(1,3) (1,3,2)

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

(1,3,2)

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

   

 

And similarly, 

 

( ) ( ) ( )
( )

( )(1,3,2) 1,3,2
(1,3)(1,2) (1,2,3) (1,3,2) (1,2,3)(1,3,2) (1,2,3) (1,3) (1,2)

(1,3,2) (1,3,2)(1,3,2) (1,2,3) (1,3,2)
H H H

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⋅ = ⋅ = = = = ⋅⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 

 

Thus, in at least this one example we have verified that Ha Hb H ab⋅ = ⋅  where H is 

a normal subgroup of G.  Now let’s see what happens in an example where H is 

not a normal subgroup.  In particular, we’ll let H be the following subgroup. 
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( )
(1,2)

H
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 

Let’s look at (1,3) (2,3)H H⋅  and (1,3)(2,3)H ⋅ .  On the one hand, 

 

( ) ( ) (1,3) (1,3)
(1,3) (2,3) (1,3) (2,3)

(1,2,3) (1,3,2(1,2) (1,2)
H H

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⋅ = ⋅ ⋅ ⋅ = ⋅⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭
 

( )

( )

( )
(1,3)(1,3)

(1,2)(1,2,3)(1,3)
(1,2)(1,3)(1,3,2) (1,2)

(1,2,3)(1,3,2)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪ ⎧ ⎫⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 

 

But on the other hand, 

 

( ) (1,2,3)
(1,3)(2,3) (1,2,3) (1,3) (2,3)

(1,3)(1,2)
H H H

⎧ ⎫ ⎧ ⎫
⋅ = ⋅ = ≠ ⋅⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
 

 

Thus, in this instance we see that Ha Hb H ab⋅ ≠ ⋅ , and so we can’t get a group by 

defining multiplication in this manner.  However, if H were a normal subgroup of 

G, then this method of multiplication would give us a group of cosets, and we’ll 

formally prove this in another part of this work.  In closing, though, I’d like to 

mention that when we do have a normal subgroup such as N G , then the 

resulting group of right (or left) cosets is called either a factor group or a quotient 

group.  In this new group of cosets, generally denoted by G N , the identity 

element is the normal subgroup N, and we like to say that in this quotient or 

factor group G N  that the  subgroup N has been factored out in the same way 

that the number 5 is factored out in the quotient 2 5 2
3 5 3
⋅

=
⋅

.  In particular, in our 

quotient group we have “factored out” the differences between the individual 

elements of N so that all we see is N itself, but no longer its constituent parts.  

We’ll talk more about this in the next chapter on Equivalence Relations. 
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Equivalence relations 

 

One of the most fundamental relationships between numbers or expressions in 

mathematics is that of equality such as when we write 2 2=  or 3 1 4+ = .  The 

equal sign, itself, was introduced in 1557 by the Welsh mathematician Robert 

Recorde who correctly noted that probably nothing could symbolize equality 

better than two identical parallel lines of equal length.  In time, though, 

mathematicians noted that equality is characterized by three fundamental 

properties that we call reflexive, symmetric, and transitive. 

 

a a=     (reflexive property) 

If , then a b b a= =   (symmetric property) 

If  and , then a b b c a c= = =  (transitive property) 

 

Abstracting from this (as mathematicians have a great tendency to do), it was 

decided that any sort of relationship between objects that bears these three 

properties would be similar to equality and should be called an equivalence 

relation.  For example, let’s let our objects be chairs, and let’s say that two chairs 

are related if they were made in the same factory.  Then this relationship is 

reflexive because it’s true to say that chair A was made in the same factory as 

chair A.  Likewise the relationship is symmetric because if chair A was made in 

the same factory as chair B, then it is obviously true that chair B was made in the 

same factory as chair A.  And finally, the relationship is transitive because if chair 

A was made in the same factory as chair B and if chair B was made in the same 

factory as chair C, then clearly chair A was made in the same factory as chair C.  

A common notation these days that is used to say that “a is equivalent to b” is to 

write a ~ b.  However, I prefer an older notation, a b≡ , and I’ll use this throughout.  

 

Another way to look at equivalence relations, aside from the above three 

mentioned properties, is that an equivalence relation is like taking a set of objects 
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and then separating the objects into this or that box, and two of the objects are 

considered equivalent if the wind up in the same box.  For example, let’s let our 

objects be the set of integers { }, 2, 1,0,1,2,= − −] … … , and let’s say that a b≡  if each 

integer results in the same remainder upon division by 2.  Essentially, this results 

in the integers being divided and thrown into two separate boxes, one that we’ll 

call the even integers and another that we’ll call the odd integers.  Furthermore, 

anytime you partition a set of objects by creating a set of boxes such that all the 

objects wind up in one of the boxes and no two boxes have any objects in 

common, that partition defines an equivalence relation and we call the contents 

of any particular box an equivalence class. 

 

In higher mathematics, the notion of an equivalence relation is of the utmost 

importance because it is a primary way in which we construct new objects from 

old.  For example, consider the line segment below. 

 

 

 

 

 

If we see the two endpoints of this line segment as being equivalent, rather than 

separate, to one another, then our line segment is transformed into a closed loop.  

The bottom line is that we can actually change our perception of reality by virtue 

of what things we consider equivalent and what things we consider different.  

Thus, for instance, one person’s notions of good and bad can create a perceived 

reality that is different from another person’s.  And in politics, these differences 

are what result in different political parties! 

 

 

 

 

 

A BA B
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In group theory, anytime we have a subgroup of a group (normal or not), then the 

right cosets of that subgroup create a partition of the group that defines an 

equivalence relation, and each individual coset is an equivalence class in that 

relationship.  We experienced this earlier with the following group G of six 

permutations and its subgroup H consisting of the two permutations ( )  and (1,2) .  

This setup partitioned G into three distinct right cosets, and the membership in a 

coset defines an equivalence relation within the group G. 

 

( )
(2,3)
(1,2)

(1,2,3)
(1,3,2)
(1,3)

G

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

( )
(1,2)

H
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 
(1,3)

(1,3)
(1,2,3)

H
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 
(2,3)

(2,3)
(1,3,2)

H
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 

 A B=A B=
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As a reminder, though, recall that if our subgroup is normal, then the right cosets 

also define their own group.  Additionally, you should realize that an equivalence 

relation is just another way of looking at a quotient structure.  That is, for 

everything that falls into the same box or equivalence class the differences 

between those objects have been divided out just like when we “divide out” or 

eliminate the differences between specific integers when we see them as only 

odd or even.  This is the essence of an equivalence relation, and this is also the 

essence of a quotient structure in higher mathematics.  
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Something from nothing creation 

 

As mentioned previously, equivalence relations and quotient structures are just 

two ways of looking at the same thing.  In each instance, things are being 

pigeonholed into their own boxes, and all those items that lie within the same box 

are considered the same as we no longer take notice of the individual differences.  

Again, this is what happens when we take the integers, { }, 2, 1,0,1,2,= − −] … … , and 

separate them into two groups, odd or even.  At the integer level we have an 

infinite number of objects, but in the resulting quotient structure there are only 

two, odd or even, and the odd integers are no longer distinguished from one 

another at this level just as the individual even integers are also no longer 

distinguished. 

 

This type of organization or quotient structure occurs every time we have an 

epiphany or “aha” moment.  At such moments, we often speak in terms of the 

pieces of the puzzle coming together or of our brains suddenly connecting the 

dots.  These are just metaphors, though, for the sudden realization that certain 

objects we’ve been perceiving belong together in some unique way, and by 

grouping them together we also create something new.  We create a quotient 

structure where various objects are no longer seen as separate from one another, 

but rather as component pieces of a unified whole.  And when we do this, a 

whole new world is created for us that contains a new perception or realization.  

And this is what I think is rightfully called something from nothing creation 

because our epiphanies generally seem to pop out of nothingness into our 

awareness.  For example, at some point as a toddler we probably perceived a 

chair only as a collection of seemingly unrelated shapes and colors, not unlike an 

unassembled purchase from IKEA!  But then, eventually, the differences between 

components were erased and we saw “chair” as a unified whole  In a similar 

manner, items must come together in unity for all of our realizations, and for any 
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artificial intelligence to convince me that it is sentient, it must also be able to 

construct quotient structures and have “aha” moments just as we do. 
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Special subgroups 
 

 

We know at this point that if a group G is abelian, then ab ba=  for all ,a b G∈ .  In 

other words, every element in G commutes with every other element in G.  This 

latter statement, however, raises the question, “What if only some of the 

elements of G commute with every other element of G?”  First of all, we know 

that every group has at least one element that commutes with every other 

element, namely the identity element.  And second, it turns out that for any group 

G the set of elements in G that commute with every other element of G form a 

subgroup of G called the center of G, and the standard notation for the center is 

( )Z G .  The letter Z in this case stands for zentrum, the German word for center. 

 

In the case of an abelian group, the center is automatically the entire group since 

every element commutes with every other element.  However, if the group is not 

abelian, then the center could be the identity element or something in between 

the identity and the entire group.  Below are a few examples created in GAP.  

Also, the center of G is additionally a normal subgroup of G. 

 
gap> a:=(1,2,3,4,5); 
(1,2,3,4,5) 
 
gap> g:=Group(a); 
Group([ (1,2,3,4,5) ]) 
 
gap> c:=Center(g); 
Group([ (1,2,3,4,5) ]) 
 
gap> Elements(c); 
[ (), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2) ] 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> c:=Center(g); 
Group(()) 
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gap> Elements(c); 
[ () ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> c:=Center(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 
 

Now let’s go back to the equation ab ba=  which is always true for elements of 

abelian groups.  By moving elements to one side via multiplication by inverses, 

we can rewrite this equation as either 1 1aba b e− − =  or as 1 1a b ab e− − = .  In abelian 

groups, the expressions 1 1aba b− −  and 1 1a b ab− −  always come out equal to the 

identity, but in nonabelian groups this will not always be the case.  Consequently, 

we call expressions like 1 1aba b− −  and 1 1a b ab− −  commutators, and if our group is 

nonabelian, then the set of commutators for that group will generate a subgroup 

called the commutator or derived subgroup.  Furthermore, the commutator or 

derived subgroup of G is a normal subgroup of G, and the corresponding 

quotient or factor group is always abelian.  Again, for an abelian group the 

commutator or derived subgroup will consist only of the identity, but for a 

nonabelian group it will be less trivial.  Here are a few derivations of the 

commutator subgroup created using GAP. 

 
gap> a:=(1,2,3,4,5); 
(1,2,3,4,5) 
 
gap> g:=Group(a); 
Group([ (1,2,3,4,5) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group(()) 
 
gap> Elements(d); 
[ () ] 
 
 
 
 
 
 



 25

gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3,2) ]) 
 
gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements (d); 
[ (), (1,3)(2,4) ] 
 
 
Now let’s suppose we have a group G with a subgroup H such that H is a normal 

subgroup  of G.  That means that for every a G∈  we have that the right coset by 

a is equal to the left coset by a, Ha aH= .  Another way to rewrite this is as either 
1a Ha H− =  or 1H aHa−= .  However, suppose that G has a subgroup H1 that is not 

a normal subgroup of G.  If that were the case, then there exists at least one 

a G∈  such that 1 1H a aH≠ , and it immediately follows that 1
1 1a H a H− ≠ .  However, 

what will be true is that there will be another subgroup H2  such that 1
1 2a H a H− = .  

When this happens we say that the subgroup H1 is a conjugate of the subgroup 

H2.  Also, if H1 is conjugate to H2, then H1 will also be isomorphic to H2 .  Recall 

that that means that these two subgroups will not only have the same number of 

elements, but also that these elements may be paired from one group to the 

other in such a way that multiplication in one group corresponds to multiplication 

in the other group.  In other words, their respective multiplication tables have the 

same structure.  Below we show you how to find conjugate subgroups using GAP. 
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gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> h:=Group(b); 
Group([ (2,3) ]) 
 
gap> IsNormal(g,h); 
false 
 
gap> cs:=ConjugateSubgroups(g,h); 
[ Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]) ] 
 
gap> Elements(cs[1]); 
[ (), (2,3) ] 
 
gap> Elements(cs[2]); 
[ (), (1,2) ] 
 
gap> Elements(cs[3]); 
[ (), (1,3) ] 

 
 
 

In our chapter on Right Cosets we mentioned the Sylow Theorem, discovered by 

Norwegian mathematician Lubwig Sylow (1832-1918), that guarantees us that if 
np  is the largest power of a prime p that divides the order of a group G, then G 

has a subgroup of order or size np .  A subgroup of this sort is called a Sylow p-

subgroup.  Furthermore, if our Sylow p-subgroup, for a given prime, is not a 

normal subgroup, then there will be several Sylow p-subgroups for that prime 

and they will all be conjugate to one another.  Additionally, given that np  is the 

highest power of our prime p that divides the order of G, we can, thus, write the 

order of G as nG p m= ⋅  and the number of conjugates of our Sylow p-subgroup 

will also be a divisor of m.  Now here are some examples showing how to use 

GAP to find Sylow p-subgroups. 

 
 
gap> s3:=SymmetricGroup(3); 
Sym( [ 1 .. 3 ] ) 
 
gap> Size(s3); 
6 
 
gap> FactorsInt(6); 
[ 2, 3 ] 
 
gap> sylow3:=SylowSubgroup(s3,3); 
Group([ (1,2,3) ]) 
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gap> IsNormal(s3,sylow3); 
true 
 
gap> sylow2:=SylowSubgroup(s3,2); 
Group([ (1,2) ]) 
 
gap> IsNormal(s3,sylow2); 
false 
 
gap> c:=ConjugateSubgroups(s3,sylow2); 
[ Group([ (1,2) ]), Group([ (2,3) ]), Group([ (1,3) ]) ] 
 
gap> Size(c); 
3 
 
gap> Elements(c[1]); 
[ (), (1,2) ] 
 
gap> Elements(c[2]); 
[ (), (2,3) ] 
 
gap> Elements(c[3]); 
[ (), (1,3) ] 
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Exploring Rubik’s cube with gap 

 

The software program known as GAP (Groups, Algorithms, and Programming) is 

a wonderful tool for exploring various aspects of Rubik’s cube!  Recall that the 

Rubik’s cube group of permutations can be generated by the quarter rotations in 

the clockwise direction of the faces that we have called right, left, up, down, front, 

and back (R,L,U,P,F,B).  In the GAP program, we will represent these moves by 

small, uncapitialized letters in order to make the typing easier.  Also, if we want to 

keep track of the result of each rotation, then we can label each facelet of the 

cube with a number and then see how the numbers are permuted by each move.  

However, notice that we don’t need to number the center facelets of each face 

because they always stay in the same position.  Also notice that if we give the 

right face a quarter turn in the clockwise direction, then this will not only move 

facelets that are on the red face of the cube below, it will also move the facelets 

on the right side of the front, back, up, and down faces. 
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To help us understand the permutations created by the rotations of the various 

faces, we will unfold the cube and present it in 2-dimensions as we’ve done 

below. 

UP

LEFT FRONT RIGHT BACK

DOWN

 
 

And now we can easily give each facelet a number. 

 
1 2 3
4 UP 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 LEFT 13 20 FRONT 21 28 RIGHT 29 36 BACK 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 DOWN 45
46 47 48  

 

With this numbering, we can represent each possible clockwise quarter turn of a 

face of the cube by a unique permutation written in cycle notation, and to make it 

easy for you, here is the result below written just as you might enter it into GAP. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 
 

At this point, you might realize that if you want to use GAP to explore the 

consequences of these permutations, it would be a real pain to have to type and 

retype all of the above each time you want to use the program to explore Rubik’s 

cube.  And to complicate matters, since GAP is not really a Windows program, 
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the usual “save” and “paste” commands don’t work.  Thus, this is what you can 

do to make things easy.   

 

• First, copy the six lines of text above for r, l, u, d, f, and b exactly as given.   

• Second, open up Notepad, and paste what you copied into Notepad. 

• Third, save this file to your C-drive as rubik.txt. 

• Fourth, open GAP. 

• And lastly, enter the following code: 
 
gap> Read("C:/rubik.txt"); 
gap> 
 

 
You won’t see anything spectacular on your screen after executing this last 

command, but, nonetheless, the definitions you’ve made for r, l, u, d, f, and b are 

now available for you to use.  For example, here are a few calculations you can 

now do in GAP.  The first computation displays the permutation r causes by 

rotating the right-hand face clockwise a quarter turn, and the subsequent lines 

show that r generates a cyclic group of order 4 that is abelian. 

 
gap> r; 
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28) 
 
gap> g1:=Group(r); 
Group([ (3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32,30)(26,29,31,28) ]) 
 
gap> Size(g1); 
4 
 
gap> Elements(g1); 
[ (), (3,19,43,38)(5,21,45,36)(8,24,48,33)(25,30,32,27)(26,28,31,29), 
(3,38,43,19)(5,36,45,21)(8,33,48,24)(25,27,32, 
    30)(26,29,31,28), 
(3,43)(5,45)(8,48)(19,38)(21,36)(24,33)(25,32)(26,31)(27,30)(28,29) ] 
 
gap> IsAbelian(g1); 
true 

 

Next, we use GAP to examine the group generated by the product r times u.  The 

result is a cyclic group containing 105 elements. 
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gap> g2:=Group(r*u); 
Group([ (1,3,38,43,11,35,27,32,30,17,9,33,48,24,6)(2,5,36,45,21,7,4)(8,25,19)(1
0,34,26,29,31,28,18) ]) 
 
gap> Size(g2); 
105 
 
gap> IsAbelian(g2); 
true 

 

 

In contrast to this ableian group, the group generated by forming finite products 

of the elements r and u is nonabelian and contains 73,483,200 elements. 

 
gap> g3:=Group(r,u); 
<permutation group with 2 generators> 
 
gap> Size(g3); 
73483200 
 
gap> IsAbelian(g3); 
false 

 

 

If we look instead at the group generated by r and l, turns of the right face and 

the left face of the cube, then the result this time is an abelian group of order 16. 

 
gap> g4:=Group(r,l); 
<permutation group with 2 generators> 
 
gap> Size(g4); 
16 
 
gap> IsAbelian(g4); 
true 

 
 

Another abelian group can be generated by the elements 2 2r l , 2 2u d , and 2 2f b , 

and this one has only 8 elements! 

 
gap> g5:=Group(r^2*l^2,u^2*d^2,f^2*b^2); 
<permutation group with 3 generators> 
 
gap> Size(g5); 
8 
 
gap> IsAbelian(g5); 
true 
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The entire Rubik’s cube group is generated by r, l, u, d, f, and b, and it contains 

43,252,003,274,489,856,000 elements.  This number factors into 27 14 3 22 3 5 7 11⋅ ⋅ ⋅ ⋅ .  

Notice that 13 doesn’t divide evenly into this number, and since the order 

(number of elements) of a subgroup must divide the order of a group, this tells us 

that the Rubik’s cube group has no subgroup of order 13.  Nonetheless, by the 

Sylow Theorem that we mentioned previously, the Rubik’s cube group will have  

subgroups for every power of 2 that divides 43,252,003,274,489,856,000, 

everything from 2 to 272 . 

 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
gap> IsAbelian(rubik); 
false 
 
gap> FactorsInt(43252003274489856000); 
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11 ] 
 

 

This last command above in GAP shows you how to find the factorization for an 

integer, and from it we can verify that the number of permutations possible of 

Rubik’s cube is a number that factors into 27 14 3 22 3 5 7 11⋅ ⋅ ⋅ ⋅ . 

 

And finally, we can easily check with GAP to see if any of the subgroups we’ve 

found above are normal subgroups of the Rubik’s cube group. 

 
gap> IsNormal(rubik,g1); 
false 
 
gap> IsNormal(rubik,g2); 
false 
 
gap> IsNormal(rubik,g3); 
false 
 
gap> IsNormal(rubik,g4); 
false 
 
gap> IsNormal(rubik,g5); 
false 
 
gap> IsNormal(rubik,rubik); 
true 
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How to use gap (part 2) 

 

For both convenience and continuity, we will always include the GAP commands 

presented in earlier parts of this book in black followed by the new commands 

which are printed in red. 

 

 

1. How can I redisplay the previous command in order to edit it? 

 

Press down on the control key and then also press p.  In other words, “Ctrl p”. 

 

 

2. If the program gets in a loop and shows you the prompt “brk>” instead of 

“gap>”, how can I exit the loop? 

 

Press down on the control key and then also press d.  In other words, “Ctrl d”. 

 

 

3. How can I exit the program? 

 

Either click on the “close” box for the window, or type “quit;” and press 

“Enter.” 

 

 

4. How do I find the inverse of a permutation? 

 

gap> a:=(1,2,3,4); 

(1,2,3,4) 

gap> a^-1; 

(1,4,3,2) 
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5. How can I multiply permutations and raise permutations to powers? 

 

gap> (1,2)*(1,2,3); 

(1,3) 

 

gap> (1,2,3)^2; 

(1,3,2) 

 

gap> (1,2,3)^-1; 

(1,3,2) 

 

gap> (1,2,3)^-2; 

(1,2,3) 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> b:=(1,2); 

(1,2) 

 

gap> a*b; 

(2,3) 

 

gap> a^2; 

(1,3,2) 

 

gap> a^-2; 

(1,2,3) 

 

gap> a^3; 

() 
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gap> a^-3; 

() 

 

gap> (a*b)^2; 

() 

 

gap> (a*b)^3; 

(2,3) 

 

 

6. How can I create a group from permutations, find the size of the group, and 

find the elements in the group? 

 

gap> a:=(1,2); 

(1,2) 

 

gap> b:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a,b); 

Group([ (1,2), (1,2,3) ]) 

 

gap> Size(g1); 

6 

 

gap> Elements(g1); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> g2:=Group([(1,2),(1,2,3)]); 

Group([ (1,2), (1,2,3) ]) 
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gap> g3:=Group((1,2),(2,3,4)); 

Group([ (1,2), (2,3,4) ]) 

 

 

7. How can I create a cyclic group of order 3? 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a); 

Group([ (1,2,3) ]) 

 

gap> Size(g1); 

3 

 

gap> Elements(g1); 

[ (), (1,2,3), (1,3,2) ] 

 

gap> g2:=Group((1,2,3)); 

Group([ (1,2,3) ]) 
 
gap> g3:=CyclicGroup(IsPermGroup,3); 
Group([ (1,2,3) ]) 
 
 
 

8. How can I create a multiplication table for the cyclic group of order 3 that I just 

created? 
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gap> ShowMultiplicationTable(g1); 

 

*          | ()          (1,2,3)     (1,3,2) 

--------+--------------------------------- 

()         | ()          (1,2,3)     (1,3,2) 

(1,2,3) | (1,2,3)  (1,3,2)     () 

(1,3,2) | (1,3,2)  ()             1,2,3) 

 

 

9. How do I determine if a group is abelian? 

 

gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> IsAbelian(g1); 
true 
 
gap> g2:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 
gap> IsAbelian(g2); 
false 

 

 

10. What do I type in order to get help for a command like “Elements?” 

 

gap> ?Elements 

 

 

11. How do I find all subgroups of a group? 

 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
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gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=AllSubgroups(g); 
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]), 
Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ] 
 
gap> List(h,i->Elements(i)); 
[ [ () ], [ (), (2,3) ], [ (), (1,2) ], [ (), (1,3) ], [ (), (1,2,3), 
(1,3,2) ], [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] ] 
 
gap> Elements(h[1]); 
[ () ] 
 
gap> Elements(h[2]); 
[ (), (2,3) ] 
 
gap> Elements(h[3]); 
[ (), (1,2) ] 
 
gap> Elements(h[4]); 
[ (), (1,3) ] 
 
 
gap> Elements(h[5]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(h[6]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

 

12. How do I find the subgroup generated by particular permutations? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 

 

 

13. How do I determine if a subgroup is normal? 
 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 
gap> h1:=Group((1,2)); 
Group([ (1,2) ]) 
gap> IsNormal(g,h1); 
 
gap> h2:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
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gap> IsNormal(g,h2); 
true 

 

 
 
 
14. How do I find all normal subgroups of a group? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 

gap> n:=NormalSubgroups(g); 
[ Group([ (1,2), (1,2,3) ]), Group([ (1,3,2) ]), Group(()) ] 
 

gap> Elements(n[1]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> Elements(n[2]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(n[3]); 
[ () ] 

 

 

15. How do I determine if a group is simple? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> IsSimple(g); 
false 

 
gap> h:=Group((1,2)); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> IsSimple(h); 
true 

 

 

16. How do I find the right cosets of a subset H of G? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
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gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> c:=RightCosets(g,h); 
[ RightCoset(Group( [ (1,2) ] ),()), RightCoset(Group( [ (1,2) ] ),(1,3,2)), 
RightCoset(Group( [ (1,2) ] ),(1,2,3)) ] 
 
gap> List(c,i->Elements(i)); 
[ [ (), (1,2) ], [ (2,3), (1,3,2) ], [ (1,2,3), (1,3) ] ] 
gap> Elements(c[1]); 
[ (), (1,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,3,2) ] 
 
 
gap> Elements(c[3]); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=RightCoset(h,(1,2,3)); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=h*(1,2,3); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 

 
 

17. How can I create a quotient (factor) group? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> n:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> Elements(n); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> IsNormal(g,n); 
true 
 
gap> c:=RightCosets(g,n); 
[ RightCoset(Group([ (1,2,3) ]),()), RightCoset(Group([ (1,2,3) ]),(2,3)) ] 
 
gap> Elements(c[1]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,2), (1,3) ] 
 
gap> f:=FactorGroup(g,n); 
Group([ f1 ]) 
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gap> Elements(f); 
[ <identity> of ..., f1 ] 
 
gap> ShowMultiplicationTable(f); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
 
 
 

 

18. How do I find the center of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Center(g); 
Group(()) 
 
gap> c:=Center(g); 
Group(()) 
 
gap> Elements(c); 
[ () ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> c:=Center(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 

 
 
19. How do I find the commutator (derived) subgroup of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3,2) ]) 
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gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(d); 
[ (), (1,3)(2,4) ] 
 

 
20. How do I find all Sylow p-subgroups for a given group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> FactorsInt(6); 
[ 2, 3 ] 
 
gap> sylow2:=SylowSubgroup(g,2); 
Group([ (2,3) ]) 
 
gap> IsNormal(g,sylow2); 
false 
 
gap> c:=ConjugateSubgroups(g,sylow2); 
[ Group([ (2,3) ]), Group([ (1,3) ]), Group([ (1,2) ]) ] 
 
gap> Elements(c[1]); 
[ (), (2,3) ] 
 
gap> Elements(c[2]); 
[ (), (1,3) ] 
 
gap> Elements(c[3]); 
[ (), (1,2) ] 
 
gap> sylow3:=SylowSubgroup(g,3); 
Group([ (1,2,3) ]) 
 
gap> IsNormal(g,sylow3); 
true 
 
gap> Elements(sylow3); 
[ (), (1,2,3), (1,3,2) ] 
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21. How can I create the Rubik’s cube group using GAP? 

 

First you need to save the following permutations as a pure text file with the 

name rubik.txt to your C-drive before you can import it into GAP. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 

 

And now you can read the file into GAP and begin exploring. 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
 
 
22. How can I find the center of the Rubik’s cube group? 
 
 
gap> c:=Center(rubik); 
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45) 
(39,47) ] 

 
 

23. How can I find the commutator (derived) subgroup of the Rubik’s cube group? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group with 5 generators> 
 
gap> Size(d); 
21626001637244928000 
 
gap> IsNormal(rubik,d); 
true 
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24. How can I find the quotient (factor) group of the Rubik’s cube group by its 

commutator (derived) subgroup? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group of size 21626001637244928000 with 5 generators> 
gap> f:=FactorGroup(rubik,d); 
Group([ f1 ]) 
 
gap> Size(f); 
2 
 

 

25. How can I find some Sylow p-subgroups of the Rubik’s cube group? 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
gap> FactorsInt(43252003274489856000); 
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11 ] 
 
gap> sylow2:=SylowSubgroup(rubik,2); 
<permutation group of size 134217728 with 27 generators> 
 
gap> sylow3:=SylowSubgroup(rubik,3); 
<permutation group of size 4782969 with 14 generators> 
 
gap> sylow5:=SylowSubgroup(rubik,5); 
<permutation group of size 125 with 3 generators> 
 
gap> sylow7:=SylowSubgroup(rubik,7); 
<permutation group of size 49 with 2 generators> 
 
gap> sylow11:=SylowSubgroup(rubik,11); 
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ]) 
 
gap> Elements(sylow11); 
[ (), (4,5,36,21,31,15,39,13,42,7,12)(10,26,29,28,45,44,47,20,23,18,37), 
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29), 
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26), 
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45), 
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47), 
(4,21,39,7,5,31,13,12,36,15,42)(10,28,47,18,26,45,20,37,29,44,23), 
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20), 
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18), 
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44), 
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ] 
 
gap> IsNormal(rubik,sylow2); 
false 
 
gap> IsNormal(rubik,sylow3); 
false 
 
 
gap> IsNormal(rubik,sylow5); 
false 
 
gap> IsNormal(rubik,sylow7); 
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false 
 
gap> IsNormal(rubik,sylow11); 
false 
 
NOTE:  All of the Sylow p-subgroups found above have conjugates, but the 
sheer size of the Rubik’s cube group makes it too difficult to pursue them on a 
typical desktop computer. 
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summary (part 2) 

 
In this second part we have already covered an amazing amount of information.  

In particular, you should now be able to explain the following concepts and 

notations. 

• Subgroup 

• Right coset 

• Left coset 

• Lagrange’s Theorem 

• Normal subgroup 

• Simple subgroup 

• H G≤  

• H G<  

• H G  

• a G∈  

• Ha  

• aH  

• Quotient (Factor) groups 

• Equivalence relation 

o Reflexive, symmetric, transitive 

• Something from nothing creation 

•  

• Center of a group, ( )Z G  

• Commutators 

• Commutator or Derived subgroup 

• Sylow p-subgroup 

• Conjugate subgroups 

• Creating and reading into GAP the rubik.txt file 

• Using GAP to explore concepts introduced in part 2 
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practice (part 2) 
 

In many instances, do the problems below first by hand, and then check using 

GAP. 

 

1. The permutations (1,3) and (1,2,3,4) generate a group G of eight elements.  

Use GAP to find the multiplication table for this group. 

 

2. Using the multiplication table in problem 1, find all ten subgroups of G.  (HINT: 

Begin with the cyclic subgroups.) 

 

3. Classify each subgroup found in problem 2 as either cyclic or noncyclic. 

 

4. Classify each subgroup found in problem 2 as either abelian or nonabelian. 

 

5. Classify each subgroup found in problem 2 as either a normal or a not normal 

subgroup of G. 

 

6. Find all simple subgroups of G. 

 

7. The subgroup N = { (), (1,3)(2,4), (1,2)(3,4), (1,4)(2,3) } is normal in G.  Find 

the right cosets of N in G, and construct a multiplication table for the quotient 

group (factor group) G N . 

 

8. For this problem, use GAP software and execute the command 

Read(“C:/rubik.txt”); before continuing.  Next, find the size of the subgroup of 

the Rubik’s cube group that is generated by 2 2 3( )r u .  Also, do this operation 

on your Rubik’s cube, and observe the pattern created. 
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9. For this problem, use GAP software and execute the command 

Read(“C:/rubik.txt”); before continuing.  Next, find the size of the subgroup of 

the Rubik’s cube group that is generated by 1 1 1 1ud rl fb ud− − − − .  Also, do this 

operation on your Rubik’s cube, and observe the pattern created. 

 

10. For this problem, use GAP software and execute the command 

Read(“C:/rubik.txt”); before continuing.  Next, find the size of the subgroup of 

the Rubik’s cube group that is generated by 2 2r l , 2 2u d , and 2 2f b .  In other 

words, find the size of 2 2 2 2 2 2, ,H r l u d f b= .  Also, determine if H is abelian, 

and determine if H is a normal subgroup of the Rubik cube’s group. 

 

11. On paper, create two boxes – one for Oppose or Strongly Oppose and the 

other for Favor or Strongly Favor.  Next, create an equivalence relation by 

placing each of the following phrases into only one of the boxes.  When done, 

compare your answers with those of others or with mine and see how what 

you favor and what you oppose helps create your own personal reality? 

 

Abortion is a woman’s unrestricted right 

Comfortable with same-sex marriage 

Keep God in the public sphere 

Privatize Social Security 

Stricter punishment reduces crime 

Absolute right to gun ownership 

Higher taxes on the wealthy 

Support American Exceptionalism 

Expand the military 

Prioritize green energy 

Marijuana is a gateway drug 
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12. For this problem, use GAP software and execute the command 

Read(“C:/rubik.txt”); before continuing.  Next, let ,H r u= , the subgroup of 

the Rubik’s cube group generated by the permutations r and u.  And now, find 

the size of H, the center of H, the size of the center of H, the elements in the 

center of H, and lastly find the commutator (derived) subgroup of H and the 

size of this commutator. 
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practice (part 2) - answers 
 

In many instances, do the problems below first by hand, and then check using 

GAP. 

 

1. The permutations (1,3) and (1,2,3,4) generate a group G of eight elements.  

Use GAP to find the multiplication table for this group. 

 
gap> g:=Group((1,3),(1,2,3,4)); 
Group([ (1,3), (1,2,3,4) ]) 
 
gap> Size(g); 
8 
 
gap> ShowMultiplicationTable(g); 
*          | ()         (2,4)      (1,2)(3,4) (1,2,3,4)  (1,3)      (1,3)(2,4) (1,4,3,2)  (1,4)(2,3) 
-----------+---------------------------------------------------------------------------------------- 
()         | ()         (2,4)      (1,2)(3,4) (1,2,3,4)  (1,3)      (1,3)(2,4) (1,4,3,2)  (1,4)(2,3) 
(2,4)      | (2,4)      ()         (1,2,3,4)  (1,2)(3,4) (1,3)(2,4) (1,3)      (1,4)(2,3) (1,4,3,2) 
(1,2)(3,4) | (1,2)(3,4) (1,4,3,2)  ()         (1,3)      (1,2,3,4)  (1,4)(2,3) (2,4)      (1,3)(2,4) 
(1,2,3,4)  | (1,2,3,4)  (1,4)(2,3) (2,4)      (1,3)(2,4) (1,2)(3,4) (1,4,3,2)  ()         (1,3) 
(1,3)      | (1,3)      (1,3)(2,4) (1,4,3,2)  (1,4)(2,3) ()         (2,4)      (1,2)(3,4) (1,2,3,4) 
(1,3)(2,4) | (1,3)(2,4) (1,3)      (1,4)(2,3) (1,4,3,2)  (2,4)      ()         (1,2,3,4)  (1,2)(3,4) 
(1,4,3,2)  | (1,4,3,2)  (1,2)(3,4) (1,3)      ()         (1,4)(2,3) (1,2,3,4)  (1,3)(2,4) (2,4) 
(1,4)(2,3) | (1,4)(2,3) (1,2,3,4)  (1,3)(2,4) (2,4)      (1,4,3,2)  (1,2)(3,4) (1,3)      () 

 

 

2. Using the multiplication table in problem 1, find all ten subgroups of G, and 

give the order of each subgroup.  (HINT: Begin with the cyclic subgroups.) 

 

( ) ( ){ }= ,    1 

( ) ( ){ }2,4 ,(2,4)= ,    2 

( ) ( ){ }1,2 (3,4) ,(1,2)(3,4)= ,    2 

( ) ( ){ }1,2,3,4 ,(1,2,3,4),(1,3)(2,4),(4,3,2,1)= ,    4 

( ) ( ){ }1,3 ,(1,3)= ,    2 

( ) ( ){ }1,3 (2,4) ,(1,3)(2,4)= ,    2 

( ) ( ){ }4,3,2,1 ,(4,3,2,1),(1,3)(2,4),(1,2,3,4)= ,   Disregard, same group as ( )1,2,3,4  

( ) ( ){ }1,4 (2,3) ,(1,4)(2,3)= ,    2 
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( ) ( ){ }1,3 ,(1,2,3,4) ,(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(2,4),(4,3,2,1),(1,4)(2,3)= ,    8 

( ) ( ){ }1,3 ,(2,4) ,(1,3),(2,4),(1,3)(2,4)= ,    4 

( ) ( ){ }1,2 (3,4),(1,4)(2,3) ,(1,2)(3,4),(1,4)(2,3),(1,3)(2,4)= ,    4 

 

 

3. Classify each subgroup found in problem 2 as either cyclic or noncyclic. 

 

( ) ( ){ }=    cyclic 

( ) ( ){ }2,4 ,(2,4)=    cyclic 

( ) ( ){ }1,2 (3,4) ,(1,2)(3,4)=    cyclic 

( ) ( ){ }1,2,3,4 ,(1,2,3,4),(1,3)(2,4),(4,3,2,1)=    cyclic 

( ) ( ){ }1,3 ,(1,3)=    cyclic 

( ) ( ){ }1,3 (2,4) ,(1,3)(2,4)=    cyclic 

( ) ( ){ }1,4 (2,3) ,(1,4)(2,3)=    cyclic 

( ) ( ){ }1,3 ,(1,2,3,4) ,(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(2,4),(4,3,2,1),(1,4)(2,3)=    noncyclic 

( ) ( ){ }1,3 ,(2,4) ,(1,3),(2,4),(1,3)(2,4)=    noncyclic 

( ) ( ){ }1,2 (3,4),(1,4)(2,3) ,(1,2)(3,4),(1,4)(2,3),(1,3)(2,4)=    noncyclic 

 

 

4. Classify each subgroup found in problem 2 as either abelian or nonabelian. 

 

( ) ( ){ }=    abelian 

( ) ( ){ }2,4 ,(2,4)=    abelian 

( ) ( ){ }1,2 (3,4) ,(1,2)(3,4)=    abelian 

( ) ( ){ }1,2,3,4 ,(1,2,3,4),(1,3)(2,4),(4,3,2,1)=    abelian 

( ) ( ){ }1,3 ,(1,3)=    abelian 
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( ) ( ){ }1,3 (2,4) ,(1,3)(2,4)=    abelian 

( ) ( ){ }1,4 (2,3) ,(1,4)(2,3)=    abelian 

( ) ( ){ }1,3 ,(1,2,3,4) ,(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(2,4),(4,3,2,1),(1,4)(2,3)=    nonabelian 

( ) ( ){ }1,3 ,(2,4) ,(1,3),(2,4),(1,3)(2,4)=    abelian 

( ) ( ){ }1,2 (3,4),(1,4)(2,3) ,(1,2)(3,4),(1,4)(2,3),(1,3)(2,4)=    abelian 

 

 

5. Classify each subgroup found in problem 2 as either a normal or a not normal 

subgroup of G. 

 

( ) ( ){ }=    normal 

( ) ( ){ }2,4 ,(2,4)=    not normal 

( ) ( ){ }1,2 (3,4) ,(1,2)(3,4)=    not normal 

( ) ( ){ }1,2,3,4 ,(1,2,3,4),(1,3)(2,4),(4,3,2,1)=    normal 

( ) ( ){ }1,3 ,(1,3)=    not normal 

( ) ( ){ }1,3 (2,4) ,(1,3)(2,4)=    normal 

( ) ( ){ }1,4 (2,3) ,(1,4)(2,3)=    not normal 

( ) ( ){ }1,3 ,(1,2,3,4) ,(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(2,4),(4,3,2,1),(1,4)(2,3)=    normal 

( ) ( ){ }1,3 ,(2,4) ,(1,3),(2,4),(1,3)(2,4)=    normal 

( ) ( ){ }1,2 (3,4),(1,4)(2,3) ,(1,2)(3,4),(1,4)(2,3),(1,3)(2,4)=    normal 

 

 

6. Find all simple subgroups of G. 

 

( ) ( ){ }=    simple 

( ) ( ){ }2,4 ,(2,4)=    simple 
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( ) ( ){ }1,2 (3,4) ,(1,2)(3,4)=    simple 

( ) ( ){ }1,2,3,4 ,(1,2,3,4),(1,3)(2,4),(4,3,2,1)=    not simple 

( ) ( ){ }1,3 ,(1,3)=    simple 

( ) ( ){ }1,3 (2,4) ,(1,3)(2,4)=    simple 

( ) ( ){ }1,4 (2,3) ,(1,4)(2,3)=    simple 

( ) ( ){ }1,3 ,(1,2,3,4) ,(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(2,4),(4,3,2,1),(1,4)(2,3)=    not simple 

( ) ( ){ }1,3 ,(2,4) ,(1,3),(2,4),(1,3)(2,4)=    not simple 

( ) ( ){ }1,2 (3,4),(1,4)(2,3) ,(1,2)(3,4),(1,4)(2,3),(1,3)(2,4)=    not simple 

 

 

7. The subgroup N = { (), (1,3)(2,4), (1,2)(3,4), (1,4)(2,3) } is normal in G.  Find 

the right cosets of N in G, and construct a multiplication table for the quotient 

group (factor group) G N . 

 

( )
(1,3)(2,4)
(1,2)(3,4)
(1,4)(2,3)

N

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

( ) ( )1,3
(1,3)(2,4) (2,4)

(1,3) (1,3)
(1,2)(3,4) (1,2,3,4)
(1,4)(2,3) (4,3,2,1)

N

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⋅ = =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 

 
* N N(1,3)
N N N(1,3)

N(1,3) N(1,3) N  
 

 

8. For this problem, use GAP software and execute the command 

Read(“C:/rubik.txt”); before continuing.  Next, find the size of the subgroup of 

the Rubik’s cube group that is generated by 2 2 3( )r u .  Also, do this operation 

on your Rubik’s cube, and observe the pattern created. 
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gap> h1:=Group((r^2*u^2)^3); 
Group([ (2,7)(18,34)(21,36)(28,29) ]) 
 
gap> Size(h1); 
2 

 

 
 

 

9. For this problem, use GAP software and execute the command 

Read(“C:/rubik.txt”); before continuing.  Next, find the size of the subgroup of 

the Rubik’s cube group that is generated by 1 1 1 1ud rl fb ud− − − − .  Also, do this 

operation on your Rubik’s cube, and observe the pattern created. 

 
gap> h2:=Group(u*d^-1*r*l^-1*f*b^-1*u*d^-1); 
Group([ (1,32,22)(2,31,20)(3,30,17)(4,29,23)(5,28,18)(6,27,24)(7,26,21)(8,25,19
)(9,38,41)(10,36,42)(11,33,43) 
(12,39,44)(13,34,45)(14,40,46)(15,37,47)(16,35,48) ]) 
 
gap> Size(h2); 
3 
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10. For this problem, use GAP software and execute the command 

Read(“C:/rubik.txt”); before continuing.  Next, find the size of the subgroup of 

the Rubik’s cube group that is generated by 2 2r l , 2 2u d , and 2 2f b .  In other 

words, find the size of 2 2 2 2 2 2, ,H r l u d f b= .  Also, determine if H is abelian, 

and determine if H is a normal subgroup of the Rubik cube’s group. 

 
gap> H:=Group(r^2*l^2,u^2*d^2,f^2*b^2); 
<permutation group with 3 generators> 
 
gap> Size(H); 
8 
 
gap> IsAbelian(H); 
true 
 
gap> IsNormal(rubik,H); 
false 
 
 
 
11. On paper, create two boxes – one for Oppose or Strongly Oppose and the 

other for Favor or Strongly Favor.  Next, create an equivalence relation by 

placing each of the following phrases into only one of the boxes.  When done, 

compare your answers with those of others or with mine and see how what 
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you favor and what you oppose helps create your own personal reality? 

 

Abortion is a woman’s unrestricted right 

Comfortable with same-sex marriage 

Keep God in the public sphere 

Privatize Social Security 

Stricter punishment reduces crime 

Absolute right to gun ownership 

Higher taxes on the wealthy 

Support American Exceptionalism 

Expand the military 

Prioritize green energy 

Marijuana is a gateway drug 

 

OPPOSE OR STRONGLY OPPOSE FAVOR OR STRONGLY FAVOR 

Keep God in the public sphere 

Privatize Social Security 

Stricter punishment reduces crime 

Absolute right to gun ownership 

Support American Exceptionalism 

Expand the military 

Marijuana is a gateway drug 

Abortion is a woman’s unrestricted right

Comfortable with same-sex marriage 

Higher taxes on the wealthy 

Prioritize green energy 
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12.  For this problem, use GAP software and execute the command 

Read(“C:/rubik.txt”); before continuing.  Next, let ,H r u= , the subgroup of 

the Rubik’s cube group generated by the permutations r and u.  And now, find 

the size of H, the center of H, the size of the center of H, the elements in the 

center of H, and lastly find the commutator (derived) subgroup of H and the 

size of this commutator. 

 
gap> Read("C:/rubik.txt"); 
 
gap> h:=Group(r,u); 
<permutation group with 2 generators> 
 
gap> Size(h); 
73483200 
 
gap> c:=Center(h); 
Group([ (1,9,35)(3,33,27)(6,17,11)(8,25,19)(24,30,43)(32,38,48) ]) 
 
gap> Size(c); 
3 
 
gap> Elements(c); 
[ (), (1,9,35)(3,33,27)(6,17,11)(8,25,19)(24,30,43)(32,38,48), 
(1,35,9)(3,27,33)(6,11,17)(8,19,25)(24,43,30)(32,48, 38) ] 
 
gap> d:=DerivedSubgroup(h); 
<permutation group with 5 generators> 
 
gap> Size(d); 
36741600 
 
 
 

 



 
 

Real Women Know Group Theory! 




