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INTRODUCTION (part 10) 
 
 

 
In this final part to our book, we prove some very important and often very 

difficult theorems, and we introduce the concept of a homomorphism and we 

indicate why it is so fundamental to the study of groups.  In particular, we prove 

all three isomorphism theorems, the Correspondence Theorem, Burnside’s 

Counting Theorem, the Sylow Theorems, the Fundamental Theorem of Abelian 

Groups, and more.  If you’ve made it this far, then you’re almost finished! 
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Functions, ISOMORPHISMS, AND 

HOMOMORPHISMS 
 

 

A function is essentially a rule for pairing elements from one set with elements in 

another set.  However, there is one special condition that this rule must follow.  

Namely, each element in the first set can be paired with only one element in the 

second set.  It’s okay, however, if two different elements in the first set get paired 

with the same element in the second set.  We just can’t start with a single 

element, apply our function, and then suddenly wind up with more than one 

element.  Rules that are functions appear everywhere in our society.  For 

example, if you have a paying job, then there is a rule or function which 

determines how much you should receive on payday, and you certainly don’t 

want a rule that results in two or more amounts! 

 

In mathematics, we usually denote functions by letters such as f or g, and here 

are a couple of examples of functions as rules being evaluated at specific points: 

 
2

2

2

( )

(2) 2 4

( 2) ( 2) 4

f x x

f

f

=

= =

− = − =

 

 

( ) 1
(2) 2 1 3
( 2) 2 1 1

g x x
g
g

= +
= + =

− = − + = −
 

 

For each of these functions, we could designate that our starting set is the real 

numbers, the numbers on the number line that are denoted by , and we could 

also designate our receiving set as the real numbers, .  When we do this, we 

often use the following notation: 
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:

:

f

g

⎯⎯→

⎯⎯→
 

 

or 

 
f

g

⎯⎯→

⎯⎯→
 

 

Notice, too, that the function 2( )f x x=  doesn’t give us back the entire set of real 

numbers, but the function ( ) 1g x x= +  does.  In the latter case, we say that the 

function g is onto, and in the former we say that our function is into.  Also, notice 

that different input values for g will always result in different output values.  When 

this happens, we say that our function is one-to-one.  Notice that f is not one-to-

one since the inputs of 2 and -2 both result in an output of 4.  Additionally, notice 

that a rule such as ( )f x x= ±  is not a function since an input such as 4 results in 

two outputs, -2 and 2. 

 

We can often follow one function with another function, such as when we have 

one rule for determining gross pay followed by another rule for finding net pay by 

deducting money for taxes and insurance, and when we follow one function by 

another, we call it a composition of functions.  In mathematics today if we want to 

follow our function g by the function f, then we usually write it as 

( )( ) ( ( ))f g x f g x= . For example, ( )(2) ( (2)) (3) 9f g f g f= = =  and 

( )(2) ( (2)) (4) 5g f g f g= = = .    There was also a time when some mathematicians 

would write functions as ( )x f  or xf  rather than ( )f x , and that fits in better with 

our practice of applying permutations and matrices in order from left to right.  It 

also fits in better with the following notation for ( )( )g f x which is still very 

common: 

 
f gA B C⎯⎯→ ⎯⎯→  
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However, GAP software applies functions in order from right to left in what has 

now become pretty much the standard in mathematics.  For example, here is 

how you would construct and use some functions in GAP. 

 
gap> f:=x->x^2; 
function( x ) ... end 
 
gap> f(2); 
4 
 
gap> g:=x->x+1; 
function( x ) ... end 
 
gap> g(2); 
3 
 
gap> f(g(2)); 
9 
 
gap> g(f(2)); 
5 

 

We’ve used the term “isomorphism” before, and we pointed out that it literally 

means “equal shape.”  We’ve also said that two groups are isomorphic if they are 

essentially the same group, but with different labels for the elements.  That 

means that there has to exist a correspondence between the two groups that is 

both one-to-one and onto, what we call a “bijection.”  Additionally, an 

isomorphism between two groups also means that multiplication in one group 

has to correspond to multiplication in the other group.  So far we’ve avoided 

using functions to define isomorphisms in order to keep things a little simpler.  

However, the time has come to streamline our thinking by giving an explicit 

definition of a isomorphism purely in terms of a function from one group onto 

another.  First, though, we will give more specific definitions for terms like one-to-

one, onto, injection, surjection, and bijection. 

 

Definition:  Let :f A B→  be a function.  Then f is one-to-one if and only if 

whenever we have ,x y A∈  with x y≠ , we also have that ( ) ( )f x f y≠ .  Equivalently, 

we can say that f is one-to-one if ( ) ( )f x f y=  always implies that x y= .  A one-to-

one function is also known as an injection or injective function. 
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Definition:  Let :f A B→  be a function.  Then f is an onto function if and only if 

whenever y B∈ , there exists x A∈  such that ( )f x y= .  An onto function is also 

known as a surjection or surjective function. 

 

Definition:  Let :f A B→  be a function.  If f is both one-to-one and onto (both 

injective and surjective), then f is also called a bijection or bijective function. 

 

Definition:  Let :f A B→  be a bijective function from a group A onto a group B.  

Then f is also an isomorphism if for all ,x y A∈ , we have that ( ) ( ) ( )f x f y f xy= .  

Note that this basically says that if xy z=  in A, then ( ) ( ) ( ) ( )f x f y f xy f z= =  in B.  In 

other words, multiplication in A corresponds to multiplication in B. 

 

A concept that is more general than that of an isomorphism is the notion of a 

“homomorphism.”  The word itself means “same shape,” and the main difference 

between an isomorphism and a homomorphism is that we drop the condition that 

our function be one-to-one.  We will also drop the onto condition. 

 

Definition:  Let :f A B→  be a function from a group A into a group B.  Then f is 

also a homomorphism if for all ,x y A∈  we have that ( ) ( ) ( )f x f y f xy= .  Note that 

this basically says that if xy z=  in A, then ( ) ( ) ( ) ( )f x f y f xy f z= =  in B.  Again, 

multiplication in A corresponds to multiplication in B. 

 

An example of a homomorphism that is not an isomorphism would be the 

function that takes every integer in the group of integers under addition, and 

assigns that integer either to the label “even” or to the label “odd” in the usual 

manner.  Suppose we call this latter set E and that we define addition in E 

according to the following table. 

 
+ Even Odd

Even Even Odd
Odd Odd Even  
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Then E is a group of order 2, and our function :f E→  is a homomorphism.  

Hence, using additive rather than multiplicative notation, we have, for instance, 

that (2) (3) (2 3) (5)f f even odd odd f f+ = + = = + = .  In other words, there is a 

correspondence between addition in  and addition in E. 

 

And finally, if we do have a homomorphism :f A B→ , then of particular concern 

will be the elements in A that get sent or mapped to the identity element in B.  

The set of such elements in A is called the “kernel of our homomorphism f.” 

 

Definition:  Let :f A B→  be a homomorphism from A into B.  Then the kernel of f, 

denoted by ( )Ker f , is defined by  

 

{ }( ) | ( )  where  is the identity element in Ker f x A f x e e B= ∈ = . 
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HOMOMORPHISMS AND IDENTITIES 
 

 

Discussion:  This theorem just takes care of some housekeeping details.  It 

shows us that any homomorphism from one group to another always pairs the 

identity element in the first group with the identity element in the second group.  

It’s not difficult to prove, but you gotta take the time to verify it anyway. 

 

Theorem:  Let A be a group and let :f A B→  be a homomorphism from A into B.  

Then ( )f e e= . 

 

Proof:  Technically, we should perhaps denote the identity element in A by Ae  

and the identity element in B by Be , but it is much more convenient to use e as 

the generic symbol for any identity element, and usually little confusion arises by 

using e to represent both identities.  Thus, let x A∈ .  Then ( ) ( ) ( ) ( )f x f e x f e f x= ⋅ = , 

since f is a homomorphism.  Now just multiply both sides of this equation on the 

right by [ ] 1( )f x −  to obtain [ ] [ ]1 1( ) ( )( )( ) ( ) ( ) ( )f x f e f xf x f ee ff x e e− −= ⋅ = ⋅ ⋅ == ⋅ . 
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HOMOMORPHISMS AND INVERSES 
 

 

Discussion:  This theorem takes care of another housekeeping detail.  It shows 

us that any homomorphism from one group to another always pairs an inverse 

element in the first group with the corresponding inverse element in the second 

group.  Again, it’s not difficult to prove, but you gotta take the time to verify it 

anyway. 

 

Theorem:  Let A be a group, let :f A B→  be a homomorphism from A into B, and 

let a A∈ .  Then [ ] 11( ) ( )f a f a −− = .  In other words, the inverse of a in A gets 

mapped to the inverse of ( )f a  in B. 

 

Proof:  Clearly, 1 1( ) ( ) ( ) ( )e f e f aa f a f a− −= = = , since f is a homomorphism.  Thus, 

[ ] [ ] [ ]1 1 1 1 11 ( ) ( ) (( ) ( ))( ) ( )e f a f a ef a f aa af a f f− − −− − −= ⋅ = ⋅ ⋅ ⋅ = ⋅ = . 

 



 9

THE KERNEL OF A HOMOMORPHISM 
 

 

Discussion:  Now that we’ve defined a homomorphism as a function :f A B→  

such that for all ,x y A∈  we have that ( ) ( ) ( )f xy f x f y= , recall that we defined the 

kernel of our homomorphism to be the set of all elements in the first group that 

get sent to the identity element in the second group.  Below we prove that this set, 

the kernel, is not only a subgroup of our original group, it’s also a normal 

subgroup, and that fact has major implications when it comes to investigating 

what homomorphisms from one group to another are even possible. 

 

Definition:  Let :f A B→  be a homomorphism from a group A into B.  Then the 

kernel of f, denoted by ( )Ker f , is defined by  

 

{ }( ) | ( )  where  is the identity element in Ker f x A f x e e B= ∈ = . 

 

 

Theorem:  Let :f A B→  be a homomorphism from a group A into B.  Then 

( )Ker f  is a normal subgroup of A. 

 

Proof:  First we will show that ( )Ker f  is a subgroup of A by showing that it is 

closed under multiplication and that it contains inverses.  Thus, let , ( )a b Ker f∈ .  

Then ( ) ( ) ( )e e e f a f b f ab= ⋅ = =  implies that ( )ab Ker f∈  and, hence, ( )Ker f  is 

closed under multiplication.   

 

Now we will show that the inverse of every element in the kernel of a 

homomorphism also belongs to the kernel.  Thus, let ( )a Ker f∈ .  Then there 

exists 1a A− ∈ .  However, 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )e f e f aa f a f a e f a f a− − − −= = = = ⋅ =  implies 

that 1 ( )a Ker f− ∈ , and, hence, ( )Ker f  is a subgroup of A. 
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To show that ( )Ker f  is a normal subgroup of A, let g A∈  and let ( )x Ker f∈ .  

Then [ ] [ ]1 11 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f g xg f g f x f g f g e f g f g f g e− −− −= = ⋅ ⋅ = =  implies that 

1 ( )g xg Ker f− ∈ .  Therefore, ( )Ker f  is a normal subgroup of A. 
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THE NATURAL HOMOMORPHISM 
 

 

Discussion:  We’ve talked before about normal subgroups, such as when N is a 

normal subgroup of G, and we’ve talked about the corresponding quotient groups, 

such as G N .  What we want to demonstrate now is that there is a very obvious 

surjective homomorphism from G onto G N  that we call the natural 

homomorphism. 

 

Theorem:  Let G be a group, and let N be a normal subgroup of G.  Then the 

function :G G Nπ →  defined by ( )g Ngπ =  is a homomorphism from G onto G N .  

This homomorphism is called the natural homomorphism. 

 

Proof:  By previous proof (Part 9, Theorem 19), we know that the right (left) 

cosets of N in G form a group under the multiplication inherited from G.  We also 

know that the function we’ve defined is onto since if Ng G N∈ , then ( )Ng gπ=  for 

g G∈ .  Additionally, we know from previous proof (Part 9, Theorem 17) that if 

,a b G∈ , then the multiplication Nab NaNb= is well-defined. In other words, if 

1 2Na Na=  and 1 2Nb Nb= , then 1 1 1 1 2 2 2 2Na Nb Na b Na b Na Nb= = = . To show that 

:G G Nπ →  defined by ( )g Ngπ =  is a homomorphism is now very easy.  Let 

,a b G∈ , and then ( ) ( ) ( )ab Nab NaNb a bπ π π= = = . 
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THE CORRESPONDENCE THEOREM 
 

 

Discussion:  This important theorem basically delineates a lot of 

correspondences that exist between subgroups in a group G that contain a given 

normal subgroup N and subgroups in the corresponding quotient group G N .  In 

particular, this means that we can learn things about the structure of G by 

studyingG N . 

 

The Correspondence Theorem:  Let G be a group, let N be a normal subgroup of 

G, and let :G G Nπ →  be the natural homomorphism.  Then, 

 

1. If H is a subgroup of G such that N H⊆ , then H N  is a subgroup of G N . 

2. If M is a subgroup of G N , then { }1( ) | ( )H M g G g Mπ π−= = ∈ ∈  is a subgroup of 

G  that contains N ,and H N M= . 

3. If H is a normal subgroup of G such that N H⊆ , then H N  is a normal 

subgroup of G N . 

4. If H N  is a normal subgroup of G N , then { }1( ) | ( )H H N g G g H Nπ π−= = ∈ ∈  

is a normal subgroup of G . 

5. If H and K are subgroups of G such that N H K⊆ ⊆ , then H N K N⊆ . 

6. If H N K N⊆ , then N H K⊆ ⊆ . 

7. If H and K are subgroups of a finite group G such that N H K⊆ ⊆ , then 

[ ] [ ]: :K H K N H N= . 

8. If N H K⊆ ⊆ , where H and K are subgroups of G, and if H is normal in K, then 

H N  is normal in K N . 

9. If N H K⊆ ⊆ , where H and K are subgroups of G, and if H N  is normal in 

K N , then H is normal in K. 
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Proof:  (1)  Let H be a subgroup of G such that N H⊆  where N is a normal 

subgroup of G.  To show that H N  is a subgroup of G N , we just need to show 

closure and existence of inverses.  Thus, suppose ,Na Nb H N∈ .  Then ,a b H∈ .  

Since H is a subgroup of G, there exists c H∈  such that c ab= .  Hence, 

NaNb Nab Nc H N= = ∈  since c H∈ , and, thus, closure is satisfied. 

 

Now suppose Na H N∈ .  Then a H∈ , and since H is a subgroup of G, there 

exists 1a H− ∈  such that 1aa e− = .  Consequently, 1Na H N− ∈  and 

1 1NaNa Naa Ne N− −= = = , the identity in H N .  Therefore, inverses also exist in 

H N , and H N  is a subgroup of G N . 

 

(2)  Suppose M is a subgroup of G N  and let { }1( ) | ( )H M g G g Mπ π−= = ∈ ∈ .  Then 

clearly { }1( ) | ( )N H M g G g Mπ π−⊆ = = ∈ ∈  since N is just 1π −  applied to the identity 

element in M.  To show that H is a subgroup of G, we need to verify closure and 

existence of inverses.  Thus, suppose that ,a b H∈ .  Then ,Na Nb M∈  and 

NaNb Nab M= ∈ .  From this it follows that { }1( ) | ( )ab H M g G g Mπ π−∈ = = ∈ ∈ , and H 

is closed under multiplication. 

 

To show that inverses exist in H, suppose a H∈ .  Then Na M∈  and because 

inverses exist in M, there exists Nb M∈  such that NaNb Nab N= = .  However, this 

means both that b H∈  and ab n=  for some n N∈ .  But this also implies that 
1 1( ) ( )ab n a bn e− −= = , the identity element in G, and, thus, 1 1bn a− −= .  We can now 

conclude that since b H∈  and 1,n n N H− ∈ ⊆ , that 1 1bn a H− −= ∈ , and, therefore, H 

is a subgroup of G that contains N. 

 

Finally, since { }1( ) | ( )H M g G g Mπ π−= = ∈ ∈  and since N H⊆  and ( )N Ker π= , it 

follows immediately that ( )H M H Nπ = = . 
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(3)  Suppose that H is a normal subgroup of G such that N H⊆ , and consider 

H N , a subgroup of G N .  If Ng G N∈  and a H∈ , then 1 1Ng NaNg Ng ag− −=  and 

since H being normal in G tells us that 1g ag H− ∈ , it follows that 1( )N g ag H N− ∈ .  

Therefore, H N  is a normal subgroup of G N . 

 

(4)  Suppose M  is a normal subgroup of G N  and let  

{ }1( ) | ( )H M g G g Mπ π−= = ∈ ∈ .  Then by (2) above, H is a subgroup of G 

containing N and M H N= .  Now let Ng G N∈  where g G∈ . If Na H N∈ , then 
1 1Ng NaNg Ng ag H N− −= ∈  since H N  is a normal subgroup of G N .  But this 

means that 1 1 1( )g ag Ng ag Hπ− − −∈ ⊆ .  Therefore, H is a normal subgroup of G. 

 

(5)  Suppose H and K are subgroups of G such that N H K⊆ ⊆ .  Then H N  and 

K N  are both subgroups of G N  (by (1) above).  Furthermore, if N H K⊆ ⊆ , then 

a H∈  implies that a K∈ , and this in turn means that if Na H N∈ , then Na K N∈ .  

Therefore, H N K N⊆  

. 

(6)  Suppose H N K N⊆ .  Then { }1( ) | ( )H H N g G g H Nπ π−= = ∈ ∈  and 

{ }1( ) | ( )K K N g G g K Nπ π−= = ∈ ∈  are subgroups of G (by (2) above).  Since 

N Ne H N= ∈  and since H N K N⊆ , it follows immediately that  

{ } { }1 1( ) | ( ) ( ) | ( )N H H N g G g H N K N g G g K N Kπ π π π− −⊆ = = ∈ ∈ ⊆ = ∈ ∈ = . 

 

(7)  Suppose H and K are subgroups of a finite group G such that N H K⊆ ⊆ .  

Then  H is also a subgroup of K, and H N  and K N  are both subgroups of 

G N (by (1) above) with H N K N⊆  (by (5) above).  Consequently, H N  is also 

a subgroup of K N .  Furthermore, by Lagrange’s Theorem (Part 9, Theorem 14),  

[ ]:
K

K H
H

=  and [ ]:
K N K N K

K N H N
H N H N H

= = = .  Therefore, 

[ ] [ ]: :K H K N H N= . 
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(8)  Suppose that H is normal in K where N H K⊆ ⊆ .  If Na H N∈  and Ng K N∈ , 

then 1g ag H− ∈  since H is normal in K.  Thus, 1 1Ng NaNg Ng ag H N− −= ∈  and, 

therefore, H N  is normal in K N . 

 

(9)  Suppose H N  is normal in K N  where N H K⊆ ⊆  are all subgroups of G.  If 

we simply restrict ourselves to the subgroup K, then it immediately follows from 

(4) above that H is normal in K. 
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HOMORMORPHISMS AND ONE-TO-ONE 

FUNCTIONS 
 

 

Discussion:  The theorem below gives a very useful result.  It shows that if we 

have a homomorphism from one group onto another, then another way to show 

that this homomorphism is also a one-to-one function is to simply verify that the 

only element in the kernel is the identity. 

 

Theorem:  Let :f A B→  be a homomorphism from a group A onto a group B.  

Then f is one-to-one if and only if { }( )Ker f e= . 

 

Proof:  Suppose :f A B→  is a homomorphism from a group A onto a group B, 

and suppose that f is one-to-one.  By previous proof, (Homomorphisms and 

Identities) we know that ( )f e e= , and if f is one-to-one, then it follows that ( )Ker f  

contains only the identity, e. 

 

Now suppose that { }( )Ker f e= , and suppose that f is not one-to-one.  Then there 

exists ,a b A∈  with a b≠  such that ( ) ( )f a f b= .  But this means that 

[ ] 1 1 1( ) ( ) ( ) ( ) ( )e f a f b f a f b f ab− − −= = = , and hence, 1 ( )ab Ker f− ∈ .  Also, since by 

hypothesis, { }( )Ker f e= , it follows that 1ab e− = .  However, multiplication of both 

sides of 1ab e− =  on the right by b shows that a b= , and this contradicts our 

assumption that a b≠ .  Consequently, the hypothesis that f is not one-to-one 

leads to a contradiction, and therefore, f is one-to-one. 
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THE FIRST ISOMORPHISM THEOREM 
 

 

Theorem:  Let :f A B→  be a homomorphism from a group A onto a group B, and 

let ( )N Ker f= .  Then ( )A Ker f A N B= ≅ .   

 

Proof:  Recall that : A A Nπ →  defined by ( )a Naπ =  is called the natural 

homomorphism.  Now define a function i from A N  to B by ( ) ( )i Na f a= .  We want 

to show that :i A N B→  is a homomorphism, but first notice that it doesn’t matter 

what representative we use from a coset such as Na.  In other words, since 

( )N Ker f= , if ,a b Na∈ , then a nb=  for some n N∈  and 

( ) ( ) ( ) ( ) ( ) ( )f a f nb f n f b e f b f b= = = ⋅ = .  Hence, it is also true that 

( ) ( ) ( ) ( )i Na f a f b i Nb= = = . Now let ,Nx Ny A N∈ .  Then 

( ) ( ) ( ) ( ) ( ) ( ) ( )i NxNy i Nxy f xy f x f y i Nx i Ny= = = = .  Therefore, :i A N B→  is a 

homomorphism. 

 

Next, we want to verify that the homomorphism :i A N B→  is onto.  Hence, let 

b B∈ . Then there exists a A∈  such that ( )f a b=  since f is onto.  Consequently, 

( ( )) ( ) ( )i a i Na f a bπ = = =  shows that i is also onto. 

 

The final step to proving that the homomorphism :i A N B→  is an isomorphism is 

to show that i is one-to-one, and by our previous theorem it suffices to show that 

the kernel of i is N, the identity element in A N .  Clearly, if n N∈ , then 

( ) ( ) ( )i N i Nn f n e= = =  since ( )N Ker f= .  Similarly, if ( )a N Ker f∉ = , then 

( ) ( )i Na f a e= ≠ .  Thus, ( )Ker i N= , the identity element in A N , and consequently 

:i A N B→  is a homomorphism that is both one-to-one and onto.  Therefore, 

:i A N B→  is an isomorphism and ( )A Ker f A N B= ≅ . 
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THE SECOND ISOMORPHISM THEOREM 
 

 

Discussion:  In Theorem 29 of Part 9 we proved that if H is a subgroup of a group 

G and if N is a normal subgroup of G, then the right (left) cosets corresponding to 

elements of H form a subgroup of G N .  The theorem below, known as the 

Second Isomorphism Theorem, give us much sharper detail on the structure of 

this subgroup of G N . 

 

The Second Isomorphism Theorem:  If H and N are subgroups of a group G with 

N normal in G, then HN is a subgroup of G and H H N HN N≅∩ . 

 

Proof:  Recall that earlier we proved (Part 9, Theorem 29) that if H is a subgroup 

of G, then there will exist a corresponding subgroup of G N  that is obtained by 

looking at the cosets Nh where h H∈ .  This theorem, the Second Isomorphism 

Theorem, sharpens and clarifies this result.  To prove it, though, we first need to 

show that H N∩  is a normal subgroup of H and that HN is a subgroup of G that 

contains N.  So let’s begin! 

 

To show that H N∩  is a normal subgroup of H, we first need to show that it is at 

least a subgroup by verifying properties of closure and existence of inverses.  

Thus, let 1 2,n n H N∈ ∩ .  Since 1 2,n n H∈ , a subgroup of G, it follows that 1 2n n H∈ .  

But by the same token, 1 2,n n N∈  implies that 1 2n n N∈ .  Hence, 1 2n n H N∈ ∩ , and 

closure is satisfied. 

 

Now suppose that n H N∈ ∩ .  Then an inverse to n exists in both H and in N.  In 

other words, 1n H− ∈  and 1n N− ∈  implies that 1n H N− ∈ ∩ .  Thus, existence of 

inverses is satisfied, and H N∩  is a subgroup of H. 
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To show that H N∩  is a normal subgroup of H, let h H∈  and let n H N∈ ∩ .  Then 
1h nh H− ∈  since all three elements belong to H.  But on the other hand, 1h nh N− ∈  

since N is a normal subgroup of G.  Hence, 1h nh H N− ∈ ∩ , and so H N∩  is a 

normal subgroup of H. 

 

Now let’s show that HN is a subgroup of G.  Thus, to show closure, let 

1 1 2 2,h n h n HN∈ , and consider the product 1 1 2 2h n h n .  Since N is a normal subgroup of 

G, every left coset of N is equal to the corresponding right coset, and that means 

that 2 2 2 1 212 ( )h N Nh h h NN Nn n h= = = = .  Hence, there exists 3n N∈  such that 

2 3 1 2h n n h= .  Thus, 1 1 2 2 1 2 11 2 2 3 2 1 2 3 2( ) ( )h n h n h n h n h h n n Hn h h Nn= = = ∈ , and closure is 

satisfied.  To show the existence of inverses in HN, let hn HN∈  where h H∈  and 

n N∈ .  Then it’s inverse is 1 1n h− − .  However, again since N is normal in G, there 

exist 1
4,n n N− ∈  such that 1 1 1 1 1

4 4hn h n n h h n HN− − − − −= ⇒ = ∈ .  Therefore, inverses 

exist in HN, and HN is a subgroup of G.  Furthermore, N HN⊆  since every 

element of N can be written as e n⋅  where e H∈  and n N∈ . 

 

And finally, we need to state and prove our isomorphism from H H N∩  to HN N .  

In this case, define :f H H N HN N→∩  by [( ) ]f H N h Nh=∩ .  To show that f is a 

homomorphism, observe that 

1 2 1 2 1 2 1 2[( ) ] [( ) ] ( ) [( ) ]f H N h f H N h Nh Nh N h h f H N h h⋅ = ⋅ = =∩ ∩ ∩      Notice, too, that 

elements in H H N∩  look like { }1 2 3,( ) , ( ) , ( ) ,H N H N h H N h H N h∩ ∩ ∩ ∩ …  where 

1 2 3, , ,h h h H N∉… ∩ , and the corresponding elements in HN N  via f look like 

{ }1 2 3, , , ,N Nh Nh Nh … .  From this it should be clear that ( )Ker f H N= ∩ , the identity 

in H H N∩ , because if h H N∉ ∩ , then it gets mapped to Nh N≠ , where N is the 

identity in HN N .  Thus, from our previous proof on homomorphisms and one-to-

one functions, it follows that f is one-to-one.  And finally, to show that f is onto, 

suppose that Nhn HN N∈ , where h H∈  and n N∈ .  Then since N is a normal 

subgroup, we can rewrite hn as 1n h  for some 1n N∈ .  Hence, 

1 [( ) ]Nhn Nn h Nh f H N h= = = ∩ , and therefore, f is onto and H H N HN N≅∩ .         
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THE THIRD ISOMORPHISM THEOREM 
 

 

Discussion:  This Third Isomorphism Theorem is in some ways a continuation of 

our Correspondence Theorem in that it establishes an isomorphism between a 

quotient group and a particular quotient of another quotient group. 

 

The Third Isomorphism Theorem:  Let G be a group, let N and H be normal 

subgroups of G, and suppose that N H G⊆ ⊆ .  Then H N  is a normal subgroup 

of G N , and ( ) ( )G N H N G H≅ . 

 

Proof:  It follows immediately from (3) of the Correspondence Theorem that H N  

is a normal subgroup of G N .  Now let :i G G N→  be the natural homomorphism, 

and let : ( ) ( )j G N G N H N→  be another natural homomorphism.  Then j i  is a 

homomorphism from G onto ( ) ( )G N H N .  

 

( ) ( )i jG G N G N H N⎯⎯→ ⎯⎯→  

 

Hence, our First Isomorphism Theorem tells us that ( ) ( )G N H N  is isomorphic to 

( )G Ker j i .  Thus, we just need to figure out what is contained in ( )Ker j i .  

Hence, let h H G∈ ⊆ .  Then Nh H N G N∈ ⊆  tells us that ( )h Ker j i∈ .  On the 

other hand, if g G∈ , but g H∉ , then Ng H N∉ , and, thus, ( )g Ker j i∉ .  

Therefore, ( )Ker j i H= , and by the First Isomorphism Theorem, G H  is 

isomorphic to ( ) ( )G N H N . 
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AN APPLICATION 
 

 

Discussion:  Recall that in a permutation group, every permutation can be 

classified as even or odd and it can easily be shown that the even permutations 

form a normal subgroup of any permutation group.  In particular, if nS  is the 

group of all permutations that can be made of n objects, then the normal 

subgroup of all even permutations is called the alternating group of degree n, nA , 

and in the theorem below we show that for 2n ≥ , the number of elements in nA  is 

!
2n
nA = . 

 

Definition:  If nS  is the group of all permutations that can be made of n objects 

(known as the symmetric group of degree n), then the alternating group of 

degree n, nA , is the subgroup of all even permutations in nS .  Also, since the 

identity is counted as an even permutation, this subgroup of nS  always exists. 

 

Theorem:  If nS  is the symmetric group of degree n for 2n ≥ , then !
2 2
n

n
S nA = = . 

 

Proof:  We can define a surjective (onto) homomorphism 2: nf S →  by 

0 if  is an even permutation
( )

1 if  is an odd permutation
p

f p
p

⎧
= ⎨
⎩

. 

 

For nS  with 2n ≥ , it should be clear that nS  will contain both even and odd 

permutations.  For example, it contains the identity which is an even permutation, 

and it contains transpositions of two elements which are odd permutations.  Thus, 

n nS A≠ .  However, nA  is the Kernel of f, and, thus, 2 ( )n n nS Ker f S A≅ = .  From 

this it immediately follows that 2
2

! !2
2n n n n n

n nS A S A A
A

= = = = ⇒ = .  
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ANOTHER APPLICATION 
 

 

Discussion:  Frankly, I found this result rather interesting! 

 

Theorem:  A group of permutations of odd order consists of only even 

permutations. 

 

Proof:  Let G be a group of permutations such that G  is odd.  If 1G = , then the 

only permutation in G is the identity which is even.  If 3G = , then G is the cyclic 

group of order 3 (since up to isomorphism there exists only one group of order 3), 

and we can represent the permutations as { }( ),(1,2,3),(1,3,2) , and each of these 

permutations is even.  Thus, assume that G  is odd and greater than three.  

Then G has more than two elements which are not the identity.  Also, as before, 

define 2:f G →  by 
0 if  is an even permutation

( )
1 if  is an odd permutation

p
f p

p
⎧

= ⎨
⎩

. 

 

If ( )Ker f G= , then every permutation in G is even, and we are done.  Thus, 

assume that not every permutation in G is even, i.e. that some are odd.  In this 

case, 2:f G →  will be an onto function, and we have that 

22 ( ) ( ) 2 ( )G Ker f G Ker f G Ker f= = = ⇒ = ⋅ .  But this contradicts our 

assumption that G  is odd, and therefore, a group of permutations of odd order 

consists of only even permutations. 
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A THIRD APPLICATION 
 

 

Discussion:  Below, we define an isomorphism from a group onto itself as an 

automorphism, and we show that the operation of conjugation that we introduced 

back in Part 2 results in a very important automorphism that we call an inner 

automorphism. 

 

Definition:  An isomorphism from a group G onto itself is called an automorphism. 

 

Theorem:  Let G be a group, let g G∈ , and define a function :gf G G→  by 

1( )gf a g ag−=  for every a G∈ .  Then gf  is an automorphism. 

 

Proof:  Let G be a group, let g G∈ , and define a function :gf G G→  by 

1( )gf a g ag−=  for every a G∈ .  To show that gf  is an automorphism, we need to 

show that it is a homomorphism, it’s onto, and it’s one-to-one.  To show that it’s a 

homomorphism, let ,a b G∈ .  Then 
11 1 1( ) ( ) ( ) ( )g g gg g e abf a f b g a bg g a bg g g f ab− − −−= = ⋅ ⋅ =⋅ = .  To show that it’s onto, let 

a G∈ .  Then 1gag −  is also an element of G, and 1 11( ) ( )g g gf g g g e eag a a a−− −= = ⋅ ⋅ = .  

And finally, to show that :gf G G→  is one-to-one, suppose ( )ga Ker f∈ .  Then 

11( )gf a e g ag ge e ega− −= ⇒ = ⇒ = = .  Hence, ( )gKer f  consists only of e, and the 

homomorphism is one-to-one as well as onto.  Therefore, :gf G G→  defined by 

1( )gf a g ag−=  is an automorphism.  Furthermore, this particular type of 

automorphism is called an inner automorphism. 

          

 



 24

Corollary:  Let G be a group, let g G∈ , and define a function :gf G G→  by 

1( )gf a gag −=  for every a G∈ .  Then gf  is an automorphism. 

 

Proof:  The proof of the corollary is identical to that of the theorem above it.  Just 

switch g  with 1g −  and you’re done! 
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A FOURTH RESULT 
 

 

Discussion:  We introduced the notion of a commutator back in Part 2, and in 

Theorem 21 of Part 9 we proved that the subgroup generated by forming all finite 

products of the commutators in our group is a normal subgroup of our group.  In 

the theorem below, we show that the quotient group of our group by the 

commutator subgroup is always abelian.  Furthermore, it could even be shown 

that the kernel of any quotient group that is abelian must contain this commutator 

subgroup.  However, this last part we leave for you to ponder. 

 

Theorem:  Let G be a group, and let G′  be the derived or commutator subgroup, 

the subgroup generated by all products in G of the form 1 1a b ab− − .  Then G G′  is 

abelian. 

 

Proof:  Let :G G Gπ ′→  be the natural homomorphism where ( )g G gπ ′= .  To 

show that G G′  is abelian, we need to show that if ,G a G b G G′ ′ ′∈ , then 

G aG b G bG a′ ′ ′ ′= .  Another way to express this equation is as 

[ ] [ ]1 1G a G b G aG b G− −′ ′ ′ ′ ′= , the identity in G G′ .  However, this is easy to verify since 

[ ] [ ] 1 11 11 1( )( ( ))G aG b G aG b G a bG a aG b G a G b b− − − −− −′ ′ ′ ′′ ′ ′ ′ ′= = .  Hence, since 1 1a b ab− −  is a 

commutator, it follows that 1 1( )G a b ab G− −′ ′= , the identity in G G′ .  Therefore, 

[ ] [ ]1 1 1 1( )G a G b G aG b G a b ab G− − − −′ ′ ′ ′ ′ ′= = , the identity in G G′ , implies that 

G aG b G bG a′ ′ ′ ′=  and G G′  is abelian. 
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QUOTIENTS OF QUOTIENTS OF QUOTIENTS 
 

 

We are now going to examine not only some quotient groups, but also quotients 

of quotients and quotients of quotients of quotients in order to get a feel for what 

they are really like.  But first, let’s consider the following.  Suppose that we have 

a finite group G with normal, nontrivial subgroups N, M, and R such that 

N M R G⊂ ⊂ ⊂ .  Then we know that the elements of G N  can be represented as 

{ }1, , , jG N N Na Na= …  where N is the identity element and every other element of 

G N  is equal to the coset N times an element of G, in this case represented by 

1, , ja a… .  We now want to argue that quotients of quotients will have a similar 

representation.  Thus, we will next consider ( ) ( )G N M N . 

 

By the Third Isomorphism Theorem we know that ( ) ( )G N M N G M≅ .  However, 

let’s think of what the actual elements of ( ) ( )G N M N  will look like.  First, recall 

that the elements of G N  have the form { }1, , , jG N N Na Na= … .  Also, if M N  is a 

normal subgroup of G N , then its elements will have the form 

{ }1, , , kM N N Nb Nb= …  where 1, , kb b…  are elements of G.  If we now try to depict a 

typical element of ( ) ( )G N M N , then these elements are going to be cosets in 

G N  of M N .  In other words, a typical element will look like M Ng
N
⋅  where g G∈ .  

However, because N M N∈ , under the multiplication defined in ( ) ( )G N M N  we 

have that M MN
N N
⋅ = , and hence, M MNg g

N N
⋅ = ⋅ .  Remember, though, that when 

we simplify M N
N
⋅ , we’re not multiplying numerical fractions together which would 

result in M MN N M
N N
⋅ = ⋅ = . No, instead we are multiplying elements of the group 

{ }1, , , kM N N Nb Nb= …  by N, and since N is an element of the group M N  , the 
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result is that M MN
N N
⋅ = . And the ultimate consequence of all this is that a typical 

element of ( ) ( )G N M N  can be found just by multiplying M
N

 by an element of G.  

Now let’s look at yet another quotient in order to convince ourselves that this 

pattern will continue to hold! 

 

If we now consider ( ) ( ) ( ) ( )G N M N R N M N⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ , then again we know from our 

Third Isomorphism Theorem that this will be isomorphic to G R   However, in the 

context of ( ) ( ) ( ) ( )G N M N R N M N⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  a typical element will be equal to R N
M N

 

times an element of ( ) ( )G N M N .  But an element of ( ) ( )G N M N  will have the 

appearance of M
N

 times an element of G
N

, and an element of G
N

 will have the 

form Ng  where g G∈ .  Hence, an element of ( ) ( ) ( ) ( )G N M N R N M N⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  will 

look like R N M Ng
M N N

⋅ ⋅ .  But again since MN
N

∈ , we have that M MN
N N
⋅ = , and 

since M R N
N M N
∈ , it follows that R N M R N

M N N M N
⋅ = .  Thus, R N M R NNg g

M N N M N
⋅ ⋅ = ⋅ , 

and once again we can find the elements of something like 

( ) ( ) ( ) ( )G N M N R N M N⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  just by multiplying ( ) ( )R N M N  by appropriate 

elements of G, and knowing that we can take this little shortcut will make it easier 

to write down the various elements of quotients of quotients. 

 

As an illustration, let’s start with the group 2 2 2 2G = × × × .  The order of G is 

16G = , and the elements of G, expressed as coordinates (not permutations) are, 

 

(0,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1), (0,1,1,1),
(1,0,0,0), (1,1,0,0), (1,0,1,0), (1,0,0,0), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,1,1,1)

G
⎧ ⎫

= ⎨ ⎬
⎩ ⎭
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Since these elements are expressed as coordinates modulo 2, when we 

“multiply” them we actually just add them together coordinatewise using the rule 

that 1 + 1 = 0.  For example, (1,0,1,0) (0,1,1,1) (1 0,0 1,1 1,0 1) (1,1,0,1)+ = + + + + = .  Also, 

this group is abelian, and so all of its subgroups are normal.  In particular, let’s 

consider the following subgroups: 

 

{ }1
(0,0,0,0)

(0,0,0,0), (1,0,0,0)
(1,0,0,0)

N
⎧ ⎫

= = ⎨ ⎬
⎩ ⎭

 

 

{ }2

(0,0,0,0)
(1,0,0,0)

(0,0,0,0), (1,0,0,0), (0,1,0,0), (1,1,0,0)
(0,1,0,0)
(1,1,0,0)

N

⎧ ⎫
⎪ ⎪
⎪ ⎪= = ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

{ }3 (0,0,0,0), (1,0,0,0), (0,1,0,0), (1,1,0,0), (0,0,1,0), (1,0,1,0), (0,1,1,0), (1,1,1,0)

(0,0,0,0)
(1,0,0,0)
(0,1,0,0)
(1,1,0,0)
(0,0,1,0)
(1,0,1,0)
(0,1,1,0)
(1,1,1,0)

N =

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 

 

Notice that 1 2 3N N N⊂ ⊂ .  Furthermore, 1 8G N = , and the cosets in 1G N  are, 
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1

(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
, (0,1,0,0), (0,0,1,0), (0,0,0,1),

(1,0,0,0) (1,0,0,0) (1,0,0,0) (1,0,0,0)

(0,0,0,0) (0,0,0,0) (
(0,1,1,0), (0,1,0,1),

(1,0,0,0) (1,0,0,0)

G N

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭=

⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

0,0,0,0) (0,0,0,0)
(0,0,1,1), (0,1,1,1)

(1,0,0,0) (1,0,0,0)

(0,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)
, , , ,

(1,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,1)

(0,1,1,0)
(1,1,1,0)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬

⎧ ⎫ ⎧ ⎫⎪ ⎪
⎨ ⎬ ⎨ ⎬⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭=
⎧ (0,1,0,1) (0,0,1,1) (0,1,1,1)

, , ,
(1,1,0,1) (1,0,1,1) (1,1,1,1)

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬

⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 

 

We want to now look at 2G N  which by our Third isomorphism theorem is 

isomorphic to ( ) ( )1 2 1G N N N .  Thus, we’ll first write down the cosets for 2G N  

and then compare this to the cosets in ( ) ( )1 2 1G N N N  and remember that we 

can always find quotients of quotients by multiplying the subgroup we are 

factoring out by an appropriate element of our original group G.  In particular, 

2 4G N = , and the cosets in 2G N  are, 

 

2

(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(1,0,0,0) (1,0,0,0) (1,0,0,0) (1,0,0,0)

, (0,0,1,0), (0,0,0,1),
(0,1,0,0) (0,1,0,0) (0,1,0,0) (0,1,0,
(1,1,0,0) (1,1,0,0) (1,1,0,0)

G N

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

(0,0,1,1)
0)

(1,1,0,0)

(0,0,0,0) (0,0,1,0) (0,0,0,1)
(1,0,0,0) (1,0,1,0) (1,0,0,1)

, ,
(0,1,0,0) (0,1,1,0) (0,1,0,1)
(1,1,0,0) (1,1,1,0) (1,1,0,1)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎨ ⎨ ⎬ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

(0,0,1,1)
(1,0,1,1)

,
(0,1,1,1)
(1,1,1,1)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪⎪
⎨ ⎨ ⎬⎬
⎪ ⎪ ⎪⎪
⎪ ⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭

 

 

Now we want to compare this to the cosets in ( ) ( )1 2 1G N N N , so let’s first write 

down 2 1N N . 
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2 1
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,1,0,0)

, (0,1,0,0) ,
(1,0,0,0) (1,0,0,0) (1,0,0,0) (1,1,0,0)

(0,0,0,0)
(1,0,0,0)

(0,1,0,0)
(1,1,0,0)

N N
⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= =⎨⎨ ⎬ ⎨ ⎬ ⎬ ⎨⎨ ⎬ ⎨ ⎬⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭

⎧ ⎫⎧ ⎫
⎨ ⎬⎪ ⎪
⎪⎩ ⎭⎪= ⎨ ⎬
⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪⎩ ⎭⎩ ⎭

 

 

Since,  

 

1

(0,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)
, , , ,

(1,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,1)

(0,1,1,0) (0,1,0,1) (0,0,1,1) (0,1,1,1)
, , ,

(1,1,1,0) (1,1,0,0) (1,0,1,1) (1,1,1,1)

G N

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭=
⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨
⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬

⎫⎪ ⎪
⎬⎪ ⎪⎭⎩ ⎭

, 

 

We have that, 

 

( ) ( )1 2 1

(0,0,0,0) (0,0,0,0) (0,0,0,0)
(1,0,0,0) (1,0,0,0) (1,0,0,0)

, (0,0,1,0),
(0,1,0,0) (0,1,0,0) (0,1,0,0)
(1,1,0,0) (1,1,0,0) (1,1,0,0)

G N N N

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪
⎪⎩ ⎭⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭= ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩

(0,0,0,0)
(1,0,0,0)

(0,0,0,1), (0,0,1,1)
(0,1,0,0)
(1,1,0,0)

(0,0,0,0) (0,0,0,0)
(0,0,1,0)

(1,0,0,0) (1,0,0,0)
,

(0,1,0,0) (0,
(1,1,0,0)

⎧ ⎫⎧ ⎫⎧ ⎫
⎪ ⎪⎨ ⎬⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭⎪ ⎪
⎨ ⎨ ⎬ ⎬

⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎭ ⎩ ⎭⎩ ⎭

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬⎪ ⎪
⎪⎩ ⎭⎪ ⎩ ⎭= ⎨ ⎬
⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪⎩ ⎭⎩ ⎭

(0,0,0,0) (0,0,0,0)
(0,0,0,1) (0,0,1,1)

(1,0,0,0) (1,0,0,0)
, ,

1,0,0) (0,1,0,0) (0,1,0,0)
(0,0,1,0) (0,0,0,1) (0,0,1,1)

(1,1,0,0) (1,1,0,0) (1,1,0,0)

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪⎩ ⎭
⎨ ⎬ ⎨ ⎬ ⎨
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩

(0,0,0,0) (0,0,1,0) (0,0,0,1)
(1,0,0,0) (1,0,1,0) (1,0,0,1)

, ,
(0,1,0,0) (0,1,1,0) (0,1,0,1)
(1,1,0,0) (1,1,1,0) (1,1,0,1)

⎧ ⎫
⎪ ⎪⎪
⎪ ⎪⎪
⎨ ⎬⎬
⎪ ⎪⎪
⎪ ⎪⎪

⎭⎩ ⎭

⎧ ⎫ ⎧ ⎫ ⎧⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪
⎪⎩ ⎭⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭= ⎨ ⎬ ⎨ ⎬ ⎨
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩

(0,0,1,1)
(1,0,1,1)

,
(0,1,1,1)
(1,1,1,1)

⎧ ⎫⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪⎨ ⎬⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭⎪⎪
⎨ ⎬ ⎨ ⎬⎬

⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪⎪
⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪⎪⎩ ⎭⎭ ⎩ ⎭⎩ ⎭

 

 

Notice now the structural similarity between ( ) ( )1 2 1G N N N  and 2G N . 
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2

(0,0,0,0) (0,0,1,0) (0,0,0,1) (0,0,1,1)
(1,0,0,0) (1,0,1,0) (1,0,0,1) (1,0,1,1)

, , ,
(0,1,0,0) (0,1,1,0) (0,1,0,1) (0,1,1,1)
(1,1,0,0) (1,1,1,0) (1,1,0,1) (1,1,1,1)

G N

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩

⎧ ⎫⎫
⎪ ⎪⎪
⎪ ⎪⎪
⎨ ⎬⎬
⎪ ⎪⎪
⎪ ⎪⎪⎭⎩ ⎭

 

 

And now we’ll move on to 3G N  which is isomorphic to both ( ) ( )2 3 2G N N N  and 

( ) ( ) ( ) ( )1 2 1 3 1 2 1G N N N N N N N⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦  and which has order equal to 2.  As before, 

we’ll start with the simplest quotient group, 3G N , and we’ll methodically 

construct the other quotient groups so that we can observe the similarities.  Thus, 

3 2G N = , and the cosets in 3G N  are, 

 

3

(0,0,0,0) (0,0,0,0)
(1,0,0,0) (1,0,0,0)
(0,1,0,0) (0,1,0,0)
(1,1,0,0) (1,1,0,0)

,
(0,0,1,0) (0,0,1,0)
(1,0,1,0) (1,0,1,0)
(0,1,1,0) (0,1,1,0)
(1,1,1,0) (1,1,1,0)

G N

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

(0,0,0,0) (0,0,0,1)
(1,0,0,0) (1,0,0,1)
(0,1,0,0) (0,1,0,1)
(1,1,0,0) (1,1,0,1)

(0,0,0,1) ,
(0,0,1,0) (0,0,1,1)
(1,0,1,0) (1,0,1,1)
(0,1,1,0) (0,1,1,1)
(1,1,1,0) (

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭ 1,1,1,1)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪⎪
⎨ ⎨ ⎬⎬
⎪ ⎪ ⎪⎪
⎪ ⎪ ⎪⎪
⎪ ⎪ ⎪⎪
⎪ ⎪ ⎪⎪
⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭

 

 

To construct ( ) ( )2 3 2G N N N , we must first write down 3 2N N . 
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3 2

(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,1,0)
(1,0,0,0) (1,0,0,0) (1,0,0,0) (1,0,1,0)

, (0,0,1,0) ,
(0,1,0,0) (0,1,0,0) (0,1,0,0) (
(1,1,0,0) (1,1,0,0) (1,1,0,0)

N N

⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= =⎨⎨ ⎬ ⎨ ⎬ ⎬ ⎨ ⎬
⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭

0,1,1,0)
(1,1,1,0)

(0,0,0,0)
(1,0,0,0)
(0,1,0,0)
(1,1,0,0)

(0,0,1,0)
(1,0,1,0)
(0,1,1,0)
(1,1,1,0)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪⎪
⎨ ⎨ ⎬⎬
⎪ ⎪ ⎪⎪
⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭= ⎨ ⎬
⎧ ⎫⎪ ⎪
⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 

 

And since, 

 

2

(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(1,0,0,0) (1,0,0,0) (1,0,0,0) (1,0,0,0)

, (0,0,1,0), (0,0,0,1),
(0,1,0,0) (0,1,0,0) (0,1,0,0) (0,1,0,
(1,1,0,0) (1,1,0,0) (1,1,0,0)

G N

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

(0,0,1,1)
0)

(1,1,0,0)

(0,0,0,0) (0,0,1,0) (0,0,0,1)
(1,0,0,0) (1,0,1,0) (1,0,0,1)

, ,
(0,1,0,0) (0,1,1,0) (0,1,0,1)
(1,1,0,0) (1,1,1,0) (1,1,0,1)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎨ ⎨ ⎬ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

(0,0,1,1)
(1,0,1,1)

,
(0,1,1,1)
(1,1,1,1)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪⎪
⎨ ⎨ ⎬⎬
⎪ ⎪ ⎪⎪
⎪ ⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭

, 

 

we have that, 
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( ) ( )2 3 2

(0,0,0,0) (0,0,0,0)
(1,0,0,0) (1,0,0,0)
(0,1,0,0) (0,1,0,0)
(1,1,0,0) (1,1,0,0)

,
(0,0,1,0) (0,0,1,0)
(1,0,1,0) (1,0,1
(0,1,1,0)
(1,1,1,0)

G N N N

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪⎨ ⎬ ⎨ ⎬⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭= ⎨ ⎬
⎧ ⎫⎪ ⎪
⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬

⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

(0,0,0,1)

,0)
(0,1,1,0)
(1,1,1,0)

(0,0,0,0)
(1,0,0,0)
(0,1,0,0)
(1,1,0,0)

(0,0,1,0)
(1,0,1,0)
(0,1,1,0)
(1,1,1,0)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎨ ⎬ ⎬

⎧ ⎫⎪ ⎪ ⎪ ⎪
⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎨ ⎬

⎪ ⎪ ⎪ ⎪⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭⎩ ⎭

⎧⎧ ⎫
⎪⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭= ⎨
⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

(0,0,0,0) (0,0,
(1,0,0,0)

(0,0,0,1)
(0,1,0,0)
(1,1,0,0)

,
(0,0,1,0)
(1,0,1,0)

(0,0,0,1)
(0,1,1,0)
(1,1,1,0)

⎧ ⎫⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪⎪ ⎪

⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ =⎨ ⎬ ⎨ ⎬⎬
⎧ ⎫⎪⎪ ⎪ ⎪ ⎪⎪
⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎪⎪ ⎪ ⎪ ⎪⎪⎨ ⎬

⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪
⎪⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎩ ⎭⎩ ⎭ ⎩ ⎭⎩ ⎭

0,0) (0,0,0,1)
(1,0,0,0) (1,0,0,1)
(0,1,0,0) (0,1,0,1)
(1,1,0,0) (1,1,0,1)

,
(0,0,1,0) (0,0,1,1)
(1,0,1,0) (1,0,1,1)
(0,1,1,0) (0,1,1,1)
(1,1,1,0) (

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪⎨ ⎬ ⎨ ⎬⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭
⎨ ⎬
⎧ ⎫⎪ ⎪
⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬

⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭ 1,1,1,1)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎨ ⎬⎬

⎧ ⎫⎪ ⎪ ⎪⎪
⎪ ⎪⎪ ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪⎨ ⎬

⎪ ⎪ ⎪⎪⎪ ⎪
⎪ ⎪ ⎪⎪⎪ ⎪⎩ ⎭⎩ ⎭⎩ ⎭  

 

Again, notice the structural similarity between this and 3G N . 

 

3

(0,0,0,0) (0,0,0,1)
(1,0,0,0) (1,0,0,1)
(0,1,0,0) (0,1,0,1)
(1,1,0,0) (1,1,0,1)

,
(0,0,1,0) (0,0,1,1)
(1,0,1,0) (1,0,1,1)
(0,1,1,0) (0,1,1,1)
(1,1,1,0) (1,1,1,1)

G N

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪
⎩ ⎭

 

 

And finally, we want to construct the cosets for 

( ) ( ) ( ) ( )1 2 1 3 1 2 1G N N N N N N N⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦ .  We’ll start first with 2 1N N , then 3 1N N  

followed by ( ) ( )3 1 2 1N N N N . 
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2 1
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,1,0,0)

, (0,1,0,0) ,
(1,0,0,0) (1,0,0,0) (1,0,0,0) (1,1,0,0)

(0,0,0,0)
(1,0,0,0)

(0,1,0,0)
(1,1,0,0)

N N
⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= =⎨⎨ ⎬ ⎨ ⎬ ⎬ ⎨⎨ ⎬ ⎨ ⎬⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭

⎧ ⎫⎧ ⎫
⎨ ⎬⎪ ⎪
⎪⎩ ⎭⎪= ⎨ ⎬
⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪⎩ ⎭⎩ ⎭

 

 

3 1
(0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

, (0,1,0,0), (0,0,1,0), (0,1,1,0)
(1,0,0,0) (1,0,0,0) (1,0,0,0) (1,0,0,0)

(0,0,0,0) (0,1,0,0) (0,0,1,0
, ,

(1,0,0,0) (1,1,0,0)

N N
⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪= ⎨⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭

⎧ ⎫ ⎧ ⎫
= ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

) (0,1,1,0)
,

(1,0,1,0) (1,1,1,0)
⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪
⎨ ⎨ ⎬ ⎨ ⎬⎬
⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭

 

 

( ) ( )3 1 2 1

(0,0,0,0) (0,0,0,0)
(1,0,0,0) (1,0,0,0)

, (0,0,1,0)
(0,1,0,0) (0,1,0,0)
(1,1,0,0) (1,1,0,0)

(0,0,0,0)
(1,0,0,0)

(0,1,0,0)
(1,1,0,0)

N N N N

⎧ ⎫⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪
⎪⎪⎩ ⎭⎪ ⎪⎩ ⎭⎪ ⎪= ⎨⎨ ⎬ ⎨ ⎬ ⎬

⎧ ⎫ ⎧ ⎫⎪⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬⎪⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭=

(0,0,0,0)
(0,0,1,0)

(1,0,0,0)
,

(0,1,0,0)
(0,0,1,0)

(1,1,0,0)

(0,0,0,0) (0,0,1,0)
(1,0,0,0) (1,0,1,0)

,
(0,1,0,0)
(1,1,0,0)

⎧ ⎫⎧ ⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪⎨ ⎬⎪ ⎪ ⎪ ⎪
⎪⎪ ⎪ ⎪⎩ ⎭ ⎪⎪
⎨⎨ ⎬ ⎨ ⎬⎬

⎧ ⎫ ⎧ ⎫⎪⎪ ⎪ ⎪ ⎪⎪
⎨ ⎬ ⎨ ⎬⎪⎪ ⎪ ⎪ ⎪⎪⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎩ ⎭

⎧ ⎫⎧ ⎫ ⎧
⎨ ⎬ ⎨⎪ ⎪
⎪⎩ ⎭⎪ ⎩= ⎨ ⎬
⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪⎩ ⎭⎩ ⎭

(0,1,1,0)
(1,1,1,0)

⎧ ⎫⎧ ⎫⎫
⎪ ⎪⎬⎪ ⎪
⎪ ⎪ ⎭⎪⎪
⎨ ⎨ ⎬⎬

⎧ ⎫⎪ ⎪ ⎪⎪
⎨ ⎬⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭⎩ ⎭

. 

 

We previously found the following cosets for ( ) ( )1 2 1G N N N . 
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( ) ( )1 2 1

(0,0,0,0) (0,0,0,0) (0,0,0,0)
(1,0,0,0) (1,0,0,0) (1,0,0,0)

, (0,0,1,0),
(0,1,0,0) (0,1,0,0) (0,1,0,0)
(1,1,0,0) (1,1,0,0) (1,1,0,0)

G N N N

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪
⎪⎩ ⎭⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭= ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩

(0,0,0,0)
(1,0,0,0)

(0,0,0,1), (0,0,1,1)
(0,1,0,0)
(1,1,0,0)

(0,0,0,0) (0,0,0,0)
(0,0,1,0)

(1,0,0,0) (1,0,0,0)
,

(0,1,0,0) (0,
(1,1,0,0)

⎧ ⎫⎧ ⎫⎧ ⎫
⎪ ⎪⎨ ⎬⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭⎪ ⎪
⎨ ⎨ ⎬ ⎬

⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎭ ⎩ ⎭⎩ ⎭

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬⎪ ⎪
⎪⎩ ⎭⎪ ⎩ ⎭= ⎨ ⎬
⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪⎩ ⎭⎩ ⎭

(0,0,0,0) (0,0,0,0)
(0,0,0,1) (0,0,1,1)

(1,0,0,0) (1,0,0,0)
, ,

1,0,0) (0,1,0,0) (0,1,0,0)
(0,0,1,0) (0,0,0,1) (0,0,1,1)

(1,1,0,0) (1,1,0,0) (1,1,0,0)

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪⎩ ⎭
⎨ ⎬ ⎨ ⎬ ⎨
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩

(0,0,0,0) (0,0,1,0) (0,0,0,1)
(1,0,0,0) (1,0,1,0) (1,0,0,1)

, ,
(0,1,0,0) (0,1,1,0) (0,1,0,1)
(1,1,0,0) (1,1,1,0) (1,1,0,1)

⎧ ⎫
⎪ ⎪⎪
⎪ ⎪⎪
⎨ ⎬⎬
⎪ ⎪⎪
⎪ ⎪⎪

⎭⎩ ⎭

⎧ ⎫ ⎧ ⎫ ⎧⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪
⎪⎩ ⎭⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭= ⎨ ⎬ ⎨ ⎬ ⎨
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭ ⎩

(0,0,1,1)
(1,0,1,1)

,
(0,1,1,1)
(1,1,1,1)

⎧ ⎫⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪⎨ ⎬⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭⎪⎪
⎨ ⎬ ⎨ ⎬⎬

⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪⎪
⎨ ⎬⎪ ⎪ ⎪ ⎪ ⎪⎪⎩ ⎭⎭ ⎩ ⎭⎩ ⎭

 

 

Hence, we can now write down the cosets for 

( ) ( ) ( ) ( )1 2 1 3 1 2 1G N N N N N N N⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦  as follows, 
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( ) ( ) ( ) ( )1 2 1 3 1 2 1

(0,0,0,0) (0,0,0,0)
(1,0,0,0) (1,0,0,0)

(0,1,0,0)
(1,1,0,0)

,
(0,0,1,0)
(1,0,1,0)

(0,1,1,0)
(1,1,1,0)

G N N N N N N N

⎧ ⎫⎧ ⎫⎧ ⎫ ⎧
⎪ ⎪⎨ ⎬ ⎨⎪ ⎪
⎪⎩ ⎭⎪ ⎩⎪ ⎪
⎨ ⎬⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭⎪⎩ ⎭⎪⎡ ⎤⎡ ⎤ = ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎧ ⎫⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪⎪ ⎪
⎪⎩ ⎭⎪⎪ ⎪⎨ ⎬⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭⎩ ⎭

(0,1,0,0)
(1,1,0,0)

(0,0,0,1)
(0,0,1,0)
(1,0,1,0)

(0,1,1,0)
(1,1,1,0)

(0,0,0,0)
(1,0,0,0)

(0,

⎧ ⎫⎧ ⎫⎧ ⎫⎫
⎪ ⎪⎪ ⎪⎬⎪ ⎪
⎪ ⎪⎪ ⎭⎪⎪ ⎪

⎨ ⎬⎪ ⎪⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭⎪ ⎪
⎨ ⎨ ⎬ ⎬

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬⎪ ⎪⎪ ⎪ ⎪ ⎪
⎪⎩ ⎭⎪⎪ ⎪ ⎪ ⎪⎨ ⎬⎪ ⎪ ⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭⎩ ⎭⎩ ⎭

⎧ ⎫
⎨ ⎬
⎩ ⎭

=

(0,0,0,0)
(1,0,0,0)

(0,0,0,1)
1,0,0) (0,1,0,0)

(1,1,0,0) (1,1,0,0)
,

(0,0,1,0) (
(1,0,1,0)

(0,1,1,0)
(1,1,1,0)

⎧ ⎫⎧ ⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪ ⎨ ⎬⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭⎪⎪ ⎪
⎨ ⎬ ⎨ ⎬⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭⎪⎩ ⎭⎪ ⎩ ⎭
⎨ ⎬
⎧ ⎫⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪⎪ ⎪
⎪⎩ ⎭⎪⎪ ⎪⎨ ⎬⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭⎩ ⎭

(0,0,0,0)
(1,0,0,0)

(0,1,0,0)
(1,1,0,0)

0,0,1,0) (0,0,1,
(1,0,1,0)

(0,0,0,1)
(0,1,1,0)
(1,1,1,0)

⎧ ⎫⎧ ⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪ ⎨ ⎬⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭⎪⎪ ⎪

⎨ ⎬⎪ ⎪⎪ ⎪ ⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪ ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪ ⎩ ⎭⎪ ⎪ ⎪⎪ ⎩ ⎭=⎨ ⎨ ⎬⎬
⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪
⎨ ⎬⎪ ⎪⎪ ⎪ ⎪⎪
⎪⎩ ⎭⎪⎪ ⎪ ⎪⎪⎨ ⎬⎪ ⎪ ⎪⎪⎧ ⎫⎪ ⎪⎪ ⎪ ⎪⎪⎨ ⎬⎪ ⎪⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭⎩ ⎭⎩ ⎭

(0,0,0,0)
(0,0,0,1)

(1,0,0,0)

(0,1,0,0)
(0,0,0,1)

(1,1,0,0)
,

0) (0,0,1,0)
(0,0,0,1)

(1,0,1,0) (1,0,1,0)

(0,1,1,0) (
(1,1,1,0)

⎧ ⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪ ⎨ ⎬⎪ ⎪

⎪⎩ ⎭ ⎪⎪ ⎪
⎨ ⎬⎪ ⎪ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎨ ⎬⎪ ⎪⎪ ⎪ ⎩ ⎭⎪ ⎪ ⎩ ⎭

⎨ ⎬
⎧ ⎫⎧ ⎫ ⎧ ⎫⎪ ⎪
⎨ ⎬ ⎨ ⎬⎪ ⎪⎪ ⎪
⎪⎩ ⎭⎪ ⎩ ⎭⎪ ⎪⎨ ⎬⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭⎩ ⎭

0,1,1,0)
(0,0,0,1)

(1,1,1,0)

(0,0,0,0)
(1,0,0,0)

(0,1,0,0)
(1,1,0,0)

(0,0,1,0)
(1,0,1,0)

(0,1,1,

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎪ ⎪ ⎪⎪
⎨ ⎨ ⎬⎬

⎧ ⎫⎪ ⎪ ⎪⎪
⎪ ⎪⎪ ⎪ ⎪⎪
⎪ ⎪⎪ ⎪ ⎪⎪⎨ ⎬⎪ ⎪ ⎪⎪⎧ ⎫⎪ ⎪⎪ ⎪ ⎪⎪⎨ ⎬⎪ ⎪⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭⎩ ⎭⎩ ⎭

⎧ ⎫⎧ ⎫
⎨ ⎬⎪ ⎪
⎪⎩ ⎭⎪
⎨ ⎬
⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪⎩ ⎭⎩ ⎭=
⎧ ⎫
⎨ ⎬
⎩ ⎭

(0,0,0,1)
(1,0,0,1)

(0,1,0,1)
(1,1,0,1)

,
(0,0,1,1)
(1,0,1,1)

0) (0,1,1,1)
(1,1,1,0) (1,1,1,1)

⎧ ⎫ ⎧⎧ ⎫⎧ ⎫
⎪ ⎪ ⎪ ⎨ ⎬⎪ ⎪

⎪⎩ ⎭⎪⎪ ⎪ ⎪
⎨ ⎬⎪ ⎪ ⎪ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎨ ⎬⎪ ⎪⎪ ⎪ ⎪ ⎩ ⎭⎪ ⎪ ⎪⎩ ⎭

⎨ ⎬ ⎨
⎧ ⎫ ⎧ ⎫⎧ ⎫⎪ ⎪ ⎪

⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭⎪⎪ ⎪ ⎪⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩

⎧ ⎫⎫
⎪ ⎪⎪
⎪ ⎪⎪
⎪ ⎪⎪
⎪ ⎪⎪
⎪ ⎪⎪⎪ ⎪⎪
⎨ ⎬⎬
⎪ ⎪⎪
⎪ ⎪⎪
⎪ ⎪⎪
⎪ ⎪⎪
⎪ ⎪⎪
⎪ ⎪ ⎪⎪⎭⎩ ⎭

 

Again, we want to notice the structural similarities between the three isomorphic 

groups. 
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3

(0,0,0,0) (0,0,0,1)
(1,0,0,0) (1,0,0,1)
(0,1,0,0) (0,1,0,1)
(1,1,0,0) (1,1,0,1)

,
(0,0,1,0) (0,0,1,1)
(1,0,1,0) (1,0,1,1)
(0,1,1,0) (0,1,1,1)
(1,1,1,0) (1,1,1,1)

G N

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪= ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪
⎩ ⎭

 

 

( ) ( )2 3 2

(0,0,0,0) (0,0,0,1)
(1,0,0,0) (1,0,0,1)
(0,1,0,0) (0,1,0,1)
(1,1,0,0) (1,1,0,1)

,
(0,0,1,0) (0,0,1,1)
(1,0,1,0) (1,0,1
(0,1,1,0)
(1,1,1,0)

G N N N

⎧ ⎫⎧ ⎫ ⎧ ⎫
⎪ ⎪⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪⎨ ⎬ ⎨ ⎬⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭ ⎩ ⎭= ⎨ ⎬
⎧ ⎫⎪ ⎪
⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬

⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

,1)
(0,1,1,1)
(1,1,1,1)

⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎨ ⎬⎬

⎧ ⎫⎪ ⎪ ⎪⎪
⎪ ⎪⎪ ⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪⎨ ⎬

⎪ ⎪ ⎪⎪⎪ ⎪
⎪ ⎪ ⎪⎪⎪ ⎪⎩ ⎭⎩ ⎭⎩ ⎭

 

 

( ) ( ) ( ) ( )1 2 1 3 1 2 1

(0,0,0,0) (0,0,0,1)
(1,0,0,0) (1,0,0,1)

(0,1,0,0)
(1,1,0,0)

,
(0,0,1,0)
(1,0,1,0)

(0,1,1,0)
(1,1,1,0)

G N N N N N N N

⎧ ⎫⎧ ⎫⎧ ⎫ ⎧
⎪ ⎪⎨ ⎬ ⎨⎪ ⎪
⎪⎩ ⎭⎪ ⎩⎪ ⎪
⎨ ⎬⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭⎪⎩ ⎭⎪⎡ ⎤⎡ ⎤ = ⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎧ ⎫⎧ ⎫⎪ ⎪
⎨ ⎬⎪ ⎪⎪ ⎪
⎪⎩ ⎭⎪⎪ ⎪⎨ ⎬⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭⎩ ⎭

(0,1,0,1)
(1,1,0,1)

(0,0,1,1)
(1,0,1,1)

(0,1,1,1)
(1,1,1,1)

⎧ ⎫⎧ ⎫⎧ ⎫⎫
⎪ ⎪⎪ ⎪⎬⎪ ⎪
⎪ ⎪⎪ ⎭⎪⎪ ⎪

⎨ ⎬⎪ ⎪⎪ ⎪⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭⎪⎪
⎨ ⎨ ⎬⎬

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪
⎨ ⎬⎪ ⎪⎪ ⎪ ⎪⎪
⎪⎩ ⎭⎪⎪ ⎪ ⎪⎪⎨ ⎬⎪ ⎪ ⎪⎪⎧ ⎫⎪ ⎪⎪ ⎪ ⎪⎪⎨ ⎬⎪ ⎪⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭⎩ ⎭⎩ ⎭

 

 

Among other things, this hopefully illustrates that as we continue to take 

quotients of quotients, every coset in the resulting quotient group can still be 

written as an element of G times the identity in that particular quotient of 

quotients.  Divide and conquer! 
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ORBITS, STABILIZERS, FIXERS, AND 

BURNSIDE’S COUNTING THEOREM 
 

 

Consider this situation.  You have just solved Rubik’s cube, but you also 

instinctively know that if you rotated the cube 90°  in any of six directions, then 

you would still consider the cube to still be in the same solved configuration.  

Thus, certain movements of the cube don’t really result in what we consider a 

different configuration.  And now our problem is this.  Suppose we color the faces 

of the cube with six different colors and that we are also allowed to rotate the 

cube as described above.  Then how many truly different color configurations are 

possible when we allow for rotations of the cube?  This is the type of question 

we’ll learn to answer in this chapter with the help of what we call orbits, 

stabilizers, fixers, and Burnside’s Counting Theorem. 

 

 
 

Remember:  There are a few definitions and theorems you might want to recall 

before you wade any further into this section.  First, when we say that G is a 

group that acts on a set of objects X, that means that each element of G 

corresponds to a permutation of the elements of X.  For example, consider the 

equilateral triangle below with vertices labeled by 1, 2, or 3. 
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We can let { }1,2,3X =  and our group G can correspond to the permutations of 

these numbers created by either rotating the above triangle clockwise through 

angles that are integer multiples of 120°  or by flipping the triangle about one of 

the indicated axes of symmetry or by some combination of these moves.  By 

doing so, we can identify six distinct permutations which can be represented as 

follows. 

 

[ ]
1

2

3

4

5

6

 the identity ( )
(1,2,3)  Recall that this permutation means 1 2, 2 3, & 3 1
(1,3,2)
(2,3)
(1,3)
(1,2)

g e
g
g
g
g
g

= = =
= → → →
=
=
=
=

 

 

We will use this example down below, so remember it.  Also, recall that we 

denote the number of elements in a set or group by putting absolute value signs 

around the symbol for that set or group.  Hence, for the group G above, we have 

6G = . 

 

And finally, recall that if H is a subgroup of a finite group G, then the left coset of 

H in G created by a G∈  is { }|aH ah h H= ∈ .  Additionally, by Lagrange’s Theorem 

(Part 9, Theorems 13 & 14), the number of left cosets of H in G is a divisor of G 
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and is denoted by [ ]:
G

G H
H

= .  Notice that even though in the past we have 

generally examined right cosets, for the proofs that follow it will be easier this 

time to deal with left cosets. 

 

Definition:  Let G be a group that acts on a set X, and let x X∈ .  The orbit of x by 

G is the set { }( ) ( )GOrbit x g x g G= ∈ .  In other words, the orbit of x consists of all 

elements of X that x can be changed into by the various elements of G. 

 

 

Theorem:  Let G be a group that acts on a set X, and let ≡  be a relation on X 

defined by x y≡  if and only if ( )y g x=  for some g G∈ .  Then ≡  is an equivalence 

relation. 

 

Proof:  Recall that we need to show that this relationship is reflexive, symmetric, 

and transitive.  Let’s begin! 

 

1. (reflexive)  Let e G∈  be the identity element in G.  Then, by definition, e 

leaves every element of X fixed so that ( )e x x= .  Hence, x x≡ and ≡  is 

reflexive. 

 

2. (symmetric)  Suppose x y≡ .  Then there exists g G∈  such that ( )g x y= .  

However, this implies that 1( )g y x− =  and that y x≡ .  Thus, ≡  is symmetric. 

 

3. (transitive)  Suppose there exist , ,x y z X∈  such that x y≡  and y z≡ .  Then 

there exist functions 1 2,g g G∈  such that 1( )g x y=  and 2 ( )g y z= .  Now let 

3 2 1g g g G= ∈ .  Then 3 2 1 2 1 2( ) ( )( ) ( ( )) ( )g x g g x g g x g y z= = = = .  Therefore, x z≡  

and ≡  is transitive. 
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It now follows that ≡  is an equivalence relation on X, and, hence, it partitions X 

into a series of disjoint subsets whose union is X.  Also, it should be clear that 

each subset of this partition represents a single orbit created by the permutations 

in G when applied to the elements in the set X.  

 

 

Corollary:  If x and y belong to the same orbit, then ( ) ( )G GOrbit x Orbit y=  and, 

consequently, ( ) ( )G GOrbit x Orbit y= .  (Recall that ( )GOrbit x  means the number of 

elements in ( )GOrbit x .) 

 

 

Definition:  Let G be a group that acts upon a set X, and let x X∈ .  Then the 

stabilizer of x by G is { }( ) ( )G xStabilizer x G g G g x x= = ∈ = . 

 

 

Theorem:  If G is a group that acts on a set X, and if x X∈ , then the stabilizer of x 

by G is a subgroup of G. 

 

Proof:  To verify that ( )G xStabilizer x G=  is a subgroup of G, we need to show that 

for every ( )G xg Stabilizer x G∈ =  we have that 1 ( )G xg Stabilizer x G− ∈ = , and that for 

every 1 2, ( )G xg g Stabilizer x G∈ = , we have that 1 2 ( )G xg g Stabilizer x G∈ = . 

 

Thus, suppose ( )G xg Stabilizer x G∈ = .  Then 1 1 1( ) ( )( ) ( ( )) ( )x e x g g x g g x g x− − −= = = = .  

Hence, 1 ( )G xg Stabilizer x G− ∈ = . 

 

Now suppose 1 2, ( )G xg g Stabilizer x G∈ = .  Then 1 2 1 2 1( )( ) ( ( )) ( )g g x g g x g x x= = = .  

Consequently, 1 2 ( )G xg g Stabilizer x G∈ = . 

 

Therefore, it now follows that ( )G xStabilizer x G=  is a subgroup of G.     
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Theorem:  If G is a finite group that acts on a set X, and if x X∈ , then the number 

of elements in the orbit of x is [ ]( ) :
( )G x

x G

G G
Orbit x G G

G Stabilizer x
= = = . 

 

Proof:  Since ( )G xStabilizer x G=  is a subgroup of G, we can consider the left cosets 

of xG  in G.  In particular, notice that if 1 2, ( )G xg g Stabilizer x G∈ = , then 

1 2( ) ( )g x x g x= = .  Now consider a left coset xhG  and suppose 1 2, xh h hG∈ .  Then 

1 1 2 2 & h hg h hg= =  for some 1 1 1
1 2 1 1 2 2 1 1 2 1 1 2 1, ( ) ( )xg g G h h g h hg h g g h g g h g− − −∈ ⇒ = ⇒ = = = =  

where 1
1 2 xg g g G−= ∈ .  Hence, 2 1 1 1 1( ) ( )( ) ( )( ) ( ( )) ( )h x h g x h g x h g x h x= = = = .  Thus, all 

elements in the same left coset of xG  yield the same value when applied to x. 

 

Furthermore, if xaG  and xbG  are two different left cosets of xG , then ( ) ( )a x b x≠  

since, otherwise, if it were true that ( ) ( )a x y b x= = , then 
1 1 1 1 1 1( )( ) ( )( ) ( ( )) ( )  for some ( )xa b x a b x a b x a y x a b g g G ag a a b− − − − − −= = = = ⇒ = ∈ ⇒ =  

1( )aa b e b b−= = ⋅ = ⇒  a and b belong to the same left coset of xG .  But this 

contradicts our assumption that x xaG bG≠ . 

 

From the above it follows that we can find all the elements in the orbit of x by 

simply picking an arbitrary function from each left coset of xG  and applying it to x.  

In particular, the number of elements in the orbit of x is the same as the number 

of left cosets of xG  in G.  Therefore, by Lagrange’s Theorem, 

[ ]( ) :
( )G x

x G

G G
Orbit x G G

G Stabilizer x
= = = .   
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Corollary:  We can also rewrite ( )
( )G

x G

G G
Orbit x

G Stabilizer x
= =  as 

( )
( )x G

G

G
G Stabilizer x

Orbit x
= = . 

 

 

Definition:  Let G be a group that acts upon a set X, and let x X∈ .  Then the fixer 

of g in X is { }( ) ( )XFixer g x X g x x= ∈ = . 

 

Theorem:  Let G be a group that acts on a set X and let 

{ }( , ) ( )  where  and A g x g x x g G x X= = ∈ ∈ .  Then the number of elements in A, 

denoted by A , is ( ) ( )G x X
x X x X g G

A Stabilizer x G Fixer g
∈ ∈ ∈

= = =∑ ∑ ∑ . 

 

Proof:  The statement is obvious once you realize that ( )G
x X

Stabilizer x
∈
∑  and 

( )X
g G

Fixer g
∈
∑  are just counting the same thing in two different ways.  In 

( )G
x X

Stabilizer x
∈
∑ , we’re fixing an x X∈  and then counting up all the functions 

g G∈  such that ( )g x x= .  And then we go on to the next x X∈ .  On the other 

hand, in ( )X
g G

Fixer g
∈
∑  we fix g G∈  and then count up the number of elements 

x X∈  such that ( )g x x= .  And then we move on to another g G∈ . 

 

As an example, suppose { }1,2,3X = , { }1 2 3 4 5 6, , , , ,G g g g g g g= , (as defined at the 

beginning of this chapter), and { }1 1 1 4 5 6( ,1),( ,2),( ,3),( ,1),( ,2),( ,3)A g g g g g g= .  Then 

6A = , and we can count this total in either of the two ways below. 
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x |Stabilizer(x)|
1 2
2 2
3 2

Sum=6      

g |Fixer(g)|
g1 3
g2 0
g3 0
g4 1
g5 1
g6 1

Sum=6  
 

In other words, 1 is stabilized by 1 4&g g , 2 is stabilized by 1 5&g g , and 3 is 

stabilized by 1 6&g g .  On the other hand, 1g  fixes 1, 2, & 3, 2 3andg g  fix no 

elements in X, 4g  fixes 1, 5g  fixes 2, and 6g  fixes 3.  Either way, the final sum is 

the same.  Thus, ( ) ( )G x X
x X x X g G

A Stabilizer x G Fixer g
∈ ∈ ∈

= = =∑ ∑ ∑ .   

          

 

 

Burnside’s Counting Theorem:  If G is a finite group that acts on a set X, then the 

number of orbits created by G acting on X is 

1 1 1( ) ( )x G X
x X x X g G

G Stabilizer x Fixer g
G G G∈ ∈ ∈

= =∑ ∑ ∑ . 

 

Proof:  At this point, we have pretty much developed all the pieces of the puzzle, 

and we just need to put them together.  Recall that our corollary above says that 

( )
( )x G

G

G
G Stabilizer x

Orbit x
= = .  Hence,  

1 1 1 1
( )( ) ( )G Gx X x X x X x

x
XG

G
G G G Or

G
G

Or bit x Orbit xbit x∈ ∈ ∈ ∈

= = =∑ ∑ ∑ ∑ .  Now what is this last 

expression going to add up to?  Well, suppose, for example, that one particular 

orbit by a group G contains just three points – a, b, and c.  In this case, 

( ) ( ) ( )G G GOrbit a Orbit b Orbit c= = , and ( ) ( ) ( ) 3G G GOrbit a Orbit b Orbit c= = = .  

Consequently, 1 1 1 1 1 1 1
( ) ( ) ( ) 3 3 3G G GOrbit a Orbit b Orbit c

+ + = + + = .  Similarly, if an orbit 

produced by a group G consisted of four elements, d, e, f, and g, then we would 
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have 1 1 1 1 1 1 1 1 1
( ) ( ) ( ) ( ) 4 4 4 4G G G GOrbit d Orbit e Orbit f Orbit g

+ + + = + + + = .  Thus, if we 

arrange the sum 1
( )Gx X Orbit x∈

∑  in such a way that we add up all the terms 

corresponding to the elements of one orbit before going on to the next orbit, then 

the sum simply becomes 1 1 1+ + +…  where the term “1” occurs as many times as 

there are distinct orbits in X produced by the action of the group G.  In other 

words, 1 1 1 1
( ) ( ) ( )x

G G Gx X x X x X x X

G G
G

G G Orbit x G Orbit x Orbit x∈ ∈ ∈ ∈

= = =∑ ∑ ∑ ∑  is equal to the 

total number of orbits produced on X by G.  And since one of our theorems 

above demonstrated that ( ) ( )G x G
x X x X g G

Stabilizer x G Fixer g
∈ ∈ ∈

= =∑ ∑ ∑ , we can also 

write this result as 1 1( ) ( )G X
x X g G

Stabilizer x Fixer g
G G∈ ∈

=∑ ∑  is equal to the number of 

orbits on X produced by G.   

          

 

 

Example 1:  Let’s apply this theorem to the example at the top of this chapter 

where G is the group of six permutations we can make of the elements of 

{ }1,2,3X = . 
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1

2

3

4

5

6

 the identity ( )
(1,2,3)
(1,3,2)
(2,3)
(1,3)
(1,2)

g e
g
g
g
g
g

= = =
=
=
=
=
=

 

 

On the one hand, it should be clear that there is only one orbit consisting of 

{ }1,2,3 .  This is true because we can change each of these elements into any of 

the others just by repeated applications of a clockwise rotation of our triangle. 

 

x |Stabilizer(x)|
1 2
2 2
3 2

Sum=6      

g |Fixer(g)|
g1 3
g2 0
g3 0
g4 1
g5 1
g6 1

Sum=6  
 

Additionally, by counting up for each x X∈  the number of elements in ( )Stabilizer x , 

and by counting up for each g G∈  the number of elements in ( )Fixer g , we obtain 

the same result from Burnside’s Counting Theorem, 

 

1 1 1( ) ( ) 6 1
6G X

x X g G

Stabilizer x Fixer g
G G∈ ∈

= = ⋅ =∑ ∑  

 

 

Example 2:  Let { }1,2,3,4X =  and let { }( ),(1,2),(3,4),(1,2)(3,4)G = , 4G = .  This 

group is called the Klein 4-group, and it is analogous to the states that can result 

when you have two lamps, one to your left and one to your right.  You can leave 

both lamps off (the identity), or you can turn on the lamp on your left, or you can 

turn on the lamp on your right, or you can turn on both lamps.  Each transposition 
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in our group G, (1,2) and (3,4) , is analogous to flipping a switch on a lamp, thus 

turning the lamp on or off. 

 

Now as for the number of orbits that X will have under the action of G, it should 

be clear that there are two.  We can change 1 to 2 and we can change 3 to 4 and 

that’s it.  Hence, we might write { }1 1,2Orbit =  and { }2 3,4Orbit = .  And if we count 

the orbits using Burnside’s Counting Theorem, then once again we get the same 

result. 

 
x |Stabilizer(x)|
1 2
2 2
3 2
4 2

Sum=8     

g |Fixer(g)|
(  ) 4

(1,2) 2
(3,4) 2

(1,2)(3,4) 0
Sum=8  

 

Hence, 1 1( ) 8 2
4G

x X

Stabilizer x
G ∈

= ⋅ =∑  and 1 1( ) 8 2
4X

g G

Fixer g
G ∈

= ⋅ =∑ . 

 

 

Example 3:  Let { }1,2,3X =  and let { }( ),(1,2,3),(1,3,2)G = , 3G = .  Again, since the 

permutations in G can change 1 into 2 and 1 into 3, there should be only one 

orbit, { }1 1,2,3Orbit = .  We can confirm this using Burnside’s Counting Theorem. 

 
x |Stabilizer(x)|
1 1
2 1
3 1

Sum=3     

g |Fixer(g)|
(  ) 3

(1,2,3) 0
(1,3,2) 0

Sum=3  
 

Thus, the number of orbits is 1 1 1( ) ( ) 3 1
3G X

x X g G

Stabilizer x Fixer g
G G∈ ∈

= = ⋅ =∑ ∑ . 
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Notice, too, that if we label the vertices of an equilateral triangle with the numbers 

1, 2, and 3, then we can interpret the permutations in G as corresponding to 

clockwise rotations of 0° , 120° , and 240° , respectively. 

 

Example 4:  Let X equal the set of all distinct arrangements of the numbers 1, 2, 

and 3 on the vertices of an equilateral triangle, and let { }( ),(1,2,3),(1,3,2)G = , 

3G = . 

 

Notice that the permutations in our group G can once again be thought of as 

clockwise rotations of our triangle through angles that are multiples of 120° , but 

our set X is different from what it was in the previous example.  In particular, X is 

comprised of the following six arrangements: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using Burnside’s Counting Theorem, we discover that there are two orbits. 

1

23

1

23

3

12

3

12

2

31

2

31

1

32

1

32

2

13

2

13

3

21

3

21
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x |Stabilizer(x)|
1 1
2 1
3 1
4 1
5 1
6 1

Sum=6     

g |Fixer(g)|
(  ) 6

(1,2,3) 0
(1,3,2) 0

Sum=6  
 

The number of orbits is 1 1 1( ) ( ) 6 2
3G X

x X g G

Stabilizer x Fixer g
G G∈ ∈

= = ⋅ =∑ ∑ . 

 

Notice that 1Orbit  could be the configurations of the triangles in the first row 

above, and 2Orbit  corresponds to the configurations in the second row above. 

 

 

Example 5:  Suppose you have four colors, red, green, blue, and yellow, and you 

paint each edge of a square a different color, and let X be the set of all possible 

color configurations.  For example, one such configuration could be top=red, 

bottom=blue, left=green, and right=yellow, and another possible configuration 

would be top=green, bottom=red, left=blue, and right=green.  In all, the number 

of possible configurations is 4! 4 3 2 1 24= ⋅ ⋅ ⋅ = .  This is because we have four 

choices for the top color, then three left for the bottom color, two choices for the 

left side color, and then only one choice left for the right side color.   

 

For our group, we will use 4D , the symmetries of a square.  In other words, we 

can rotate our square clockwise through angles that are integer multiples of 90° , 

or we can flip our square about any of four axes of symmetry.   

 

 

 

 

 

1 2

34

1 2

34
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The number of elements in this group is eight, 4 8D = , and if we label the vertices 

of our square 1, 2, 3, and 4, then we can represent 4D  as the following set of 

permutations, { }4 ( ),(1,2,3,4),(1,4,3,2),(2,4),(1,3),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)D = . 

 

If two color configurations are in the same orbit, then we can change one into the 

other through some sequence of rotations and flips.  Thus, the number of truly 

distinct color configurations possible is equal to the number of orbits in X created 

by 4D .  Fortunately, this is easy to count.  All we need to realize is that the 

identity keeps all 24 color configurations fixed while every other rotation or flip 

keeps none of the color configurations fixed (even though some vertices may 

remain fixed).   

 
g |Fixer(g)|

(  ) 24
(1,2,3,4) 0
(1,4,3,2) 0

(2,4) 0
(1,3) 0

(1,2)(3,4) 0
(1,3)(2,4) 0
(1,4)(2,3) 0

Sum=24  
 

Hence, the number of orbits is 
4

44 4

1 1 1( ) ( ) 24 3
8D X

x X g D

Stabilizer x Fixer g
D D∈ ∈

= = ⋅ =∑ ∑ . 

 

 

Example 6:  We’ll now give a quick answer to the problem we posed at the 

beginning of this chapter where we can paint the six faces of a cube with six 

colors such that each color is used only once.  This allows for 

6! 6 5 4 3 2 1 720= ⋅ ⋅ ⋅ ⋅ ⋅ =  ways to paint the cube.  However, we also allow rotations 

that are integer multiples of 90°  in any of six directions, and this will make some 

of our coloring schemes equivalent to others.  In particular, two color schemes 



 51

will be equivalent if the are in the same orbit created by our rotation group G, and 

so the number of distinct color schemes will be the same as the number of orbits 

that G creates when it acts on our colored cube.  Using the same logic as before, 

we can say that the identity of our group fixes all 720 coloring schemes, but 

every other element in G changes one color scheme into another.  Thus, the total 

number of coloring schemes fixed by G is 720.  Now, however, we need to know 

how many elements there are in G, but that’s not hard to count if we realize that 

our cube has four diagonal lines going through the center, and our usual 90°  

rotations can create any possible permutation of these four diagonal lines.   

 

 
 

Alternatively, think of taking a typical Rubik’s cube and trying to count the 

different ways you can rotate it so that in the end everything is still oriented the 

same with respect to top, bottom, front, back, left, and right.  In this case, you 

could say that we have 6 choices for the color you want on top, 4 choices for the 

color you want in front, and then everything else is determined by that.  Hence, 

we can count the number of elements in G either as 6 4 24G = ⋅ =  or 

4! 4 3 2 1 24G = = ⋅ ⋅ ⋅ = , and from this it follows that the number of orbits created by 

G for the coloring schemes for our cube is 

1 1 1( ) ( ) 720 30
24G X

x X g G

Stabilizer x Fixer g
G G∈ ∈

= = ⋅ =∑ ∑ .  In other words, there are 30 

ways to color the faces of our cube that are distinct from one another when we 

allow for rotations of the cube. 
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Mathematical Induction 

 
Mathematical induction is a standard proof technique for showing that some 

proposition P about natural numbers holds true for all n∈  where, as a reminder, 

{ }1,2,3,4,= … .  The basic idea is that you prove your proposition is true for some 

starting point such as 1n = , and then you prove that if it is true for some arbitrary 

natural number n, then it’s true for n+1.  If you prove both of these things, then 

you’ve established that your proposition is true for 1n = , and if it’s true for 1n = , 

then it’s true for 2n = , and if it’s true for 2n = , then it’s true for 3n = , and so on 

and so on. 

 

Mathematical Induction:  If P is a proposition about natural numbers n∈ , then P 

is true for all n∈  if, 

1. P is true for 1n = , and 

2. P true for n∈ ⇒  P is true for 1n + ∈ . 

 

There are several variations we can do of this basic principle.  For example, if we 

begin by showing that P is true for 0n = , then we could possibly prove that P is 

true for all whole numbers { }0,1,2,3,4,W = … .  Similarly, if we started our argument 

by showing that P is true for 10n = , then a successful induction argument could 

show that P is true for all natural numbers greater than or equal to 10.  Another 

variant form of mathematical induction is shown below. 

 

The Second Principle of Mathematical Induction:  If P is a proposition about 

natural numbers n∈ , then P is true for all n∈  if, 

1. P is true for 1n = , and 

2. P true for all natural numbers less than n∈ ⇒  P is true for n∈ . 
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We’ll now give a few examples of proofs that use mathematical induction. 

 

Prove: 
1

( 1)
2

n

k

n nk
=

+=∑  for all n∈ . 

 

Proof:  Let 1n = .  Then 
1

1

1(1 1) 2 1
2 2 k

k
=

+ = = =∑ .  Hence, the statement is true for 1n = .  

Assume now that the statement is true for some natural number n, and consider 

if it is true for 1n + .  Clearly, 

[ ]1

1 1

( 1) ( 1) 1( 1) ( 1) 2( 1) ( 1)( 2)1 1 .
2 2 2 2

n n

k k

n nn n n n n n nk k n n
+

= =

⎛ ⎞ + + ++ + + + + += + + = + + = = =⎜ ⎟
⎝ ⎠

∑ ∑  

Hence, if the formula is true for n, then it is also true for 1n + .  Therefore, by 

mathematical induction, 
1

( 1)
2

n

k

n nk
=

+=∑  for all natural numbers n.   

 

 

 

Prove: 2

1

( 1)(2 1)
6

n

k

n n nk
=

+ +=∑  for all n∈  

 

Proof:  Let 1n = .  Then 
1

2

1

1(1 1)(2 1) 6 1
6 6 k

k
=

+ + = = =∑ .  Hence, the statement is true for 

1n = .  Assume now that the statement is true for some natural number n, and 

consider if it is true for 1n + .  Clearly, 

 

[ ]

[ ][ ]

1 2
2 2 2

1 1

2

( 1) (2 1) 6( 1)( 1)(2 1) 6( 1)( 1)
6 6 6

( 1) 2 7 6 ( 1) ( 1) 1 2( 1) 1( 1)( 2)(2 3) .
6 6 6

n n

k k

n n n nn n n nk k n

n n n n n nn n n

+

= =

⎛ ⎞ + + + ++ + += + + = + =⎜ ⎟
⎝ ⎠
⎡ ⎤+ + + + + + + ++ + +⎣ ⎦= = =

∑ ∑
.   

Hence, if the formula is true for n, then it is also true for 1n + .  Therefore, by 

mathematical induction, 2

1

( 1)(2 1)
6

n

k

n n nk
=

+ +=∑ for all natural numbers n.   
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As a final exercise, see if you can find the flaw in the following inductive 

argument that all horses are the same color. 

 

By way of induction, suppose that you have a set containing 1n =  horses.  Then 

clearly all the horses in that set are the same color.  Now assume that it is true 

that in any set of n horses, all the horses have the same color (our induction 

hypothesis).  At this point we want to argue that it is also true that any set of 

1n + horses  will also all be the same color.  Thus, suppose we are given a set 

containing 1n +  horses.  If we remove one horse, then by our inductive 

hypothesis the remaining n horses will all be the same color.  Now return the 

horse we originally removed and remove a different horse.  Then once again our 

inductive hypothesis states that the resulting set of n horses all have the same 

color.  From this it follows that the two horses we successively removed have the 

same color, and therefore, all of the horses in our set of 1n +  horses have the 

same color.  It now follows by mathematical induction that for any set of n horses, 

n∈ , all the horses have the same color. 

 

 

Solution:  In the reading of the above argument, one often imagines a case 

where we might have, for example, 10 horses.  We remove one horse, and then 

our induction hypothesis says that the remaining 9 horses are all the same color.  

We then replace our first horse, remove another horse, and again our induction 

hypothesis says that the remaining 9 horses are all the same color.  And then 

finally, we conclude that because of the overlap of the two situations that all 10 

horses are the same color.  It is, indeed, clear that the induction argument works 

for the case of 10n = .  However, where the argument breaks down is for 2n= .  

When we have 2 horses, then we can remove either one, but the resulting 

singleton sets this time have no intersection or overlap, and thus, we can’t 

conclude that the two horses have to be of the same color.  This is the one break 

in the chain of the induction argument that at first glance would appear to prove 

the assertion true for all natural numbers n. 
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conjugal math 
 

 

We’ve already introduced the definition of the conjugate of x by a as being the 

product 1ax a xa−= .  However, many group theorists prefer to define the conjugate 

slightly differently as 1ax axa−= , and so below we’ll switch to that definition so that 

you can become more familiar with it.  Remember, though, that in the long run, it 

really doesn’t make any difference which definition you use because if a G∈ , 

then 1a G− ∈  also, and both conjugates, 1axa−  and 1a xa− , will reside in G.  

Additionally, another change in notation we will make is that we will use the 

symbol " "∼  instead of " "≡  to denote an equivalence relation.  Again, both 

symbols have been used for this purpose, and it’s good to be familiar with 

several different notations for a particular concept.  For the same reason, we will 

also work with left cosets this time instead of right cosets.  And with that said, 

let’s explore conjugates in greater depth! 

 

 

Conjugates, Conjugacy Classes, and Conjugate Subgroups 

 

The main goal in this first section is to present a few basic mathematical facts 

about conjugates, and because these are just basic facts, we’ve color coded both 

the definitions and theorems with blue.   Enjoy! 

 

Definition:  Let G be a group and let ,x a G∈ .  Then the conjugate of x by a is 
1axa− . 

 

In Part 2 we introduced the idea of an equivalence relation which generalizes the 

notion of equality.  In particular, for a condition to be an equivalence relation, it 

must be reflexive, symmetric, and transitive just like equality is.  And now we’ll 

prove that if we divide a group G into subsets of elements that are conjugate to 
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one another, then that results in an equivalence relation among the elements of 

the group G. 

 

Theorem A:  Let G be a group.  Then conjugacy of elements in G is an 

equivalence relation. 

 

Proof:  Let x y∼  mean that x is conjugate to y.  In other words, x y∼  implies that 

there exists a G∈  such that 1axa y− = .  Then to show that conjugacy of elements 

in G is an equivalence relation we have to show that it is reflexive, symmetric, 

and transitive. 

 

1. (reflexive):  Let x G∈  and let e be the identity element in G.  Then the 

conjugate of x by e is 1exe exe xe x− = = = .  Therefore, x x∼ , and ∼  is reflexive. 

 

2. (symmetric):  Let ,x y G∈  such that x is conjugate to y.  Then there exists a G∈  

such that 1axa y− = .  Hence, the conjugate of y by 1a−  is 
1 11 1 1( ) ( ) ( )y axa a aa a a a x exea a x− − −− −= = = = .  Therefore, if x y∼ , then y x∼  and, thus, 

∼  is symmetric. 

 

3. (transitive):  Suppose x y∼  and y z∼  for some , ,x y z G∈ .  Then there exists 

,a b G∈  such that 1axa y− =  and 1byb z− = .  Hence, 
1 111 1 1( ( ) () )( ) ( )y axa baz b b b b x a b ba bax− − − −− −= == = =  which implies that x z∼  and, thus, 

∼  is transitive. 

 

Therefore, it now follows that conjugacy of elements is an equivalence relation on 

G.  

 

 

A consequence of conjugacy defining an equivalence relation on G is that G can 

be partitioned into a collection of disjoint subsets whose union is G, and the 
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elements in each subset are conjugate to one another.  Furthermore, the number 

of elements in G is equal to the sum of the number of elements in each individual 

conjugacy class.  Also, notice that the different conjugacy classes need not be 

the same size.  For example, the conjugacy class of the identity is just the 

identity since for each a G∈  we always have that 1 1e aa a ea− −= = .  However, it is 

reasonable to expect that other conjugacy classes will exist that consist of more 

than one element, and the following theorem shows that this will always be the 

case if G is nonabelian. 

 

Theorem B:  G is abelian if and only if every conjugacy class in G contains just 

one element. 

 

Proof:  Suppose G is ableian and let ,x a G∈ .  Then 1 1 1xa a x aa xea a x x− − −= = = = .  

Thus, the conjugacy class of x contains just one element.  Now suppose that for 

all x G∈  that the conjugacy class of x contains just one element.  Then we know 

this element must be x since 1exe x− = .  Hence, it follows that the conjugate of x 

by any y G∈  also equals x.  Thus, if ,x y G∈ , then  
1 11 ( ) ( )yx y y y yy x yxy x yx xy yx xy yx xe y− − −= ⇒ = ⇒ = ⇒ = ⇒ = .  Therefore, G is ableian. 

          

 

Corollary B:  The above theorem is logically equivalent to saying that G is 

nonabelian if and only if there exists a conjugacy class in G that contains more 

than just one element. 

 

And now, for future reference we are just going to restate without proof Theorem 

22 from Part 9 and then we will move toward some deeper results regarding 

conjugates. 

 

Theorem 22 (Part 9):  Let G be a group, H a subgroup of G, and let a G∈ .  Then 
1aHa−  is a subgroup of G where { }1 1 |aHa aha h H− −= ∈ . 
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From Theorem 22 (Part 9) we know that the conjugate of a subgroup is another 

subgroup.  We’ll now show that the relation of two subgroups being conjugate to 

one another is an equivalence relation. 

 

Theorem C:  Let G be a group, let 1H  and 2H  be subgroups of G, and define a 

relation ∼  by 1 2H H∼  if and only if there exists a G∈  such that 1
2 1H aH a−= .  Then 

∼  is an equivalence relation. 

 

Proof:  As usual, we need to show that ∼  is reflexive, symmetric, and transitive. 

 

1.  (reflexive):  If H is a subgroup of G, then since 1H eHe eHe−= = , H H∼  and, 

hence, ∼  is reflexive. 

 

2.  (symmetric):  If 1H  and 2H  are subgroups of G with 1 2H H∼ , then there exists 

a G∈  such that 1
2 1H aH a−= .  Consequently, it follows that 1

1 2H a H a−=  and 2 1H H∼ .  

Thus, ∼  is symmetric. 

 

3.  (transitive):  Suppose 1 2 3, ,  and H H H  are subgroups of G with 1 2H H∼  and 

2 3H H∼ .  Then there exist ,a b G∈  such that 1
1 2aH a H− =  and 1

2 3bH b H− = .  Hence, 
1 1 1 1

2 1
1 1

3 1 1( ( )) ( ) ( ) ( )H aH a baH b b b a b bab H H ba− −− − − −= = = =  implies that 1 3H H∼ .  

Therefore, ∼  is transitive, and, hence, ∼  is an equivalence relation.   

 

 

In our chapter, A Third Application, from Part 10 we proved that  if G is a group, 

g G∈ , and :gf G G→  is defined by 1( )gf a g ag−=  for every a G∈ , then gf  is an 

automorphism, an isomorphism from G onto G, and likewise it is so when we 

define 1( )gf a gag −= .  In particular, we call such an isomorphism an inner 

automoprhism.  A consequence of this and the above Theorem 22 is the 

following result.   
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Theorem D:  If G is a finite group, 1H  and 2H  are subgroups of G, and a G∈  

such that 1
1 2aH a H− = , then 1 2H H= . 

 

Proof:  In order to show that 1 2H H= , it suffices to show that 1 2:af H H→  defined 

by 1( )af x axa−=  is a bijection (one-to-one and onto).  But we already know this 

from the theorem mentioned above that we proved in the chapter titled A Third 

Application.  This theorem tells us that :af G G→  defined by 1( )af x axa−=  is an 

isomorphism.  Hence, if we simply restrict the domain of af  to any subset of G 

and then look at the image of that subset under af , then the result will also be a 

bijection.  Therefore, 1 2:af H H→  is a bijection, and it follows that 1 2H H= . 

  

 

 

 

Centers, Centralizers, the Class Equation, and Cauchy’s Theorem 

 

Everything is this section is geared toward proving Cauchy’s Theorem that says 

that if a prime p divides the order of a group G, then G has a subgroup of order p, 

and we’ve highlighted all the definitions and theorems in red to show that they 

belong together.  Also, in Part 2 we previously defined the center of a group as 

the set of all elements in the group that commute with every other element.  We’ll 

now introduce the notion of a centralizer of a single element, and you’ll see that 

its definition is similar to that of the center of a group.  Additionally, the centralizer 

is going to be central (pun intended!) to our development of the Class Equation. 

 

Definition:  Let a G∈ , a group.  Then the centralizer of a in G, denoted by ( )GC a , 

is the set of all elements in G that commute with a.  Notice that ( )GC a  is never 

empty since , ( )Ge a C a∈ . 
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Our next step is to establish that the centralizer of an element a is always a 

subgroup of our group G. 

 

Theorem E:  ( )GC a  is a subgroup of G. 

 

Proof:  To show that ( )GC a  is a subgroup of G, we need to show that for every 

( )Gx C a∈  that 1 ( )Gx C a− ∈ , and we need to show that for every , ( )Gx y C a∈  that 

( )Gxy C a∈ . 

 

We’ll first establish the existence of inverses.  Thus, suppose ( )Gx C a∈ .  Then 
1 11 1 1 1 1 ( )Gx x xxa ax a eax a x ax x a a x Cx a− −− − −− −= ⇒ = ⇒ = ⋅ = ⋅ = ⇒ ∈ . 

 

Now we’ll show closure under multiplication.  Thus, suppose , ( )Gx y C a∈ .  Then 

( ) ( ) ( ) ( ) ( ) ( )xy ya ay xa axa x x y xy a y= = = = = .  Thus, ( )Gxy C a∈ , and, therefore, ( )GC a  

is a subgroup of G.  

 

 

And now we’ll show that if ( )GC a  is the centralizer of a in a group G, then 

elements from the same left coset of ( )GC a  in G will always produce the same 

conjugate of a in G.  And a consequence of this will be that the number of distinct 

conjugates of a in G is equal to the number of left cosets of ( )GC a  in G. 

 

Theorem F:  If ( )GC a  is the centralizer of a in a group G, then 1 1xax yay− −=  for 

,x y G∈  if and only if x and y belong to the same left coset of ( )GC a  in G.   

 

Proof:  Suppose x and y belong to the same left coset of ( )GC a  in G.  Then x hy=  

for some ( )Gh C a∈ .  Recall, also, that since ( )Gh C a∈ , then, by definition, h 

commutes with a.  Hence, 

 1 1 1 1 1 11 1 1 1( ) ( ) ( )( ) ( )( ) ( )yh yh ha h y ahxax a y y h y ya yh y yayh yea− − − −− − − − − −= = = = = = . 
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Now suppose that 1 1xax yay− −= .  Then 

 1 1 1 1 11 1 1( ) ( ) ( ) ( )Gxax ay x ax ay ay y a yy x C ax y x− − − − − − −−= ⇒ = ⇒ = ⇒ ∈  which means that 

there exists ( )Gh C a∈  such that 1y x h− = .  Hence, 1 1( ) ( )yh y x y ey y x x x− −= = = = , 

( )Gh C a∈ , which implies that x and y belong to the same left coset of ( )GC a  in G.  

 

 

Corollary F:  If ( )GC a  is the centralizer of a in a finite group G, then the number of 

distinct conjugates of a in G is the same as the number of left cosets of ( )GC a  in 

G, and by Lagrange’s Theorem, this number is [ ]: ( )
( )G

G

G
G C a

C a
= . 

 

Recall that we noted previously that the number of elements in a finite group G, 

G , is equal to the sum of the number of elements in each distinct conjugacy 

class  of G.  Also, from Corollary F above it follows that the number of elements 

in a conjugacy class containing a particular a G∈  is [ ]: ( )
( )G

G

G
G C a

C a
= , and from 

this it follows that 
( )Ga

G
G

C a
=∑  where for each distinct conjugacy class, a G∈  

represents a single representative from that class.  In other words, begin by 

picking a G∈ .  Then its conjugacy class is the set of all elements that a G∈  is 

conjugate to, and the number of elements in this conjugacy class to is equal to 

( )G

G
C a

.  If there now exists b G∈  such that a  is not conjugate to b , then we can 

add on to this the number of elements that are conjugate to b .  In other words, 

form the sum 
( ) ( )G G

G G
C a C b

+ .  And now we can continue in this manner until we 

have accounted for each element in G, and when we arrive at that point, then we 

will have that the number of elements in G is equal to the sum of the number of 

elements in each conjugacy class in G.  That is, 
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( ) ( ) ( ) ( )G G G Ga

G G G G
G

C a C b C m C a
= + + + =∑…  where for each distinct conjugacy 

class, a G∈  represents a single representative from that class. 

 

Recall now once again the definition of the center of a group that was first 

introduced in Part 2. 

 

Definition:  The center of a group G, denoted by ( )Z G , is the set of all elements in 

G that commute with every other element in G. 

 

Since each element in ( )Z G , the center of G, creates a conjugacy class with only 

one element (itself) in it, we can rewrite the above equation 
( )Ga

G
G

C a
=∑ as 

follows, and this is what is usually known as the Class Equation: 

 

The Class Equation:  The order of a group G is 
( )

( )
( )Ga Z G

G
G Z G

C a∉

= + ∑  where 

 such that ( )a G a Z G∈ ∉  and in our summation only a single a G∈  is chosen from 

each distinct conjugacy class that contains more than one element. 

 

We’re now going to go down a path that will ultimately show us that if a prime p 

divides the order of a finite group, then our group has a subgroup of order p.  

Enjoy the ride! 

 

Definition:  If nG p=  for p a prime, then G is called a p-group. 

 

Theorem G:  If G is a p-group, nG p=  for p a prime, then ( ) 1Z G > . 

 

Proof:  Let ( )z Z G= .  Then 1z ≥  since ( )e Z G∈ .  Also, if ( )Z G G≠ , then there 

exists b G∈  such that ( )b Z G∉ .  Furthermore, the centralizer of b in G, ( )GC b , is a 
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proper subgroup of G since, otherwise, if we had ( )GC b G= , then everything in G 

would commute with b, and b would be an element of ( )Z G .  Thus, it also follows 

that ( ) ( )GZ G C b G< < , and by Lagrange’s Theorem, ( )GC b  divides G .  Since 

nG p= , it now follows that ( ) m
GC b p=  where 1 m n≤ <  (NOTE: 0m ≠  since both e 

and b belong to ( )GC b ).  In particular, we’ll denote the power of p that 

corresponds to the order of ( )GC b  by bm , and we’ll write ( ) bm
GC b p= .  The rest 

now follows easily from the Class Equation.  By this equation, 

( )

( )
( )

n

Gb Z G

G
G p Z G

C b∉

= = + ∑  where ( )b Z G∉  and we choose only one b from each 

of the distinct conjugacy classes.  The Class Equation can clearly be rewritten as 

( )

( )
( )Gb Z G

G
G Z G

C b∉

− =∑  which now implies that 
( )

( )
b

n
n

m
b Z G

pp Z G
p∉

− =∑ .  Also, since 

for each term in our summation, bm n< , it follows that p can be factored out of 

each term on the left-hand side of the equation to give us 
1

1 ( )
b

n
n

m
b

pp p Z G
p

−
−⎡ ⎤
− =⎢ ⎥

⎣ ⎦
∑ .  

Since p divides the left-hand side of this equation, it must also divide the right-

hand side, and, thus, ( ) 1Z G > .  In particular, ( )Z G  is at least p.  

 

 

Corollary G:  If nG p= , p a prime, then ( ) kZ G p=  where k∈ , the counting 

numbers, and 1 k n≤ ≤ . 

 

Definition:  Suppose m and n are natural numbers such that their only common 

natural number divisor is 1.  Then we say that m and n are relatively prime. 

 

As an example, neither 6 nor 35 is prime, but they are relatively prime since their 

only common natural number divisor is 1. 
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This next theorem proves a basic fact that we will then use in the proof of the 

theorem that follows it.   

 

Theorem H:  If H and N are subgroups of G with N G , then 

{ }| andHN hn h H n N= ∈ ∈  is a subgroup of G, 

 

Proof:  Let H and N be subgroups of G with N G .  To show that HN is a 

subgroup, we need to show closure and existence of Inverses.  Thus, let 1 1h n  and 

2 2h n .be elements of HN where 1 2,h h H∈  and 1 2,n n N∈ , and consider 1 1 2 2h n h n⋅ .  

Since N G , there exists 3n N∈  such that 1 2 2 3n h h n= .  Hence, 

1 2 11 2 3 21n h hh n h n Hn N= ∈ , and HN is closed under multiplication. 

 

Now consider hn HN∈ .  Then 1 1 1( )hn n h− − −= .  However, again since N G , we 

have that there exists 3n N∈  such that 1 1 1 1
3( )hn n h h n HN− − − −= = ∈ , and hence, 

inverses exist in HN.  Therefore, HN is a subgroup of G.  

 

 

Corollary H:  If G is abelian and 1H  and 2H  are both subgroups of G, then 

{ }1 2 1 2 1 2| ,H H h h h h G⋅ = ∈  is a normal subgroup of G. 

 

Proof:  Since G is abelian, all of its subgroups are normal.  Hence, 1 2H H⋅  is a 

normal subngroup of G. 
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Theorem I:  Suppose G is abelian and nG p m=  where p is prime and p & m are 

relatively prime.  Then G has a subgroup of order p. 

 

Proof:  Let x G∈ . 

 

(Case 1)  If the order of the cyclic subgroup generated by x is p , then we’re done. 

 

(Case 2)  If the order of the cyclic subgroup generated by x is kp  with 2 k n≤ ≤ , 

(i.e. kx p= ), then 
1

k

k
p

ppx x
−

=  generates a subgroup of this cyclic group 

generated by x such that this subgroup has order p, 
1kpx p
−⎛ ⎞=⎜ ⎟

⎝ ⎠
, where 

1 1
( )

k k kp p p p px x x e
− − ⋅= = = , and we are done.   

 

(Case 3)  If kx p q=  where 1q >  and 1 k n≤ ≤ , q divides m, and p & q are 

relatively prime, then 
1

k

k
p q

p qpx x
−

=  generates a subgroup of x  of order p since 
1 1

( )
k k kp q p p q p p qx x x e
− − ⋅= = = , and again, we are done.   

 

(Case 4)  Suppose that for every non-trivial element ix  of G we have that 

i ix q=  where, regardless of the value of i, 1iq > , iq  divides m, and p & iq  are 

relatively prime.  Then G is generated by such non-trivial elements since, by 

hypothesis, every non-trivial element in G is of this type.  Now, let 1,..., ka a  be a 

minimal set of such elements that can be used to generate G, let 

1 1 ,..., k kH a H a= = , and suppose 1 1,..., k kH m H m= = .  Then each of 1,..., km m  

divides m, and thus, each of 1,..., km m  is relatively prime to p.  Now consider 

1 2H H⋅ .  Since G is abelian, we know that 1 2H H⋅  is a normal subgroup of G, and 

by the second isomorphism theorem it follows that 1 1 2

1 2 2

H H H
H H H

⋅≅
∩

.  But his 
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implies that 1 1 2 1 21 1 2
1 2

1 2 2 1 2 2 1 2

H H H H HH H H H H
H H H H H H H H

⋅ ⋅⋅= ⇒ = ⇒ = ⋅
∩ ∩ ∩

.  Notice, 

too, that 1 2H H∩  is a subgroup of both 1H  and 2H , and since 1H  and 2H  are 

both relatively prime to p and since 1 2H H∩  divides both 1H  and 2H , it follows 

that 1 2H H∩  is also relatively prime to p.  Now consider this.  Since 

1 2
1 2

1 2

H H
H H

H H
⋅

⋅ =
∩

, it follows that the largest 1 2H H⋅  can be is 1 2H H⋅  and this 

happens if 1 2H H e=∩ .  However, if 1 2H H e≠∩ , then we still have that 

1 2
1 2

1 2

H H
H H

H H
⋅

⋅ =
∩

, and since the numbers in both numerator and denominator 

are both relatively prime to p, it follows that their ratio is also relatively prime to p.  

If we now continue multiplying subgroups together, then we will have that 

1 2 kG H H H= ⋅ ⋅ ⋅…  and by repeating our previous argument that 1 2 kH H H⋅ ⋅ ⋅…  is 

relatively prime to p.  But this is a contradiction since 1 2
n

kH H H G p m⋅ ⋅ ⋅ = =… is 

not relatively prime to p.  Thus, case 4 can’t occur, and our theorem is proved by 

cases 1 through 3. 

          

 

Corollary I:  If G is abelian and nG p=  where p is a prime, then G has a 

subgroup of order p. 

 

Cauchy’s Theorem:  If G is a finite group and p is a prime such that p divides 

n G= , then G has  cyclic subgroup of order p. 

 

Proof:  We’ll let p be a prime, and we’ll proceed by induction on n, the order of 

the group.  In this case, the smallest possible value for G  such that a prime p 

divides G  is p itself.  But in this case, every nontrivial element of G generates a 

cyclic subgroup of order p, and the theorem is true for n p= .  Thus, let’s assume 

that G n p= > , where p divides n, and by way of induction we’ll also assume that 
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if G has a subgroup H of any order m n<  such that p divides m, then H (and, 

hence, G) has a cyclic subgroup of order p.  We’ll now extend this result to the 

case m n= . 

 

If G is abelian, then the result has already been established by Theorem I and 

Corollary I.  Thus, assume that G is not abelian and let x G∈  such that ( )x Z G∉ , 

the center of G.  Note that if there were no elements in G that did not belong to 

the center, then G would be abelian.  Also, let ( )GC x  be the centralizer of x, the 

set of all elements of G that commute with x.  Then ( )GC x G<  since, otherwise, 

we would have ( )GC x G=  which would mean that every element in G would 

commute with x, and, hence, x would belong to ( )Z G .  Thus, ( )GC x G< , and if p 

divides ( )GC x , then our induction hypothesis tells us that ( )GC x  has a cyclic 

subgroup of order p, and, thus, G has a cyclic subgroup of order p, and we’re 

done.  Hence, assume that p doesn’t divide ( )GC x . 

 

If p divides G  but p does not divide ( )GC x , then clearly p must divide 
( )G

G
C x

.  

Now consider the Class Equation 
( )

( )
( )Gx Z G

G
G Z G

C x∉

= + ∑  where ( )x Z G∉  and we 

pick just one x from each conjugacy class that doesn’t contain elements of the 

center, ( )Z G .  If we rewrite this equation as 
( )

( )
( )Gx Z G

G
G Z G

C x∉

− =∑ , then p 

divides the left-hand side of this equation, and so it must divide ( )Z G  as well.  

But since ( )Z G  is abelian, Theorem I and Corollary I guarantee that ( )Z G  has a 

cyclic subgroup of order p, and this subgroup is a subgroup of G as well.  

Therefore, G has a cyclic subgroup of order p, and the theorem is proved by 

mathematical induction.  
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Additional Results 

 

Below are a few additional proofs of theorems that I like, but which aren’t used by 

me to prove any other results.  Nonetheless, I’ve included them here because (1) 

I like them, and (2) maybe someday I will use them to prove something else!  

Also, to distinguish them from the other results in this chapter, I’ve color coded 

them as green. 

 

Theorem J:  If G is a finite group such that ( )Z G e= , then G is isomorphic to a 

permutation group that may be obtained by conjugation by elements of G.  In 

particular, each g G∈  is associated with a permutation of elements in G by 

applying 1gxg−  to every x G∈ . 

 

Proof:  Let G be a finite group such that ( )Z G e= , and let g G∈ .  Then 

conjugation by g produces a permutation of the elements of G.  We know this 

because it follows from our cancellation laws that if ,x y G∈ , then 1 1gxg gyg− −=  if 

and only if x y= .  Thus, if the elements of G are labeled 1 2 3, , , , nx x x x… , then 

1 1 1 1
1 2 3, , , , ngx g gx g gx g gx g− − − −…  produces a permutation of this list. 

 

Now let A be the group generated by all permutations of the sort described above, 

and define :T G A→  by setting ( )T g  equal to the permutation of elements of G 

created by mapping x to 1gxg−  for all x G∈ .  We’ll now show that T is an 

isomorphism.  Thus, let 1 2,g g G∈  and let’s examine the effect that 1 2( )T g g⋅  and 

1 2( ) ( )T g T g⋅  have on an arbitrary x G∈ .  First, note that 

[ ]1 2 1 2 1 2
1 1 1

1 2 2 1( ) ( ) ( ) ( ) ( )( )g g gT g g x g g x g g x g− − −⋅ = = .  Second, note that since we 

multiply permutations by following one by another, we can think of 1 2( ) ( )T g T g⋅  

essentially as a composition of functions.  In other words, to evaluate 

[ ]1 2( ) ( ) ( )T g T g x⋅  for x G∈ , we first conjugate x by 2g  and then we follow that 

result with conjugation by 1g .  [Note, too, that we are now applying our 
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permutations in order from right to left instead of left to right in order to make the 

direction correspond to our function notation.]  Thus, 

[ ] [ ] 1 1 1 1
2 2 2 1 1 1 2 2

1
1 1 2 12( ) ( ) ( ) ( ) ( )( )) ) ((T g x T g g xg xT g g xg g g g g g g− − − −−⋅ = = =  

[ ]1
1 21 22 1( )( ) (( ) )g g x xg g T g g− ⋅= = .  Therefore, :T G A→  is a homomorphism. 

 

To show that T is an isomorhphism we will show first that ( )Ker T e= .  Thus, 

suppose that x G∈  is an arbitrary element of G and ( )g Ker T∈ .  Then 

[ ] 1( ) ( )T g x gxg x−= =  since g must be mapped onto the identity permutation in A.  

But this implies that gx xg=  and, hence, ( )g Z G∈ , the center of G.  However, 

since part of our hypothesis is that ( )Z G e= , it follows that ( )Ker T e=  and :T G A→  

is one-to-one.  Furthermore, :T G A→  is also onto since T is a homomorphism 

and A is generated by elements of the form ( )T g .  Consequently, :T G A→  is an 

isomorphism and, therefore, G is isomorphic to a group of permutations of the 

elements of G. 

 

 

Theorem K:  If G is a group such that 2G p=  where p is a prime, then G is 

abelian.   

 

Proof:  By Theorem G, it follows that ( ) 1Z G > .  Hence, by Lagrange’s Theorem, 

either ( )Z G p=  or 2( )Z G p= .  If 2( )Z G p= , then ( )Z G G=  which implies that G is 

abelian and we are done.  Thus, suppose ( )Z G p= .  Then ( )Z G  is cyclic, and, 

thus, ( )Z G a=  for some ( )a Z G∈  with a e≠ .  Now consider x G∈  such that 

( )x Z G∉ .  Then clearly ( ) ( )GZ G C x⊆ , the set of all elements of G that commute 

with x.  However, since ( )Gx C x∈  and ( )x Z G∉ , it follows that ( ) ( )GZ G C x< .  But 

this means that 2( )GC x p= , and, hence, ( )GC x G= .  And this now implies that 

everything in G commutes with x, and, thus, ( )x Z G∈ .  However, this contradicts 

our assumption that ( )Z G p=  and there exists an x G∈  such that ( )x Z G∉ .   
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Consequently, this assumption is wrong (since it has led to a contradiction), and 

( )Z G G=  which implies that G is abelian.      

 

 

Theorem L:  If G is a group such that nG p=  where p is a prime, then G contains 

a normal subgroup of order 1np − . 

 

Proof:  We prove this theorem by applying mathematical induction to the power n.  

Thus, suppose 1G p p= = .  Then 1 1 0 1p p− = = , and { }e  is a normal subgroup of 

order 1.  Hence, the theorem is true for 1n = .  Now suppose that our theorem is 

true for all k such that 1 k n≤ < , and we’ll prove that our theorem is also true for 

k n= .  Hence, suppose that nG p=  where 1n > .  Then by Theorem G, ( ) 1Z G >  

and so there exists ( )a Z G∈  such that a e≠ .  Furthermore, since nG p= , it 

follows that ma p=  for some m such that 1 m n≤ ≤ .  Hence, consider 
mp
pa .  

Clearly, ( )
m m

m
p p

p pp pa a e a p= = ⇒ =  (in particular since a e≠ ), and 
1

m

m
p

ppa a
−

=  

is a normal subgroup of G since ( )a Z G∈ .  Now let 
1

m

m
p

ppb a a
−

= = , let 

1

m

m
p

ppH b a a G
−

= = = , and consider /G H  where 1/ /
n

npG H G H p
p

−= = = .  

By our induction hypothesis, /G H  has a normal subgroup of the form /N H  of 

order ( 1) 1 2n np p− − −=  where H N G⊆ ⊆ .  However, by our Correspondence 

Theorem it follows that N G  and 2 / /n N
p N H N H

p
− = = = .  Thus, 

2 1n nN p p p− −= = , and the theorem is proved by mathematical induction.    
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Corollary L:  If G is a group such that nG p=  where p is a prime, then G contains 

a subgroup of order kp  for every integer k such that 0 k n≤ ≤ . 
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THE SYLOW THEOREMS 
 

 

Recall that Lagrange’s Theorem tells us that the if G is a finite group and if H is a 

subgroup of G, then the number of elements in H is a divisor of the number of 

elements in G, or in other words, H  divides G .  Also, as we’ve mentioned 

before, it would be nice if having a natural number m divide the order of a group 

G would automatically guarantee that G has a subgroup of order m, but 

unfortunately, we know that this is not something that always happens. For 

example, if we consider the symmetric group 4S , the group of all permutations of 

four objects, then the subgroup of 4S  that consists of all even permutations, the 

alternating group 4A , is a group of order 12 that has no subgroup of order 6 in 

spite of the fact that 6 divides 12.  Thus, knowing that a number divides the order 

of a finite group is not enough for us to conclude that the group has also a 

subgroup of that order.  Nonetheless, a remarkable set of theorems known as the 

Sylow Theorems (named for their discoverer Peter Ludwig Sylow, 1832 - 1918) 

does give us some conditions under which a divisor of the order of a finite group 

will also ensure a subgroup of that order. Additionally, the Sylow Theorems tell 

us many more things about how the subgroup structure of a finite group relates 

to the order of the group.  But first, before we prove those theorems, here are a 

few definitions and other facts you might want to recall. 

 

Definitions:   Let X be a set and let G be a group. 

 

{ }( ) | ( )  for X gFixer g X x X g x x g G= = ∈ = ∈  

 

{ }( ) | ( )  for G xStabilizer x G g G g x x x X= = ∈ = ∈  

 

{ }( ) | ( )  for some  and ,GOrbit x y X g x y g G x y X= ∈ = ∈ ∈  
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Definition:  To the above we will add the following definition of the center of X 

under G (the center when a group G acts on a set X) as 

{ }( ) ( ) | ( )  for all G GCenter X Z X x X g x x g G= = ∈ = ∈ .  Notice that we define things this 

way because if G is acting on G by conjugation, then we get back the usual 

definition for the center of G.  In other words, if 

{ }1( ) ( ) | ( )  for all G GCenter G Z G x G g x gxg x g G−= = ∈ = = ∈ , then x G∈  is in this center if 

and only if 1 for all gxg x g G− = ∈  if and only if for all gx xg g G= ∈ . 

 

Fact:  Recall from our chapter in Part 10 on Orbits, Stabilizers, Fixers, and 

Burnside’s Counting Theorem that if G is a finite group that acts on a set X, and if 

x X∈ , then the number of elements in the orbit of x is 

[ ]( ) :
( )G x

x G

G G
Orbit x G G

G Stabilizer x
= = = .  From this we derived Burnside’s 

Counting Theorem, that the number of orbits created by G acting on X is 

1 1 1( ) ( )x G X
x X x X g G

G Stabilizer x Fixer g
G G G∈ ∈ ∈

= =∑ ∑ ∑  (This would be a good time to 

review Burnside’s Counting Theorem!). Also, recall the Class Equation (see 

Conjugal Math in Part 10) 
( )

( )
( )Gx Z G

G
G Z G

C x∉

= + ∑  where in our summation only a 

single value x is chosen from each distinct conjugacy class that contains more 

than one element.  The Class Equation simply says that the number of elements 

in G is just the sum of the number of elements in each orbit where an orbit is 

produced by letting elements of G act upon G itself by means of conjugation.  

What might now start to become obvious to you is that the traditional Class 

Equation is just a special case of a group G acting on a set X where in this case 

X G=  and the permutations are created by the operation of conjugation.  We can 

replace this special case, however, by the following more general formula that 

states that the number of elements in the set X is the sum of the number of 

elements in each orbit produced by permutations in G, or in other words, 
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( )

( )
G

G
xx Z X

G
X Z X

G∉

= + ∑  where each ( )Gx Z X∉  corresponds to a distinct orbit of x 

produced by elements of G.  To argue this formula somewhat informally, 

suppose that ( )Gx Z X∉  and consider the cosets of xG  in G  where 

{ }| ( )  for xG g G g x x x X= ∈ = ∈ .  Now suppose that a and b belong to the same 

coset of xG  in G . Then there exists xh G∈  such that a bh= .  Consequently, 

( ) ( ) (( ))( )a x bh x b h x xb= = = .   On the other hand, if ( ) ( )a x b x= , then 
1 11 ( ) xb x x b a G ba a h− − −= ⇒ ∈ ⇒ =  for some xh G∈ .  But 1b a h a bh− = ⇒ = ⇒  a and b 

belong to the same coset of xG  in G .  Thus, ( ) ( )a x b x=  if and only if a and b 

belong to the same coset of xG  in G , and from this it follows that the number of 

cosets of xG  in G  is equal to the number of images of x produced by elements of 

G.  Or to state it differently, the number of elements in the orbit of x is equal to 

the number of cosets of xG  in G  which in turn is equal to 
x

G
G

. And from this it 

now easily follows that the number of elements in X is equal to the number of 

elements in the center of X under G, ( )GZ X , plus the number of elements in the 

orbit of x for each distinct orbit that is generated by an element x X∈  via 

elements of G such that ( )Gx Z X∉ .  Or in other words, 
( )

( )
G

G
xx Z X

G
X Z X

G∉

= + ∑ .  

And now we’ll prove a useful theorem about groups of order np . 

 

Theorem I:  Let G be a group such that nG p=  and let X be a set that G acts on.  

Then ( )GX Z X−  is divisible by p. 

 

Proof:  Since { }( ) | ( )  for G xStabilizer x G g G g x x x X= = ∈ = ∈  is a subgroup of G, xG  

divides G , and since nG p= , it follows that k
xG p=  where 0 k n≤ ≤ .  Recall, too, 

from Theorem G in Conjugal Math that since nG p= , it follows that ( ) 1Z G >  and, 

in particular, ( )Z G  is equal to p raised to a power that is greater than or equal to 
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1.  We will now use our generalized Class Equation, 
( )

( )
G

G
xx Z X

G
X Z X

G∉

= + ∑  

where in our summation only a single value x is chosen from each distinct orbit 

under G that contains more than one element.  In this case, we can conclude that 

xG G≠  since if it were, then we would have ( )Gx Z X∈ .  Thus, we now have that 

xG G< , and, hence, m

x

G
p

G
=  where 0 m n< < .  Therefore, p divides 

( )G
xx

G
X Z X

G
= −∑ , and we’re done. 

           

 

We first defined in Part 9 what the centralizer of an element is, and now we’ll 

define a slightly more general concept known as the normalizer. 

 

Definition:  If H is a subgroup of a group G, then the set of all x G∈  such that 
1xHx H− =  is called the normalizer of H in G and is denoted by ( )GN H . 

 

It should be clear that ( )GH N H⊆ .  Also, our first task will be to prove that the 

normalizer of a subgroup H is yet another subgroup of our group G. 

 

Theorem II:  If H is a subgroup of a group G, then the normalizer of H in G is a 

subgroup of G. 

 

Proof:  To show that ( )GN H  is a subgroup of G, we need to establish both 

closure and existence of inverses.  Thus, suppose , ( )Gx y N H∈ .  Then 
1 11 11 1( ) ( ) ( )xy H xy xyH xy x yHy x x HHx− −− − −−= = = = .  Therefore, ( )Gxy N H∈  

 

Now suppose ( )Gx N H∈  and consider 1x Hx− .  Clearly, 
11 1 1 11( ) ( ) ( ) ( )H xHx xx Hx x x x x H x Hx eHx e− −− − − −= = = = = .  Hence, 1 ( )Gx N H− ∈ , and 

therefore, H is a subgroup of G.      
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Next, we’ll prove another preliminary results that will help us to complete the 

proofs of the Sylow Theorems. 

 

Theorem III:  If H is a p-subgroup (i.e. a subgroup of order np  for some n∈ ) of 

a finite group G for some prime p, then 
( )GN HG

H H
−  is divisible by p. 

 

Proof:  Let X be the set of left cosets of H in G, and let H act on X by 

letting ( ) ( )h xH hx H=  where x G∈  and h H∈ .  Then ( )HZ X X⊆  is the set of left 

cosets of H in G such that ( )h xH xH=  for all h H∈ .  Given such a left coset we 

have that 1 1( ) hx x hxh xH xH H xH H H x hx H− −= ⇔ = ⇔ = ⇔ ∈  for all h H∈ , and this in 

turn means that ( )Gx N H∈ , the normalizer of H in G.  In other words, ( )Gx N H∈  if 

and only if 1x hx H− ∈  when h H∈  if and only if 1x hxH H− =  if and only if hxH xH=  if 

and only if ( )h xH xH=  for all h H∈  if and only if ( )HxH Z X∈ .  To put it another 

way, a coset xH belongs to the center ( )HZ X  if and only if x is an element of the 

normalizer of H in G. And how many such distinct cosets of H are there that can 

be created using elements of ( )GN H ?  That is given by 
( )( ) GG N HN H

H H
= .  For 

example, suppose that there are exactly eight cosets of H in G that we can 

denote by 1 2 3 4 5 6 7 8, , , , , , ,x H x H x H x H x H x H x H x H , and suppose also that with 

regard to these cosets that only 1 2, ( )Gx x N H∈ .  Then { }1 2( ) ,GZ X x H x H= , and, 

( ) ( )( ) G G
H

N H N HZ X
H H

= = . 

 

Additionally, since H is a p-subgroup, nH p=  for some n∈ .  Furthermore, 

Theorem I of this section tells us that p divides ( )HX Z X− .  But in this case 



 77

 the number of left-cosets of  in 
G

X H G
H

= =  and 
( )

( ) G
H

N H
Z X

H
= .  Therefore, p 

divides 
( )GN HG

H H
− .       

 

 

Corollary III: If nG p m=  where 1n ≥  and p is a prime that does not divide m and if 

H is a subgroup of G such that iH p=  for 1 i n≤ < , then ( )GN H H≠  and p divides 

( ) /GN H H . 

 

Proof:  By Theorem III, p divides 
( )GN HG

H H
− .  However, since nG p m=  and 

iH p=  for 1 i n≤ < , it immediately follows that p divides 
n

n i
i

p m p
G

m
pH

−= = .  Hence, 

p must also divide 
( )GN H

H
, the second part of our expression above.  However, 

this also means that 
( )

1GN H
H

≠ , and therefore, ( )GN H H≠ .      

          

And now, we are finally ready to prove the first Sylow Theorem.  Also, compare 

this First Sylow Theorem to Theorem K and Corollary K in the section on 

Conjugal Math.  The two results are not identical, but they are very similar. 

 

The First Sylow Theorem:  Let G be a finite group and let nG p m=  where 1n ≥  

and p is a prime that does not divide m.  Then: 

 

1. G contains a subgroup of order ip  for each i such that 1 i n≤ ≤ . 
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2. Every subgroup H of G of order ip  is a normal subgroup of a subgroup of 

order 1ip +  for 1 i n≤ < . 

 

Proof:  (1)  We will proceed by using an argument that is similar in form to 

mathematical induction on the power of p.  Thus, suppose that G is a finite group 

and that nG p m=  where 1n ≥  and p is a prime that does not divide m.  Then, by 

Cauchy’s Theorem, we know that a subgroup of order 1p p=  exists.  If 1n = , then 

we’re done.  Thus, suppose that 1n > .  Now let H be a subgroup such that H p= , 

and let’s consider ( )GN H , the normalizer of H in G.  By definition, H is a normal 

subgroup of ( )GN H , ( )GH N H .  Also, by the Corollary III to Theorem III above, 

( )GN H H≠  and p divides ( ) /GN H H .  Hence, since ( ) /GN H H  is divisible by p, it 

follows from Cauchy’s Theorem that ( ) /GN H H  has a subgroup /K H  of order p 

where { }( ) | /GK x N h xH K H= ∈ ∈  and K is a subgroup of ( )GN H .  Hence, K is also 

a subgroup of G.  Furthermore, since /
K K

p K H
H p

= = = , it now follows that 

2K p= .  Again, if 2n = , then we’re done.  But if 2n > , then we can just repeat the 

above argument using K and ( )GN K  to conclude that there exists a subgroup of 

G of order 3p , and if necessary we can keep repeating the argument until we 

have shown the existence of a subgroup of order np . 

 

 (2)  For the second part of this theorem, note that ( )GH N H , H K≤ , and 

( )GK N H≤ , (since ( )GK H N H H≤ ).  Since every element of K is also an element 

of ( )GN H , it follows that if k K∈ , then 1kHk H− = .  Hence, H K  where H p=  

and 2K p= . We can now just repeat the above argument, if necessary, to show 

that there is a subgroup L of order 3p  such that K L , and we can keep going 

until we have finally found a subgroup of order 1np −  that is a normal subgroup of 

a subgroup of order np .       
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We defined a Sylow subgroup previously in Part 2, but we’ll repeat it again for 

reference.  And then the Second Sylow Theorem will tell us that any two Sylow p-

subgroups of a group G are conjugate. 

 

Definition:  If G is a finite group and nG p m=  where 1n ≥  and p is a prime that 

does not divide m, then any subgroup of G of order np  is called a Sylow p-

subgroup. 

 

The Second Sylow Theorem:  If 1P  and 2P  are distinct Sylow p-subgroups of a 

finite group G, then 1P  and 2P  are conjugate. 

 

Proof:  Let X =  the set of left cosets of 1P  in G and let 2P  act on X as follows:  If 

1xP X∈  and 2y P∈ , then 1 1( ) ( )y xP yx P= .  Also, let 

 { }
2 1 2 1 1 1( ) |  for every , ( ) ( )PZ X xP X y P y xP yx P xP= ∈ ∈ = = .  Then by Theorem I, 

2
( )PX Z X−  is divisible by p.  Also, since 

1

G
X

P
=  is not divisible by p (since 1P  is 

a Sylow p-subgroup), it follows that 
2
( ) 0PZ X ≠ .  Hence, 

1 1 1
1 1 2 1 21 1 2 2 1 for all  for all  for all yxP xP y P x yxP P y P x yx P y P x P x P− − −= ∈ ⇔ = ∈ ⇔ ∈ ∈ ⇔ ≤ .  

However, since 1 2P P=  (since they are both Sylow p-subgroups), we can 

conclude that 1
2 1x P x P− = , and 1P  and 2P  are conjugate.    

            

 

And finally, the Third Sylow Theorem shows us a couple of interesting restrictions 

on the possible number of Sylow p-subgroups for a given group G. 

 

The Third Sylow Theorem:  If G is a finite group and if a prime p divides G, then 

the number of Sylow p-subgroups minus one is also divisible by p.  Additionally, 

the number of Sylow p-subgroups is a divisor of G . 
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Proof:  Let P be a Sylow p-subgroup for a fixed prime p, and let X be the set of all 

Sylow p-subgroups in G, and let P act on X by conjugation.  Then by Theorem I, 

( )PX Z X−  is divisible by p.  If ( )PT Z X∈ , then 1xTx T− =  for all x P∈ .  Hence, 

( )GP N T≤ .  Also, ( )GT N T≤ .  Furthermore, since P and T are both Sylow p-

subgroups of G, they are also Sylow p-subgroups of ( )GN T , and since T and P 

are conjugate with ( )GT N T , it follows that T P= .  Thus, 

{ } { }( ) ,  and ( ) 1P PZ X T P Z X= = = .  Hence, p divides ( ) 1PX Z X X− = − . 

 

Now let G act on X by conjugation.  Then since all the Sylow p-subgroups are 

conjugate, G produces only one orbit on X.  Thus, if P X∈ , then 

orbit of 
( )P G

G G
X P

G Stabilizer P
= = = .  Since we can rewrite this as 

( )G
G

Stabilizer P
X

= , it follows that the number of Sylow p-subgroups is a divisor of 

G .   

 

 

Corollary 3a:  If G is a finite group such that nG p m=  where p is a prime that 

does not divide m, then the number of Sylow p-subgroups is a divisor of m. 

 

Proof:  Let k be the number of Sylow p-subgroups.  Then k divides nG p m= .  

Additionally, p divides 1k − .  If ik p q=  for 1 i n≤ ≤  and q a divisor of m, then we 

have a problem since p does not evenly divide 1ip q − .  Therefore, k q=  where q 

is a divisor of m. 
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Corollary 3b:  If G is a finite group such that nG p m=  where p is a prime that 

does not divide m and if P is a Sylow p-subgroup, then the number of Sylow p-

subgroups is equal to [ ]: ( )
( )G

G

G
G N P

N P
= . 

 

Proof:  Let’s consider the left cosets of ( )GN P  in G.  If ( )Gx N P∈ , then 1xPx P− = .  

Furthermore, if ( ) ( )G Gy N P z N P⋅ = ⋅ , then 1 ( ) ( )G Gz y N P N P− ⋅ = .  But this means that 
1 ( )Gz y N P− ∈  and, hence, 1 1 1 1 1 1 1( ) ( ) ( ) ( )z y P z y P z y P y z P yPy zPz− − − − − − −= ⇔ = ⇔ = .  In 

other words, two elements belong to the same left coset of ( )GN P  if and only if 

they generate the same conjugate subgroup of P.  Thus, the number of distinct 

conjugate subgroups of P is equal to the number of left cosets of ( )GN P  in G, and 

this, in turn, is equal to [ ]: ( )
( )G

G

G
G N P

N P
= .  

 

Notice now that while I’ve labeled this result as a corollary to the Third Sylow 

Theorem, the proof appears to be entirely independent of that theorem.  Thus, let 

me clarify the connection.  Above we have used ( )GN P  where P is a Sylow p-

subgroup and ( )Gx N P∈  if and only if 1xPx P− = .  If we look back at our proof of the 

Third Sylow Theorem, then we see that in that proof we let X be the set of all 

Sylow p-subgroups in G for a fixed prime p and we let G act on X by conjugation.  

We also concluded in that proof that the number of conjugates of P is equal to 

( )G

G
Stabilizer P

.  However, notice that  

{ } { }1( ) | ( ) | ( )G GStabilizer P g G g P P g G gPg P N P−= ∈ = = ∈ = = .   

Hence, 
( ) ( )G G

G G
Stabilizer P N P

=    
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Corollary 3c:  If G is a finite abelian group and 1 2
1 2

knn n
kG p p p= ⋅ ⋅…  for primes 

1 2, , , kp p p… , then 
1 2 kp p pG S S S= ⊕ ⊕ ⊕…  where each 

ipS  is a Sylow -subgroupip . 

 

Proof:  We know that each 
ipS  is normal in G (since G is abelian), that i

i

n
p iS p= , 

that 
i jp pS S e=∩  when i j≠ , and that 1 2

1 2 1 2
k

k

nn n
p p p kS S S p p p⊕ ⊕ ⊕ = ⋅ ⋅… … .  Therefore, 

it must follow that 
1 2 kp p pG S S S= ⊕ ⊕ ⊕… .     
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THE FUNDAMENTAL THEOREM OF FINITE ABELIAN 

GROUPS 
 

 

A very important result in finite group theory is the Fundamental Theorem of 

Finite Abelian Groups that essentially says that every finite abelian group can be 

written as a direct sum (or product) of cyclic p-groups (cyclic groups of order of 

the form np  where p is a prime).  This theorem basically determines for us all the 

possibilities for any abelian group of finite order.  For example, suppose G is 

abelian and 212 2 3G = = ⋅ .  Then by the Fundamental Theorem of Finite Abelian 

Groups the only possibilities for G are 12 4 3G ≅ ≅ ⊕  or 2 2 3G ≅ ⊕ ⊕ .  And 

that’s it!  There are no other possible formulations for G, and it is the power of the 

Fundamental Theorem of Finite Abelian Groups that tells us this! 

 

The Fundamental Theorem of Finite Abelian Groups is an advanced theorem in 

group theory, but the bulk of the work is done by the preliminary theorem given 

below.  Once we prove this theorem, the rest will be easy.  Additionally, proofs of 

more advanced theorems are difficult simply because you often have to juggle 

several things in your head at once in order to understand what is going on.  

Consequently, I have tried to make the proof below as simple as I can by 

breaking it up into cases, by providing additional verbiage and explanation, and 

by occasionally color coding parts of the proof in order to make it clearer what to 

focus on.  Nonetheless, no matter how good my efforts are to simplify it, you may 

still need to read through the proof several times before it makes complete sense.  

Good luck! 
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Theorem:  Let G be a finite abelian group such that nG p=  for some prime p.  

Then G A Q= ⊕  where A is a cyclic subgroup of G that is of maximal order. 

 

Proof:  Let G be an abelian group such that nG p=  for some prime p.  We will 

essentially proceed by induction on n.   

 

(Case 1)  If 1n = , then G p= , G is cyclic, we can let A a=  for any a G∈  such 

that a e≠ , G A= , and we are done.   

 

(Case 2)  Suppose that 1n ≠  and that G is cyclic.  Then there exists a G∈  such 

that a e≠  and A a G= = , and, again, we are done.   

 

(Case 3)  Suppose now that 1n ≠  and that G is not cyclic.   Also assume the 

induction hypothesis that the theorem is true for any finite abelian group G of 

order mp  with m n< . If G is not cyclic, then there exists a G∈  such that a e≠  

and A a G= ≠  and mA a p= = .  We may also assume that mp  is the largest 

order of any such cyclic subgroup of G, and since by hypothesis G is not cyclic, it 

follows that m np p<  and, hence, m n< .  Consequently, there also exists b G A∈ −  

such that b e≠ , B b= , and rB b p= =  where 1 r m np p p< ≤ < , and let’s also 

assume that A B e=∩ .  Now consider G B .  We have that 1
n

n r
r

G pG B p
B p

−= = = ≠ .  

Also, since by hypothesis A B a b e= =∩ ∩ , it follows that for aB G B∈ , 

maB a A p= = =  because otherwise if kaB p=  for some k m< , then 

( )
k kp paB a B B= =  implies that 

kpa B∈  which in turn means either that a b e≠∩  or 

that k ma p p= < .  And neither of these statements corresponds to what we have 

assumed.  Hence, maB a A p= = = . Now, using our induction hypothesis 

(since 1n rG B p −= ≠  and n r n− < ), we have that G B aB Q B= ⊕  for some 
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subgroup Q of G such that B Q G≤ ≤ .  We now ask the question is A Q e=∩ ?  If 

not, then there exists ia A Q∈ ∩  such that ia e≠  and ia B∉  (since we assumed 

A B e=∩ ).  Hence, ia B aB Q B∈ ∩  and ia B B≠ .  But this contradicts our induction 

hypothesis that G B aB Q B= ⊕  since by definition of a direct sum we must have 

aB Q B B=∩ , the identity in G B , and this would imply that ia B B= .  Therefore, 

it must be true that A Q e=∩ .  Furthermore, since G B aB Q B= ⊕ , it follows that 

G AQ= , and since A Q e=∩ , we now have that G A Q= ⊕ .  And this completes the 

induction argument for this case.  By the way, it might be of interest to also notice 

that if rB b p= = , then 
1rpb p
−

=  and 1rpA B e a b
−

= =∩ ∩ .  In other words, if 

G has a cyclic subgroup of order rp  whose intersection with A is e, then G also 

has a cyclic subgroup of order p  whose intersection with A is e. 

 

(Case 4)  Now suppose that we have as before that A a= , b G A∈ − , and 

1 r m nb p p a p G≠ = ≤ = < = , and this time let’s suppose that a b e≠∩ .  In this 

case, just as we assumed that mp  is the maximum order for any cyclic subgroup 

of G, we may also assume that rp  is the minimum order for any cyclic subgroup 

of G that meets the conditions above.  In particular, if we consider pb , then 

1p rb p −=  since ( )
1

1
r

r rpp p p pb b b e
−

−⋅= = = . Also, 1p r rb p p b−= < =  implies that 

either pa b e=∩  or pb G A∉ −  (since by hypothesis b  represents a group of 

minimum order that meets all the conditions above, and pb b< ).  If 

pa b e=∩ , then pb A∉ , and Case 3 applies.  On the other hand, if pb A∈  

(which is the same as saying pb G A∉ − ), then there exists a positive integer i 

such that p ib a= .  Our claim now is that p divides i, and we’ll prove this claim 

using proof by contradiction.  Thus, assume that p does not divide i.  Then it is 

also true that mp  does not divide 1
m

mip ip
p

−=  since p does not divide i and mp  
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does not divide 1mp − .  Hence, 1
m

mip ip
p

−=  is not a multiple of mp a= , and 

therefore, 
1

m

m
ip

ippa a e
−

= ≠ .  But on the other hand, 
1 1 1

( ) ( ) ( ) ( ) ( )
m m rm m m m r m rip p p pi p p p p p pp p pa b bb e ea b

− − −
= = = = = = = , and this is a 

contradiction to our previous statement that 1mipa e
−
≠ .  Therefore, p divides i, and 

so we can write i jp=  for some positive integer j.  Now let jy a b−= .  If y is an 

element of A, then ja y b=  is also an element of A, contradicting our assumption 

that b A∉ .  Thus, y A∉ .  Furthermore, ( )p p p ij jp iy aa eb b a a− − −= = = = .  But since 

we have found an element y A∉  such that py e=  for p a prime, it follows also that 

a y e=∩  and we can now repeat our earlier argument from Case 3 to conclude 

that there exists a subgroup Q such that G A Q= ⊕ .   

 

Corollary:  Since when G is an abelian group such that nG p=  for some prime p, 

we can write G A Q= ⊕  where A is a cyclic subgroup of G that is of maximal order, 

it follows that we can do the same with Q and then continue until we have G 

written as a direct sum of cyclic p-groups.    

 

The Fundamental Theorem of Finite Abelian Groups:  If G is a finite abelian 

group such that 1 2
1 2

knn n
kG p p p= ⋅ ⋅…  for primes 1 2, , , kp p p… , then we can write G as 

a direct sum of cyclic p-groups using each prime ip  that divides the order of G. 

 

Proof:  Our last corollary to the Third Sylow theorem showed that we can write G 

as a direct sum of its Sylow p-subgroups, 
1 2 kp p pG S S S= ⊕ ⊕ ⊕… .  Also, our 

theorem and corollary above show that each Sylow p-subgroup can be written as 

a direct sum of cyclic p-groups.  Thus, combining these results, we can also write 

G as a direct sum of cyclic p-groups using each prime ip  that divides the order of 

G. 
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How to use gap (part 10) 

 

As usual we will begin as usual by repeating all the GAP commands with learned 

up to this point so that you don’t have to reference earlier parts of this work, and 

then at the end we’ll introduce in red a few new GAP commands.  

 

 

1. How can I redisplay the previous command in order to edit it? 

 

Press down on the control key and then also press p.  In other words, “Ctrl p”. 

 

 

2. If the program gets in a loop and shows you the prompt “brk>” instead of 

“gap>”, how can I exit the loop? 

 

Press down on the control key and then also press d.  In other words, “Ctrl d”. 

 

 

3. How can I exit the program? 

 

Either click on the “close” box for the window, or type “quit;” and press 

“Enter.” 

 

 

4. How do I find the inverse of a permutation? 

 

gap> a:=(1,2,3,4); 

(1,2,3,4) 
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gap> a^-1; 

(1,4,3,2) 

 

5. How can I multiply permutations and raise permutations to powers? 

 

gap> (1,2)*(1,2,3); 

(1,3) 

 

gap> (1,2,3)^2; 

(1,3,2) 

 

gap> (1,2,3)^-1; 

(1,3,2) 

 

gap> (1,2,3)^-2; 

(1,2,3) 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> b:=(1,2); 

(1,2) 

 

gap> a*b; 

(2,3) 

 

gap> a^2; 

(1,3,2) 

 

gap> a^-2; 

(1,2,3) 
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gap> a^3; 

() 

gap> a^-3; 

() 

 

gap> (a*b)^2; 

() 

 

gap> (a*b)^3; 

(2,3) 

 

 

6. How can I create a group from permutations, find the size of the group, and 

find the elements in the group? 

 

gap> a:=(1,2); 

(1,2) 

 

gap> b:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a,b); 

Group([ (1,2), (1,2,3) ]) 

 

gap> Size(g1); 

6 

 

gap> Elements(g1); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
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gap> g2:=Group([(1,2),(1,2,3)]); 

Group([ (1,2), (1,2,3) ]) 

 

gap> g3:=Group((1,2),(2,3,4)); 

Group([ (1,2), (2,3,4) ]) 

 

 

7. How can I create a cyclic group of order 3? 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a); 

Group([ (1,2,3) ]) 

 

gap> Size(g1); 

3 

 

gap> Elements(g1); 

[ (), (1,2,3), (1,3,2) ] 

 

gap> g2:=Group((1,2,3)); 

Group([ (1,2,3) ]) 

 
gap> g3:=CyclicGroup(IsPermGroup,3); 

Group([ (1,2,3) ]) 
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8. How can I create a multiplication table for the cyclic group of order 3 that I just 

created? 

 

gap> ShowMultiplicationTable(g1); 

 

*          | ()          (1,2,3)     (1,3,2) 

--------+--------------------------------- 

()         | ()          (1,2,3)     (1,3,2) 

(1,2,3) | (1,2,3)  (1,3,2)     () 

(1,3,2) | (1,3,2)  ()             1,2,3) 

 

 

9. How do I determine if a group is abelian? 

 

gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> IsAbelian(g1); 
true 
 
gap> g2:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 
gap> IsAbelian(g2); 
false 

 

 

10. What do I type in order to get help for a command like “Elements?” 

 

gap> ?Elements 

 

 

11. How do I find all subgroups of a group? 

 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=AllSubgroups(g); 
[ Group(()), Group([ (2,3) ]), Group([ (1,2) ]), Group([ (1,3) ]), 
Group([ (1,2,3) ]), Group([ (1,2,3), (2,3) ]) ] 
 
gap> List(h,i->Elements(i)); 
[ [ () ], [ (), (2,3) ], [ (), (1,2) ], [ (), (1,3) ], [ (), (1,2,3), 
(1,3,2) ], [ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] ] 
 
gap> Elements(h[1]); 
[ () ] 
 
gap> Elements(h[2]); 
[ (), (2,3) ] 
 
gap> Elements(h[3]); 
[ (), (1,2) ] 
 
gap> Elements(h[4]); 
[ (), (1,3) ] 
 
 
gap> Elements(h[5]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(h[6]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

 

12. How do I find the subgroup generated by particular permutations? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 

 

 

13. How do I determine if a subgroup is normal? 
 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 
gap> h1:=Group((1,2)); 
Group([ (1,2) ]) 
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gap> IsNormal(g,h1); 
 
gap> h2:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
 
gap> IsNormal(g,h2); 
true 

 

 
 
 
14. How do I find all normal subgroups of a group? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 

gap> n:=NormalSubgroups(g); 
[ Group([ (1,2), (1,2,3) ]), Group([ (1,3,2) ]), Group(()) ] 
 

gap> Elements(n[1]); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> Elements(n[2]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(n[3]); 
[ () ] 

 

 

15. How do I determine if a group is simple? 

 
gap> g:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 

 

gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> IsSimple(g); 
false 

 
gap> h:=Group((1,2)); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> IsSimple(h); 
true 
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16. How do I find the right cosets of a subset H of G? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> c:=RightCosets(g,h); 
[ RightCoset(Group( [ (1,2) ] ),()), RightCoset(Group( [ (1,2) ] ),(1,3,2)), 
RightCoset(Group( [ (1,2) ] ),(1,2,3)) ] 
 
gap> List(c,i->Elements(i)); 
[ [ (), (1,2) ], [ (2,3), (1,3,2) ], [ (1,2,3), (1,3) ] ] 
gap> Elements(c[1]); 
[ (), (1,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,3,2) ] 
 
 
gap> Elements(c[3]); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=RightCoset(h,(1,2,3)); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 
 
gap> rc:=h*(1,2,3); 
RightCoset(Group([ (1,2) ]),(1,2,3)) 
 
gap> Elements(rc); 
[ (1,2,3), (1,3) ] 

 
 

17. How can I create a quotient (factor) group? 

 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> n:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> Elements(n); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> IsNormal(g,n); 
true 
 
gap> c:=RightCosets(g,n); 
[ RightCoset(Group([ (1,2,3) ]),()), RightCoset(Group([ (1,2,3) ]),(2,3)) ] 
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gap> Elements(c[1]); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> Elements(c[2]); 
[ (2,3), (1,2), (1,3) ] 
 
gap> f:=FactorGroup(g,n); 
Group([ f1 ]) 
 
gap> Elements(f); 
[ <identity> of ..., f1 ] 
 
gap> ShowMultiplicationTable(f); 
*                 | <identity> of ... f1 
------------------+------------------------------------ 
<identity> of ... | <identity> of ... f1 
f1                | f1                <identity> of ... 
 
 
 

 

18. How do I find the center of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Center(g); 
Group(()) 
 
gap> c:=Center(g); 
Group(()) 
 
gap> Elements(c); 
[ () ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> c:=Center(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(c); 
[ (), (1,3)(2,4) ] 
 

 
 
19. How do I find the commutator (derived) subgroup of a group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
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gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3,2) ]) 
 
gap> Elements(d); 
[ (), (1,2,3), (1,3,2) ] 
 
 
gap> a:=(1,2,3,4); 
(1,2,3,4) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3,4), (1,3) ]) 
 
gap> d:=DerivedSubgroup(g); 
Group([ (1,3)(2,4) ]) 
 
gap> Elements(d); 
[ (), (1,3)(2,4) ] 
 

 
20. How do I find all Sylow p-subgroups for a given group? 
 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Size(g); 
6 
 
gap> FactorsInt(6); 
[ 2, 3 ] 
 
gap> sylow2:=SylowSubgroup(g,2); 
Group([ (2,3) ]) 
 
gap> IsNormal(g,sylow2); 
false 
 
gap> c:=ConjugateSubgroups(g,sylow2); 
[ Group([ (2,3) ]), Group([ (1,3) ]), Group([ (1,2) ]) ] 
 
gap> Elements(c[1]); 
[ (), (2,3) ] 
 
gap> Elements(c[2]); 
[ (), (1,3) ] 
 
gap> Elements(c[3]); 
[ (), (1,2) ] 
 
gap> sylow3:=SylowSubgroup(g,3); 
Group([ (1,2,3) ]) 
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gap> IsNormal(g,sylow3); 
true 
 
gap> Elements(sylow3); 
[ (), (1,2,3), (1,3,2) ] 
 

 
 
21. How can I create the Rubik’s cube group using GAP? 

 

First you need to save the following permutations as a pure text file with the 

name rubik.txt to your C-drive before you can import it into GAP. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 

 

And now you can read the file into GAP and begin exploring. 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
 
 
22. How can I find the center of the Rubik’s cube group? 
 
 
gap> c:=Center(rubik); 
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ]) 
 
gap> Size(c); 
2 
 
gap> Elements(c); 
[ (), (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,45) 
(39,47) ] 
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23. How can I find the commutator (derived) subgroup of the Rubik’s cube group? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group with 5 generators> 
 
gap> Size(d); 
21626001637244928000 
 
gap> IsNormal(rubik,d); 
true 

 

 

24. How can I find the quotient (factor) group of the Rubik’s cube group by its 

commutator (derived) subgroup? 

 
gap> d:=DerivedSubgroup(rubik); 
<permutation group of size 21626001637244928000 with 5 generators> 
 
gap> f:=FactorGroup(rubik,d); 
Group([ f1 ]) 
 
gap> Size(f); 
2 
 

 

25. How can I find some Sylow p-subgroups of the Rubik’s cube group? 

 
gap> Read("C:/rubik.txt"); 
 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 
 
gap> Size(rubik); 
43252003274489856000 
 
gap> FactorsInt(43252003274489856000); 
[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 7, 7, 11 ] 
 
gap> sylow2:=SylowSubgroup(rubik,2); 
<permutation group of size 134217728 with 27 generators> 
 
gap> sylow3:=SylowSubgroup(rubik,3); 
<permutation group of size 4782969 with 14 generators> 
 
gap> sylow5:=SylowSubgroup(rubik,5); 
<permutation group of size 125 with 3 generators> 
 
gap> sylow7:=SylowSubgroup(rubik,7); 
<permutation group of size 49 with 2 generators> 
 
gap> sylow11:=SylowSubgroup(rubik,11); 
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ]) 
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gap> Elements(sylow11); 
[ (), (4,5,36,21,31,15,39,13,42,7,12)(10,26,29,28,45,44,47,20,23,18,37), 
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29), 
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26), 
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45), 
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47), 
(4,21,39,7,5,31,13,12,36,15,42)(10,28,47,18,26,45,20,37,29,44,23), 
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20), 
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18), 
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44), 
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ] 
 
gap> IsNormal(rubik,sylow2); 
false 
 
gap> IsNormal(rubik,sylow3); 
false 
 
 
gap> IsNormal(rubik,sylow5); 
false 
 
gap> IsNormal(rubik,sylow7); 
false 
 
gap> IsNormal(rubik,sylow11); 
false 
 
NOTE:  All of the Sylow p-subgroups found above have conjugates, but the 
sheer size of the Rubik’s cube group makes it too difficult to pursue them on a 
typical desktop computer. 
 

 

26. How do I determine if a group is cyclic? 

 
gap> a:=(1,2,3)*(4,5,6,7); 
(1,2,3)(4,5,6,7) 
 
gap> g:=Group(a); 
Group([ (1,2,3)(4,5,6,7) ]) 
 
gap> Size(g); 
12 
 
gap> IsCyclic(g); 
true 

 

 

27. How do I create a dihedral group with 2n elements for an n-sided regular 

polygon? 

 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
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gap> Elements(d4); 
[ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ] 
 

 

28. How can I express the elements of a dihedral group as rotations and flips 
rather than as permutations? 

 
 
gap> d3:=DihedralGroup(6); 
<pc group of size 6 with 2 generators> 
 
gap> Elements(d3); 
[ <identity> of ..., f1, f2, f1*f2, f2^2, f1*f2^2 ] 
 
gap> ShowMultiplicationTable(d3); 
*                 | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
------------------+---------------------------------------------------------------------------------------------------\ 
--------- 
<identity> of ... | <identity> of ... f1                f2                f1*f2             f2^2              f1*f2^2    
f1                | f1                <identity> of ... f1*f2             f2                f1*f2^2           f2^2       
f2                | f2                f1*f2^2           f2^2              f1                <identity> of ... f1*f2      
f1*f2             | f1*f2             f2^2              f1*f2^2           <identity> of ... f1                f2         
f2^2              | f2^2              f1*f2             <identity> of ... f1*f2^2           f2                f1         
f1*f2^2           | f1*f2^2           f2                f1                f2^2              f1*f2             
<identity> of ... 
 
 
 
29. How do I create a symmetric group of degree n with n! elements? 
 
gap> s4:=SymmetricGroup(4); 
Sym( [ 1 .. 4 ] ) 
 
gap> Size(s4); 
24 
 
gap> Elements(s4); 
[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3), 
(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), 
  (1,3,4,2), (1,3), (1,3,4), (1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), 
(1,4), (1,4,2,3), (1,4)(2,3) ] 

 
 
 

30. How do I create an alternating group of degree n with !
2
n  elements? 

 
gap> a4:=AlternatingGroup(4); 
Alt( [ 1 .. 4 ] ) 

 
gap> Size(a4); 
12 
gap> Elements(a4); 
[ (), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4), 
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ] 
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31. How do I create a direct product of two or more groups? 
 
gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
 
gap> g2:=Group((4,5)); 
Group([ (4,5) ]) 
 
gap> dp:=DirectProduct(g1,g2); 
Group([ (1,2,3), (4,5) ]) 
 
gap> Size(dp); 
6 
gap> Elements(dp); 
[ (), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) ] 
 
gap> ShowMultiplicationTable(dp); 
*            | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
-------------+---------------------------------------------------------------------------
--- 
()           | ()           (4,5)        (1,2,3)      (1,2,3)(4,5) (1,3,2)      
(1,3,2)(4,5) 
(4,5)        | (4,5)        ()           (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2) 
(1,2,3)      | (1,2,3)      (1,2,3)(4,5) (1,3,2)      (1,3,2)(4,5) ()           (4,5) 
(1,2,3)(4,5) | (1,2,3)(4,5) (1,2,3)      (1,3,2)(4,5) (1,3,2)      (4,5)        () 
(1,3,2)      | (1,3,2)      (1,3,2)(4,5) ()           (4,5)        (1,2,3)      
(1,2,3)(4,5) 
(1,3,2)(4,5) | (1,3,2)(4,5) (1,3,2)      (4,5)        ()           (1,2,3)(4,5) (1,2,3) 

 
 

 
 

32. How can I create the Quaternion group? 
 
gap> a:=(1,2,5,6)*(3,8,7,4); 
(1,2,5,6)(3,8,7,4) 
 
gap> b:=(1,4,5,8)*(2,7,6,3); 
(1,4,5,8)(2,7,6,3) 
 
gap> q:=Group(a,b); 
Group([ (1,2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ]) 
 
gap> Size(q); 
8 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,5,6)(3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3), 
(1,5)(2,6)(3,7)(4,8), (1,6,5,2)(3,4,7,8), 
  (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ] 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
 
gap> IsAbelian(q); 
false 
 
gap> Elements(q); 
[ (), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6), 
(1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7), 
  (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ] 
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33. How can I find a set of independent generators for a group? 
 
 
gap> c6:=CyclicGroup(IsPermGroup,6); 
Group([ (1,2,3,4,5,6) ]) 
 
gap> Size(c6); 
6 
 
gap> GeneratorsOfGroup(c6); 
[ (1,2,3,4,5,6) ] 

 
 
gap> d4:=DihedralGroup(IsPermGroup,8); 
Group([ (1,2,3,4), (2,4) ]) 
 
gap> Size(d4); 
8 
 
gap> GeneratorsOfGroup(d4); 
[ (1,2,3,4), (2,4) ] 

 
 
gap> s5:=SymmetricGroup(5); 
Sym( [ 1 .. 5 ] ) 
 
 
gap> Size(s5); 
120 
 
gap> GeneratorsOfGroup(s5); 
[ (1,2,3,4,5), (1,2) ] 
 
 
gap> a5:=AlternatingGroup(5); 
Alt( [ 1 .. 5 ] ) 
 
gap> Size(a5); 
60 
 
gap> GeneratorsOfGroup(a5); 
[ (1,2,3,4,5), (3,4,5) ] 
 
 
gap> q:=QuaternionGroup(IsPermGroup,8); 
Group([ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ]) 
 
gap> Size(q); 
8 
 
gap> GeneratorsOfGroup(q); 
[ (1,5,3,7)(2,8,4,6), (1,2,3,4)(5,6,7,8) ] 
 
 
 

34. How do I find the conjugate of a permutation in the form 1ba b ab−= ? 
 
gap> a:=(1,2,3,4,5); 
(1,2,3,4,5) 
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gap> b:=(2,4,5); 
(2,4,5) 

 
 
gap> a^b; 
(1,4,3,5,2) 

 
gap> b^-1*a*b; 
(1,4,3,5,2) 
 
 
 
35. How do I divide up a group into classes of elements that are conjugate to one another?  

(Note that “conjugacy” is an equivalence relation on our group G.  That means that 
G can be separated into nonintersecting subsets that contain only elements that are 
conjugate to one another.) 

 
gap> d3:=DihedralGroup(IsPermGroup,6); 
Group([ (1,2,3), (2,3) ]) 

 
gap> Size(d3); 
6 

 
gap> Elements(d3); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 
gap> cc:=ConjugacyClasses(d3); 
[ ()^G, (2,3)^G, (1,2,3)^G ] 

 
gap> Elements(cc[1]); 
[ () ] 

 
gap> Elements(cc[2]); 
[ (2,3), (1,2), (1,3) ] 

 
gap> Elements(cc[3]); 
[ (1,2,3), (1,3,2) ] 
 

 

36. How do I input a 3x3 matrix in GAP and display in its usual rectangular format? 

 
gap> x:=[[1,2,3],[4,5,6],[7,8,9]]; 
[ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2,  3 ], 
  [  4,  5,  6 ], 
  [  7,  8,  9 ] ] 

 

 

 



 104

37. How do I do arithmetic with matrices? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> y:=[[5,6],[7,8]]; 
[ [ 5, 6 ], [ 7, 8 ] ] 

 
gap> PrintArray(x+y); 
[ [   6,   8 ], 
  [  10,  12 ] ] 

 
gap> PrintArray(x-y); 
[ [  -4,  -4 ], 
  [  -4,  -4 ] ] 

 
gap> PrintArray(x*y); 
[ [  19,  22 ], 
  [  43,  50 ] ] 

 

 

38. How do I multiply a matrix by a number (scalar)? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> PrintArray(2*x); 
[ [  2,  4 ], 
  [  6,  8 ] ] 

 
gap> PrintArray(x/2); 
[ [  1/2,    1 ], 
  [  3/2,    2 ] ] 

39. How do I find the inverse of a matrix? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> xinverse:=x^-1; 
[ [ -2, 1 ], [ 3/2, -1/2 ] ] 
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gap> PrintArray(xinverse); 
[ [    -2,     1 ], 
  [   3/2,  -1/2 ] ] 

 
gap> xinverse:=1/x; 
[ [ -2, 1 ], [ 3/2, -1/2 ] ] 

 
gap> PrintArray(xinverse); 
[ [    -2,     1 ], 
  [   3/2,  -1/2 ] ] 

 
gap> PrintArray(x*xinverse); 
[ [  1,  0 ], 
  [  0,  1 ] ] 

 

 

40. How do I find the transpose of a matrix? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> xtranspose:=TransposedMat(x); 
[ [ 1, 3 ], [ 2, 4 ] ] 

 

gap> PrintArray(xtranspose); 
[ [  1,  3 ], 
  [  2,  4 ] ] 

 

 

 

41. How do I find the determinant of a matrix? 

 
gap> x:=[[1,2],[3,4]]; 
[ [ 1, 2 ], [ 3, 4 ] ] 

 

 
gap> PrintArray(x); 
[ [  1,  2 ], 
  [  3,  4 ] ] 

 
gap> DeterminantMat(x); 
-2 
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42.  How do I find the orbits that the Rubik’s cube group creates on the set 

{ }1,2,3, ,48… ? 

 

In Windows, use Notepad to type the following file, and save it to your C-drive. 

 
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24); 
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35); 
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19); 
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40); 
f:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11); 
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27); 
 

Now enter the following commands. 

 
gap> Read("C:/rubik.txt"); 
gap> 

 
gap> rubik:=Group(r,l,u,d,f,b); 
<permutation group with 6 generators> 

 
gap> Orbit(rubik,1); 
[ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 16, 
35, 25, 32 ] 

 
gap> Orbit(rubik,2); 
[ 2, 5, 13, 18, 36, 37, 42, 39, 34, 12, 10, 31, 15, 7, 4, 26, 20, 45, 21, 44, 
47, 28, 29, 23 ] 

 
gap> o:=Orbits(rubik); 
[ [ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 
16, 35, 25, 32 ], 
[ 2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15, 
31, 23, 18, 39 ] ] 

 
gap> Size(o); 
2 
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gap> Elements(o); 
[ [ 1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 
16, 35, 25, 32 ], 
[ 2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15, 
31, 23, 18, 39 ] ] 

 

 

43.  How do I work with functions in GAP? 

 
gap> f:=x->x^2; 
function( x ) ... end 
 
gap> g:=x->x+2; 
function( x ) ... end 
 
gap> f(3); 
9 
 
gap> g(3); 
5 
 
gap> f(g(3)); 
25 
 
gap> g(f(3)); 
11 
 
 
44. If a group G acts on a set X, how do I find the stabilizer subgroup for a point 

in X? 
 
gap> a:=(1,2,3); 
(1,2,3) 
 
gap> b:=(2,3); 
(2,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2,3), (2,3) ]) 
 
gap> s:=Stabilizer(g,1); 
Group([ (2,3) ]) 
 
gap> Size(s); 
2 
 
gap> Elements(s); 
[ (), (2,3) ] 

 
 
 
45. How do I find the centralizer of an element or subgroup? 
 
gap> g:=Group((1,2,3,4),(1,2)); 
Group([ (1,2,3,4), (1,2) ]) 
 
gap> c:=Centralizer(g,(1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> Elements(c); 
[ (), (1,2,3), (1,3,2) ] 
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gap> c:=Centralizer(g,Subgroup(g,[(1,2,3)])); 
Group([ (1,2,3) ]) 
 
gap> Elements(c); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> c:=Centralizer(g,Subgroup(g,[(1,2,3),(1,2)])); 
Group(()) 
 
gap> Elements(c); 
[ () ] 

 
 
 
46. How do I find the normalizer  of a subgroup? 
 
gap> g:=Group([(1,2,3),(1,2)]); 
Group([ (1,2,3), (1,2) ]) 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> h:=Subgroup(g,[(1,2)]); 
Group([ (1,2) ]) 
 
gap> Elements(h); 
[ (), (1,2) ] 
 
gap> n:=Normalizer(g,h); 
Group([ (1,2) ]) 
 
gap> Elements(n); 
[ (), (1,2) ] 
 
gap> h:=Subgroup(g,[(1,2,3)]); 
Group([ (1,2,3) ]) 
 
gap> Elements(h); 
[ (), (1,2,3), (1,3,2) ] 
 
gap> n:=Normalizer(g,h); 
Group([ (1,2,3), (2,3) ]) 
 
gap> Elements(n); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
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Summary (part 10) 

 

In part 10 we’ve covered quite a lot!  And yet there are many more topics in 

group theory that I’ve have paid little or no attention to.  The bottom line is that 

there is always much, much more to learn, and it is likely that no book will ever 

exhaust what is known or what can be known.  I have simply focused on those 

things I like best and those things that I consider most important.  And if you’ve 

made it this far, then you are, indeed, exceptional.  The rest of the journey is now 

up to you.   However, for now you want to be familiar with the following topics 

that we discussed in Part 10. 

• Homomorphisms 

• Isomorphisms 

• Kernel of a homomorphism 

• The natural homomorphism 

• The correspondence theorem 

• The 1st isomorphism theorem 

• The 2nd isomorphism theorem 

• The 3rd isomorphism theorem 

• Quotient groups 

• Orbits 

• Stabilizers  

• Fixers 

• Burnside’s Counting Theorem 

• Mathematical induction 

• Conjugacy classes 

• The Class Equation 

• The 1st Sylow theorem 

• The 2nd Sylow theorem 

• The 3rd Sylow theorem 

• The Fundamental Theorem of Finite Abelian Groups 
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practice (part 10) 

 

1. Construct proofs for each of the three isomorphism theorems. 

 

The First Isomorphism Theorem:  Let :f A B→  be a homomorphism from 

a group A onto a group B, and let ( )N Ker f= .  Then ( )A Ker f A N B= ≅ . 

 

The Second Isomorphism Theorem:  If H and N are subgroups of a group 

G with N normal in G, then H H N HN N≅∩ . 

 

The Third Isomorphism Theorem:  Let G be a group, let N and H be 

normal subgroups of G, and suppose that N H G⊆ ⊆ .  Then H N  is a 

normal subgroup of G N , and ( ) ( )G N H N G H≅ . 

 

 

2. If 5S  acts on the set { }1,2,3,4,5X = , find the size and elements of the 

stabilizer subgroup 
5
(2)SStabilizer . 

 

 

3. Suppose you have a pentagonal bracelet with 5 differently colored, equally 

spaced beads, and suppose that you either rotate the bracelet clockwise 

through multiples of 72° , or you can flip the bracelet about any of 5 axes of 

symmetry.  .Then the dihedral group 5D  acts upon the beads of this 

regular pentagon that may be labeled by { }1,2,3,4,5X = .  Use Burnside’s 

Counting Theorem to find the number of orbits in X under the action by 5D . 

 

 

4. Use the Fundamental Theorem of Abelian Groups to find all abelian 

groups of order 16. 
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5. You have done exceptionally well to make it to this point.  Now relax! 
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practice (part 10) - answwers 

 

1. Construct proofs for each of the three isomorphism theorems. 

 

The First Isomorphism Theorem:  Let :f A B→  be a homomorphism from a 

group A onto a group B, and let ( )N Ker f= .  Then ( )A Ker f A N B= ≅ . 

 

Proof:  Recall that : A A Nπ →  defined by ( )a Naπ =  is called the natural 

homomorphism.  Now define a function i from A N  to B by ( ) ( )i Na f a= .  What we 

want to do now is to verify that i is an isomorphism from A N  to B.  First, we will 

show that this function is onto.  Thus, if b B∈ , then there exists a A∈  such that 

( )f a b=  since f is onto.  Hence, ( ( )) ( ) ( )i a i Na f a bπ = = =  shows that i is also onto. 

 

To show that i is one-to-one, let ,Nx Ny A N∈  such that Nx Ny≠ .  Then, in 

particular, Nx  and Ny  have no elements in common because if they did, then we 

would have 1
1 2 1 2n x n y x n n y x Ny Nx Ny−= ⇒ = ⇒ ∈ ⇒ = .  Furthermore, ( ) ( )f x f y≠  

because if ( ) ( )f x f y= , then 1 1 1( ) ( ) ( ) ( ) ( )e f x f y f x f y f xy− − −= = =  implies that 
1 ( )xy N Ker f− ∈ =  which implies that 1xy n N x ny Nx Ny− = ∈ ⇒ = ⇒ = .  But his 

contradicts our assumption that Nx Ny≠ , and, hence, ( ) ( )Nx Ny f x f y≠ ⇒ ≠ , and 

so :i A N B→  is onto-to-one. 

 

Before we show that :i A N B→  is a homomorphism, notice that it doesn’t matter 

what representative we use from a coset such as Na.  In other words, since 

( )N Ker f= , if ,a b Na∈ , then a nb=  and ( ) ( ) ( ) ( ) ( ) ( )f a f nb f n f b e f b f b= = = ⋅ = .  

Hence, it is also true that ( ) ( )i a i b= . Now let ,Nx Ny A N∈ .  Then 

( ) ( ) ( ) ( ) ( ) ( ) ( )i NxNy i Nxy f xy f x f y i Nx i Ny= = = = .  Therefore, :i A N B→  is an 

isomorphism, and ( )A Ker f A N B= ≅ . 
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The Second Isomorphism Theorem:  If H and N are subgroups of a group G with 

N normal in G, then H H N HN N≅∩ . 

 

Proof:  Recall that earlier we proved that if H is a subgroup of G, then there will 

exist a corresponding subgroup of G N  that is obtained by looking at the cosets 

Nh where h H∈ .  This theorem, the Second Isomorphism Theorem, sharpens 

and clarifies the result.  To prove it, though, we first need to show that H N∩  is a 

normal subgroup of H and that HN is a subgroup of G that contains N.  So let’s 

begin! 

 

To show that H N∩  is a normal subgroup of H, we first need to show that it is at 

least a subgroup by verifying properties of closure and existence of inverses.  

Thus, let 1 2,n n H N∈ ∩ .  Since 1 2,n n H∈ , a subgroup of G, it follows that 1 2n n H∈ .  

But by the same token, 1 2,n n N∈  implies that 1 2n n N∈ .  Hence, 1 2n n H N∈ ∩ , and 

closure is satisfied. 

 

Now suppose that n H N∈ ∩ .  Then an inverse to n exists in both H and in N.  In 

other words, 1n H− ∈  and 1n N− ∈  implies that 1n H N− ∈ ∩ .  Thus, existence of 

inverses is satisfied, and H N∩  is a subgroup of H. 

 

To show that H N∩  is a normal subgroup of H, let h H∈  and let n H N∈ ∩ .  Then 
1h nh H− ∈  since all three elements belong to H.  But on the other hand, 1h nh N− ∈  

since N is a normal subgroup of G.  Hence, 1h nh H N− ∈ ∩ , and so H N∩  is a 

normal subgroup of H. 

 

Now let’s show that HN is a subgroup of G.  Thus, to show closure, let 

1 1 2 2,h n h n HN∈ , and consider the product 1 1 2 2h n h n .  Since N is a normal subgroup of 

G, every left coset of N is equal to the corresponding right coset, and that means 

that 2 2 1 2h N Nh Nn h= = .  Hence, there exists 3n N∈  such that 1 2 2 3n h h n= .  Thus, 

1 1 2 2 1 2 3 2h n h n h h n n HN= ∈ , and closure is satisfied.  To show the existence of inverses 
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in HN, let hn HN∈ .  Then it’s inverse is 1 1n h− − .  However, again since N is normal 

in G, there exists 4n N∈  such that 1 1 1
4n h h n HN− − −= ∈ .  Therefore, inverses exist in 

HN, and HN is a subgroup of G.  Furthermore, N HN⊆  since every element of N 

can be written as e n⋅  where e H∈  and n N∈ . 

 

And finally, we need to state and prove our isomorphism from H H N∩  to HN N .  

In this case, define :f H H N HN N→∩  by [( ) ]f H N h Nh=∩ .  To show that f is a 

homomorphism, observe that 

1 2 1 2 1 2 1 2[( ) ] [( ) ] ( ) [( ) ]f H N h f H N h Nh Nh N h h f H N h h⋅ = ⋅ = =∩ ∩ ∩      Notice, too, that 

elements in H H N∩  look like { }1 2 3,( ) ,( ) ,( ) ,H N H N h H N h H N h∩ ∩ ∩ ∩ …  where 

1 2 3, , ,h h h H N∉… ∩ , and the corresponding elements in HN N  look like 

{ }1 2 3, , , ,N Nh Nh Nh … .  From this it should be clear that ( )Ker f H N= ∩  because if 

h H N∉ ∩ , then it gets mapped to Nh N≠ , the identity in HN N .  Thus, from 

previous proof on homomorphisms and one-to-one functions, it follows that f is 

one-to-one.  And finally, to show that f is onto, suppose that Nhn HN N∈ .  Then 

since N is a normal subgroup, we can rewrite hn as 1n h  for some 1n N∈ .  Hence, 

1 [( ) ]Nhn Nn h Nh f H N h= = = ∩ , and therefore, f is onto and H H N HN N≅∩ . 
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The Third Isomorphism Theorem:  Let G be a group, let N and H be normal 

subgroups of G, and suppose that N H G⊆ ⊆ .  Then H N  is a normal subgroup 

of G N , and ( ) ( )G N H N G H≅ . 

 

Proof:  It follows immediately from the Correspondence Theorem that H N  is a 

normal subgroup of G N .  Now let :i G G N→  be the natural homomorphism, 

and let : ( ) ( )j G N G N H N→  be another natural homomorphism.  Then j i  is a 

homomorphism from G onto ( ) ( )G N H N .  

 

( ) ( )i jG G N G N H N⎯⎯→ ⎯⎯→  

 

Hence, our First Isomorphism Theorem tells us that ( ) ( )G N H N  is isomorphic to 

( )G Ker j i .  Thus, we just need to figure out what is contained in ( )Ker j i .  Thus, 

let h H G∈ ⊆ .  Then Nh H N G N∈ ⊆  tells us that ( )h Ker j i∈ .  On the other hand, 

if g G∈ , but g H∉ , then Ng H N∉ , and, thus, ( )g Ker j i∉ .  Therefore, 

( )Ker j i H= , and by the First Isomorphism Theorem, G H  is isomorphic to 

( ) ( )G N H N . 
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2. If 5S  acts on the set { }1,2,3,4,5X = , find the size and elements of the 

stabilizer subgroup 
5
(2)SStabilizer . 

 
gap> s5:=SymmetricGroup(5); 
Sym( [ 1 .. 5 ] ) 
 
gap> h:=Stabilizer(s5,2); 
Sym( [ 1, 3, 4, 5 ] ) 
 
gap> Size(h); 
24 
 
gap> Elements(h); 
[ (), (4,5), (3,4), (3,4,5), (3,5,4), (3,5), (1,3), (1,3)(4,5), (1,3,4), 
(1,3,4,5), (1,3,5,4), (1,3,5), (1,4,3), 
  (1,4,5,3), (1,4), (1,4,5), (1,4)(3,5), (1,4,3,5), (1,5,4,3), (1,5,3), (1,5,4), 
(1,5), (1,5,3,4), (1,5)(3,4) ] 
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3. Suppose you have a pentagonal bracelet with 5 differently colored, equally 

spaced beads, and suppose that you either rotate the bracelet clockwise through 

multiples of 72° , or you can flip the bracelet about any of 5 axes of 

symmetry.  .Then the dihedral group 5D  acts upon the beads of this regular 

pentagon that may be labeled by { }1,2,3,4,5X = .  Use Burnside’s Counting 

Theorem to find the number of orbits in X under the action by 5D . 

 

Suppose you have a pentagonal bracelet with 5 differently colored, equally 

spaced beads, and suppose that you either rotate the bracelet clockwise through 

multiples of 72° , or you can flip the bracelet about any of 5 axes of symmetry.  

Then our set X will consist of 5! 5 4 3 2 1 120= ⋅ ⋅ ⋅ ⋅ =  color configurations, and our 

group is 5D , the group of symmetries of a regular pentagon with 5 10D = .  Again, 

if we label the vertices 1, 2, 3, 4, and 5, then we can describe 5D  in terms of the 

following permutations, 5
( ),(1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2),
(2,5)(3,4),(1,2)(3,5),(1,3)(4,5),(1,4)(2,3),(1,5)(2,4)

D
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

. 

 

 

 

 

 

 

 

 

 

Now, as before, the identity fixes all 5! 5 4 3 2 1 120= ⋅ ⋅ ⋅ ⋅ =  color configurations, and 

the remaining elements of 5D  fix none of the configurations.  Hence, the number 

of orbits in X under 5D  is 
5

55 5

1 1 1( ) ( ) 120 12
10D X

x X g D

Stabilizer x Fixer g
D D∈ ∈

= = ⋅ =∑ ∑ .  In 

other words, there are 12 distinct ways to color the beads with different colors 

when we allow for the symmetries of the pentagon. 

1

2

34

5

1

2

34

5
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4. Use the Fundamental Theorem of Abelian Groups to find all abelian 

groups of order 16. 

 

16C , 8 2C C× , 4 4C C× , 4 2 2C C C× × , 2 2 2 2C C C C× × ×  
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5. You have done exceptionally well to make it to this point.  Now relax! 

 

 
 

 

 

 

 



 
 

The group theory is 
strong in you! 




