A GMTHDS BADDEM OF BDOUPS

Isomorphisms, Homomorphisms, and Theorems
...OH MY!
(Part 10)

Creative Commons License

You are free to:

- Share this work
- Adapt this work
- Attribute all original materials to Doc Benton

You are not free to:

- Charge money for this work; Knowledge is free!

COMTENTS (PADT MO)

Introduction (Part 10) 1
Functons, Isomorphisms, and Homomorphisms 2
Homomorphisms and Identities 7
Homomorphisms and Inverses 8
The Kernel of a Homomorphism 9
The Natural Homomorphism 11
The Correspondence Theorem 12
Homomorphisms and One-to-One Functions 16
The First Isomorphism Theorem 17
The Second Isomorphism Theorem 18
The Third Isomorphism theorem 20
An Application 21
Another Application 22
A Third Application 23
A Fourth Result 25
Quotients of Quotients of Quotients 26
Orbits, Stabilizers, Fixers, and Burnside's Counting Theorem 38
Mathematical Induction 52
Conjugal Math 55
The Sylow Theorems 72
The Fundamental Theorem of Abelian Groups 83
How To Use Gap (Part 10) 87
Summary (Part 10) 109
Practice (Part 10) 110
Practice (Part 10) - Answers 112

HTMODUCTHOM (PADT MOS

In this final part to our book, we prove some very important and often very difficult theorems, and we introduce the concept of a homomorphism and we indicate why it is so fundamental to the study of groups. In particular, we prove all three isomorphism theorems, the Correspondence Theorem, Burnside's Counting Theorem, the Sylow Theorems, the Fundamental Theorem of Abelian Groups, and more. If you've made it this far, then you're almost finished!

FUNCTIONA, HSOMORPMTEME, AND HOHOHOMPMTEHS

A function is essentially a rule for pairing elements from one set with elements in another set. However, there is one special condition that this rule must follow. Namely, each element in the first set can be paired with only one element in the second set. It's okay, however, if two different elements in the first set get paired with the same element in the second set. We just can't start with a single element, apply our function, and then suddenly wind up with more than one element. Rules that are functions appear everywhere in our society. For example, if you have a paying job, then there is a rule or function which determines how much you should receive on payday, and you certainly don't want a rule that results in two or more amounts!

In mathematics, we usually denote functions by letters such as f or g, and here are a couple of examples of functions as rules being evaluated at specific points:

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(2)=2^{2}=4 \\
& f(-2)=(-2)^{2}=4 \\
& g(x)=x+1 \\
& g(2)=2+1=3 \\
& g(-2)=-2+1=-1
\end{aligned}
$$

For each of these functions, we could designate that our starting set is the real numbers, the numbers on the number line that are denoted by \mathbb{R}, and we could also designate our receiving set as the real numbers, \mathbb{R}. When we do this, we often use the following notation:

$$
\begin{aligned}
& f: \mathbb{R} \longrightarrow \mathbb{R} \\
& g: \mathbb{R} \longrightarrow \mathbb{R}
\end{aligned}
$$

or

$$
\begin{aligned}
& \mathbb{R} \xrightarrow{f} \mathbb{R} \\
& \mathbb{R} \xrightarrow{g} \mathbb{R}
\end{aligned}
$$

Notice, too, that the function $f(x)=x^{2}$ doesn't give us back the entire set of real numbers, but the function $g(x)=x+1$ does. In the latter case, we say that the function g is onto, and in the former we say that our function is into. Also, notice that different input values for g will always result in different output values. When this happens, we say that our function is one-to-one. Notice that f is not one-toone since the inputs of 2 and -2 both result in an output of 4 . Additionally, notice that a rule such as $f(x)= \pm \sqrt{x}$ is not a function since an input such as 4 results in two outputs, -2 and 2.

We can often follow one function with another function, such as when we have one rule for determining gross pay followed by another rule for finding net pay by deducting money for taxes and insurance, and when we follow one function by another, we call it a composition of functions. In mathematics today if we want to follow our function g by the function f, then we usually write it as $(f \circ g)(x)=f(g(x)) \quad$. For example, $\quad(f \circ g)(2)=f(g(2))=f(3)=9 \quad$ and $(g \circ f)(2)=g(f(2))=g(4)=5$. There was also a time when some mathematicians would write functions as $(x) f$ or $x f$ rather than $f(x)$, and that fits in better with our practice of applying permutations and matrices in order from left to right. It also fits in better with the following notation for $(g \circ f)(x)$ which is still very common:

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

However, GAP software applies functions in order from right to left in what has now become pretty much the standard in mathematics. For example, here is how you would construct and use some functions in GAP.

```
gap> f:=x- >x^2;
function( x ) ... end
gap> f(2);
4
gap> g: =x- >x+1;
functi on( x )... end
gap> g(2);
gap> f(g(2));
gap> g(f(2));
```

We've used the term "isomorphism" before, and we pointed out that it literally means "equal shape." We've also said that two groups are isomorphic if they are essentially the same group, but with different labels for the elements. That means that there has to exist a correspondence between the two groups that is both one-to-one and onto, what we call a "bijection." Additionally, an isomorphism between two groups also means that multiplication in one group has to correspond to multiplication in the other group. So far we've avoided using functions to define isomorphisms in order to keep things a little simpler. However, the time has come to streamline our thinking by giving an explicit definition of a isomorphism purely in terms of a function from one group onto another. First, though, we will give more specific definitions for terms like one-toone, onto, injection, surjection, and bijection.

Definition: Let $f: A \rightarrow B$ be a function. Then f is one-to-one if and only if whenever we have $x, y \in A$ with $x \neq y$, we also have that $f(x) \neq f(y)$. Equivalently, we can say that f is one-to-one if $f(x)=f(y)$ always implies that $x=y$. A one-toone function is also known as an injection or injective function.

Definition: Let $f: A \rightarrow B$ be a function. Then f is an onto function if and only if whenever $y \in B$, there exists $x \in A$ such that $f(x)=y$. An onto function is also known as a surjection or surjective function.

Definition: Let $f: A \rightarrow B$ be a function. If f is both one-to-one and onto (both injective and surjective), then f is also called a bijection or bijective function.

Definition: Let $f: A \rightarrow B$ be a bijective function from a group A onto a group B. Then f is also an isomorphism if for all $x, y \in A$, we have that $f(x) f(y)=f(x y)$. Note that this basically says that if $x y=z$ in A, then $f(x) f(y)=f(x y)=f(z)$ in B. In other words, multiplication in A corresponds to multiplication in B.

A concept that is more general than that of an isomorphism is the notion of a "homomorphism." The word itself means "same shape," and the main difference between an isomorphism and a homomorphism is that we drop the condition that our function be one-to-one. We will also drop the onto condition.

Definition: Let $f: A \rightarrow B$ be a function from a group A into a group B. Then f is also a homomorphism if for all $x, y \in A$ we have that $f(x) f(y)=f(x y)$. Note that this basically says that if $x y=z$ in A, then $f(x) f(y)=f(x y)=f(z)$ in B. Again, multiplication in A corresponds to multiplication in B.

An example of a homomorphism that is not an isomorphism would be the function that takes every integer in the group of integers under addition, and assigns that integer either to the label "even" or to the label "odd" in the usual manner. Suppose we call this latter set E and that we define addition in E according to the following table.

+	Even	Odd
Even	Even	Odd
Odd	Odd	Even

Then E is a group of order 2, and our function $f: \mathbb{Z} \rightarrow E$ is a homomorphism. Hence, using additive rather than multiplicative notation, we have, for instance, that $f(2)+f(3)=$ even + odd $=$ odd $=f(2+3)=f(5)$. In other words, there is a correspondence between addition in \mathbb{Z} and addition in E.

And finally, if we do have a homomorphism $f: A \rightarrow B$, then of particular concern will be the elements in A that get sent or mapped to the identity element in B. The set of such elements in A is called the "kernel of our homomorphism f."

Definition: Let $f: A \rightarrow B$ be a homomorphism from A into B. Then the kernel of f, denoted by $\operatorname{Ker}(f)$, is defined by

$$
\operatorname{Ker}(f)=\{x \in A \mid f(x)=e \text { where } e \text { is the identity element in } B\} .
$$

HOMOMOPPMTSMS AOM HDENTRTRES

Discussion: This theorem just takes care of some housekeeping details. It shows us that any homomorphism from one group to another always pairs the identity element in the first group with the identity element in the second group. It's not difficult to prove, but you gotta take the time to verify it anyway.

Theorem: Let A be a group and let $f: A \rightarrow B$ be a homomorphism from A into B. Then $f(e)=e$.

Proof: Technically, we should perhaps denote the identity element in A by e_{A} and the identity element in B by e_{B}, but it is much more convenient to use e as the generic symbol for any identity element, and usually little confusion arises by using e to represent both identities. Thus, let $x \in A$. Then $f(x)=f(e \cdot x)=f(e) f(x)$, since f is a homomorphism. Now just multiply both sides of this equation on the right by $[f(x)]^{-1}$ to obtain $e=f(x) \cdot[f(x)]^{-1}=f(e) \cdot f(x) \cdot[f(x)]^{-1}=f(e) \cdot e=f(e)$.

HOMOHOMPMTSHE AND IMYBEES

Discussion: This theorem takes care of another housekeeping detail. It shows us that any homomorphism from one group to another always pairs an inverse element in the first group with the corresponding inverse element in the second group. Again, it's not difficult to prove, but you gotta take the time to verify it anyway.

Theorem: Let A be a group, let $f: A \rightarrow B$ be a homomorphism from A into B, and let $a \in A$. Then $f\left(a^{-1}\right)=[f(a)]^{-1}$. In other words, the inverse of a in A gets mapped to the inverse of $f(a)$ in B.

Proof: Clearly, $e=f(e)=f\left(a a^{-1}\right)=f(a) f\left(a^{-1}\right)$, since f is a homomorphism. Thus, $[f(a)]^{-1}=[f(a)]^{-1} \cdot e=[f(a)]^{-1} \cdot f(a) \cdot f\left(a^{-1}\right) \cdot=e \cdot f\left(a^{-1}\right)=f\left(a^{-1}\right)$.

THE Mede

Discussion: Now that we've defined a homomorphism as a function $f: A \rightarrow B$ such that for all $x, y \in A$ we have that $f(x y)=f(x) f(y)$, recall that we defined the kernel of our homomorphism to be the set of all elements in the first group that get sent to the identity element in the second group. Below we prove that this set, the kernel, is not only a subgroup of our original group, it's also a normal subgroup, and that fact has major implications when it comes to investigating what homomorphisms from one group to another are even possible.

Definition: Let $f: A \rightarrow B$ be a homomorphism from a group A into B. Then the kernel of f, denoted by $\operatorname{Ker}(f)$, is defined by

$$
\operatorname{Ker}(f)=\{x \in A \mid f(x)=e \text { where } e \text { is the identity element in } B\} .
$$

Theorem: Let $f: A \rightarrow B$ be a homomorphism from a group A into B. Then $\operatorname{Ker}(f)$ is a normal subgroup of A.

Proof: First we will show that $\operatorname{Ker}(f)$ is a subgroup of A by showing that it is closed under multiplication and that it contains inverses. Thus, let $a, b \in \operatorname{Ker}(f)$. Then $e=e \cdot e=f(a) f(b)=f(a b)$ implies that $a b \in \operatorname{Ker}(f)$ and, hence, $\operatorname{Ker}(f)$ is closed under multiplication.

Now we will show that the inverse of every element in the kernel of a homomorphism also belongs to the kernel. Thus, let $a \in \operatorname{Ker}(f)$. Then there exists $a^{-1} \in A$. However, $e=f(e)=f\left(a a^{-1}\right)=f(a) f\left(a^{-1}\right)=e \cdot f\left(a^{-1}\right)=f\left(a^{-1}\right)$ implies that $a^{-1} \in \operatorname{Ker}(f)$, and, hence, $\operatorname{Ker}(f)$ is a subgroup of A.

To show that $\operatorname{Ker}(f)$ is a normal subgroup of A, let $g \in A$ and let $x \in \operatorname{Ker}(f)$. Then $\quad f\left(g^{-1} x g\right)=f\left(g^{-1}\right) f(x) f(g)=[f(g)]^{-1} \cdot e \cdot f(g)=[f(g)]^{-1} f(g)=e \quad$ implies that $g^{-1} x g \in \operatorname{Ker}(f)$. Therefore, $\operatorname{Ker}(f)$ is a normal subgroup of A.

THE MATUREB HOMOMOPPMUEA

Discussion: We've talked before about normal subgroups, such as when N is a normal subgroup of G, and we've talked about the corresponding quotient groups, such as G / N. What we want to demonstrate now is that there is a very obvious surjective homomorphism from G onto G / N that we call the natural homomorphism.

Theorem: Let G be a group, and let N be a normal subgroup of G. Then the function $\pi: G \rightarrow G / N$ defined by $\pi(g)=N g$ is a homomorphism from G onto G / N. This homomorphism is called the natural homomorphism.

Proof: By previous proof (Part 9, Theorem 19), we know that the right (left) cosets of N in G form a group under the multiplication inherited from G. We also know that the function we've defined is onto since if $N g \in G / N$, then $N g=\pi(g)$ for $g \in G$. Additionally, we know from previous proof (Part 9, Theorem 17) that if $a, b \in G$, then the multiplication $N a b=N a N b$ is well-defined. In other words, if $N a_{1}=N a_{2}$ and $N b_{1}=N b_{2}$, then $N a_{1} N b_{1}=N a_{1} b_{1}=N a_{2} b_{2}=N a_{2} N b_{2}$. To show that $\pi: G \rightarrow G / N$ defined by $\pi(g)=N g$ is a homomorphism is now very easy. Let $a, b \in G$, and then $\pi(a b)=N a b=N a N b=\pi(a) \pi(b)$.

THE CORPESPOMDEAGE THEOREM

Discussion: This important theorem basically delineates a lot of correspondences that exist between subgroups in a group \mathcal{G} that contain a given normal subgroup N and subgroups in the corresponding quotient group G / N. In particular, this means that we can learn things about the structure of G by studying G / N.

The Correspondence Theorem: Let G be a group, let N be a normal subgroup of G, and let $\pi: G \rightarrow G / N$ be the natural homomorphism. Then,

1. If H is a subgroup of G such that $N \subseteq H$, then H / N is a subgroup of G / N.
2. If M is a subgroup of G / N, then $H=\pi^{-1}(M)=\{g \in G \mid \pi(g) \in M\}$ is a subgroup of G that contains N, and $H / N=M$.
3. If H is a normal subgroup of G such that $N \subseteq H$, then H / N is a normal subgroup of G / N.
4. If H / N is a normal subgroup of G / N, then $H=\pi^{-1}(H / N)=\{g \in G \mid \pi(g) \in H / N\}$ is a normal subgroup of G.
5. If H and K are subgroups of G such that $N \subseteq H \subseteq K$, then $H / N \subseteq K / N$.
6. If $H / N \subseteq K / N$, then $N \subseteq H \subseteq K$.
7. If H and K are subgroups of a finite group G such that $N \subseteq H \subseteq K$, then $[K: H]=[K / N: H / N]$.
8. If $N \subseteq H \subseteq K$, where H and K are subgroups of G, and if H is normal in K, then H / N is normal in K / N.
9. If $N \subseteq H \subseteq K$, where H and K are subgroups of G, and if H / N is normal in K / N, then H is normal in K.

Proof: (1) Let H be a subgroup of G such that $N \subseteq H$ where N is a normal subgroup of G. To show that H / N is a subgroup of G / N, we just need to show closure and existence of inverses. Thus, suppose $N a, N b \in H / N$. Then $a, b \in H$. Since H is a subgroup of G, there exists $c \in H$ such that $c=a b$. Hence, $N a N b=N a b=N c \in H / N$ since $c \in H$, and, thus, closure is satisfied.

Now suppose $N a \in H / N$. Then $a \in H$, and since H is a subgroup of G, there exists $a^{-1} \in H$ such that $a a^{-1}=e$. Consequently, $N a^{-1} \in H / N$ and $N a N a^{-1}=N a a^{-1}=N e=N$, the identity in H / N. Therefore, inverses also exist in H / N, and H / N is a subgroup of G / N.
(2) Suppose M is a subgroup of G / N and let $H=\pi^{-1}(M)=\{g \in G \mid \pi(g) \in M\}$. Then clearly $N \subseteq H=\pi^{-1}(M)=\{g \in G \mid \pi(g) \in M\}$ since N is just π^{-1} applied to the identity element in M. To show that H is a subgroup of G, we need to verify closure and existence of inverses. Thus, suppose that $a, b \in H$. Then $N a, N b \in M$ and $N a N b=N a b \in M$. From this it follows that $a b \in H=\pi^{-1}(M)=\{g \in G \mid \pi(g) \in M\}$, and H is closed under multiplication.

To show that inverses exist in H, suppose $a \in H$. Then $N a \in M$ and because inverses exist in M, there exists $N b \in M$ such that $N a N b=N a b=N$. However, this means both that $b \in H$ and $a b=n$ for some $n \in N$. But this also implies that $(a b) n^{-1}=a\left(b n^{-1}\right)=e$, the identity element in G, and, thus, $b n^{-1}=a^{-1}$. We can now conclude that since $b \in H$ and $n, n^{-1} \in N \subseteq H$, that $b n^{-1}=a^{-1} \in H$, and, therefore, H is a subgroup of G that contains N.

Finally, since $H=\pi^{-1}(M)=\{g \in G \mid \pi(g) \in M\}$ and since $N \subseteq H$ and $N=\operatorname{Ker}(\pi)$, it follows immediately that $\pi(H)=M=H / N$.
(3) Suppose that H is a normal subgroup of G such that $N \subseteq H$, and consider H / N, a subgroup of G / N. If $N g \in G / N$ and $a \in H$, then $N g^{-1} N a N g=N g^{-1} a g$ and since H being normal in G tells us that $g^{-1} a g \in H$, it follows that $N\left(g^{-1} a g\right) \in H / N$. Therefore, H / N is a normal subgroup of G / N.
(4) Suppose M is a normal subgroup of G / N and let $H=\pi^{-1}(M)=\{g \in G \mid \pi(g) \in M\}$. Then by (2) above, H is a subgroup of G containing N and $M=H / N$. Now let $N g \in G / N$ where $g \in G$. If $N a \in H / N$, then $N g^{-1} N a N g=N g^{-1} a g \in H / N$ since H / N is a normal subgroup of G / N. But this means that $g^{-1} a g \in \pi^{-1}\left(\mathrm{Ng}^{-1} a g\right) \subseteq H$. Therefore, H is a normal subgroup of G.
(5) Suppose H and K are subgroups of G such that $N \subseteq H \subseteq K$. Then H / N and K / N are both subgroups of G / N (by (1) above). Furthermore, if $N \subseteq H \subseteq K$, then $a \in H$ implies that $a \in K$, and this in turn means that if $N a \in H / N$, then $N a \in K / N$. Therefore, $H / N \subseteq K / N$
(6) Suppose $H / N \subseteq K / N$. Then $H=\pi^{-1}(H / N)=\{g \in G \mid \pi(g) \in H / N\}$ and $K=\pi^{-1}(K / N)=\{g \in G \mid \pi(g) \in K / N\}$ are subgroups of G (by (2) above). Since $N=N e \in H / N$ and since $H / N \subseteq K / N$, it follows immediately that $N \subseteq H=\pi^{-1}(H / N)=\{g \in G \mid \pi(g) \in H / N\} \subseteq \pi^{-1}(K / N)=\{g \in G \mid \pi(g) \in K / N\}=K$.
(7) Suppose H and K are subgroups of a finite group G such that $N \subseteq H \subseteq K$. Then H is also a subgroup of K, and H / N and K / N are both subgroups of G / N (by (1) above) with $H / N \subseteq K / N$ (by (5) above). Consequently, H / N is also a subgroup of K / N. Furthermore, by Lagrange's Theorem (Part 9, Theorem 14), $[K: H]=\frac{|K|}{|H|} \quad$ and $\quad[K / N: H / N]=\frac{|K / N|}{|H / N|}=\frac{|K| /|N|}{|H| /|N|}=\frac{|K|}{|H|} \quad . \quad$ Therefore, $[K: H]=[K / N: H / N]$.
(8) Suppose that H is normal in K where $N \subseteq H \subseteq K$. If $N a \in H / N$ and $N g \in K / N$, then $g^{-1} a g \in H$ since H is normal in K. Thus, $N g^{-1} N a N g=N g^{-1} a g \in H / N$ and, therefore, H / N is normal in K / N.
(9) Suppose H / N is normal in K / N where $N \subseteq H \subseteq K$ are all subgroups of G. If we simply restrict ourselves to the subgroup K, then it immediately follows from (4) above that H is normal in K.

HOHOMHOPPMISHA AMD ONTB-TO-ONT
 FUNTTHONS

Discussion: The theorem below gives a very useful result. It shows that if we have a homomorphism from one group onto another, then another way to show that this homomorphism is also a one-to-one function is to simply verify that the only element in the kernel is the identity.

Theorem: Let $f: A \rightarrow B$ be a homomorphism from a group A onto a group B. Then f is one-to-one if and only if $\operatorname{Ker}(f)=\{e\}$.

Proof: Suppose $f: A \rightarrow B$ is a homomorphism from a group A onto a group B, and suppose that f is one-to-one. By previous proof, (Homomorphisms and Identities) we know that $f(e)=e$, and if f is one-to-one, then it follows that $\operatorname{Ker}(f)$ contains only the identity, e.

Now suppose that $\operatorname{Ker}(f)=\{e\}$, and suppose that f is not one-to-one. Then there exists $a, b \in A$ with $a \neq b$ such that $f(a)=f(b)$. But this means that $e=f(a)[f(b)]^{-1}=f(a) f\left(b^{-1}\right)=f\left(a b^{-1}\right)$, and hence, $a b^{-1} \in \operatorname{Ker}(f)$. Also, since by hypothesis, $\operatorname{Ker}(f)=\{e\}$, it follows that $a b^{-1}=e$. However, multiplication of both sides of $a b^{-1}=e$ on the right by b shows that $a=b$, and this contradicts our assumption that $a \neq b$. Consequently, the hypothesis that f is not one-to-one leads to a contradiction, and therefore, f is one-to-one.

THE Fips ISOMOMPM

Theorem: Let $f: A \rightarrow B$ be a homomorphism from a group A onto a group B, and let $N=\operatorname{Ker}(f)$. Then $A / \operatorname{Ker}(f)=A / N \cong B$.

Proof: Recall that $\pi: A \rightarrow A / N$ defined by $\pi(a)=N a$ is called the natural homomorphism. Now define a function i from A / N to B by $i(N a)=f(a)$. We want to show that $i: A / N \rightarrow B$ is a homomorphism, but first notice that it doesn't matter what representative we use from a coset such as Na . In other words, since $N=\operatorname{Ker}(f)$, if $a, b \in N a$, then $a=n b$ for some $n \in N$ and $f(a)=f(n b)=f(n) f(b)=e \cdot f(b)=f(b)$. Hence, it is also true that $i(N a)=f(a)=f(b)=i(N b) \quad$ Now let $N x, N y \in A / N$. Then $i(N x N y)=i(N x y)=f(x y)=f(x) f(y)=i(N x) i(N y) . \quad$ Therefore, $\quad i: A / N \rightarrow B \quad$ is a homomorphism.

Next, we want to verify that the homomorphism $i: A / N \rightarrow B$ is onto. Hence, let $b \in B$. Then there exists $a \in A$ such that $f(a)=b$ since f is onto. Consequently, $i(\pi(a))=i(N a)=f(a)=b$ shows that i is also onto.

The final step to proving that the homomorphism i:A/N $\rightarrow B$ is an isomorphism is to show that i is one-to-one, and by our previous theorem it suffices to show that the kernel of i is N, the identity element in A / N. Clearly, if $n \in N$, then $i(N)=i(N n)=f(n)=e \quad$ since $\quad N=\operatorname{Ker}(f) . \quad$ Similarly, if $a \notin N=\operatorname{Ker}(f)$, then $i(N a)=f(a) \neq e$. Thus, $\operatorname{Ker}(i)=N$, the identity element in A / N, and consequently $i: A / N \rightarrow B$ is a homomorphism that is both one-to-one and onto. Therefore, $i: A / N \rightarrow B$ is an isomorphism and $A / \operatorname{Ker}(f)=A / N \cong B$.

THE SECOND ISOAORPMISM THEOMEA

Discussion: In Theorem 29 of Part 9 we proved that if H is a subgroup of a group G and if N is a normal subgroup of G, then the right (left) cosets corresponding to elements of H form a subgroup of G / N. The theorem below, known as the Second Isomorphism Theorem, give us much sharper detail on the structure of this subgroup of G / N.

The Second Isomorphism Theorem: If H and N are subgroups of a group G with N normal in G, then $H N$ is a subgroup of G and $H / H \cap N \cong H N / N$.

Proof: Recall that earlier we proved (Part 9, Theorem 29) that if H is a subgroup of G, then there will exist a corresponding subgroup of G / N that is obtained by looking at the cosets $N h$ where $h \in H$. This theorem, the Second Isomorphism Theorem, sharpens and clarifies this result. To prove it, though, we first need to show that $H \cap N$ is a normal subgroup of H and that $H N$ is a subgroup of G that contains N. So let's begin!

To show that $H \cap N$ is a normal subgroup of H, we first need to show that it is at least a subgroup by verifying properties of closure and existence of inverses. Thus, let $n_{1}, n_{2} \in H \cap N$. Since $n_{1}, n_{2} \in H$, a subgroup of G, it follows that $n_{1} n_{2} \in H$. But by the same token, $n_{1}, n_{2} \in N$ implies that $n_{1} n_{2} \in N$. Hence, $n_{1} n_{2} \in H \cap N$, and closure is satisfied.

Now suppose that $n \in H \cap N$. Then an inverse to n exists in both H and in N. In other words, $n^{-1} \in H$ and $n^{-1} \in N$ implies that $n^{-1} \in H \cap N$. Thus, existence of inverses is satisfied, and $H \cap N$ is a subgroup of H.

To show that $H \cap N$ is a normal subgroup of H, let $h \in H$ and let $n \in H \cap N$. Then $h^{-1} n h \in H$ since all three elements belong to H. But on the other hand, $h^{-1} n h \in N$ since N is a normal subgroup of G. Hence, $h^{-1} n h \in H \cap N$, and so $H \cap N$ is a normal subgroup of H.

Now let's show that $H N$ is a subgroup of G. Thus, to show closure, let $h_{1} n_{1}, h_{2} n_{2} \in H N$, and consider the product $h_{1} n_{1} h_{2} n_{2}$. Since N is a normal subgroup of G, every left coset of N is equal to the corresponding right coset, and that means that $h_{2} N=N h_{2}=N h_{2}=\left(N n_{1}\right) h_{2}=N n_{1} h_{2}$. Hence, there exists $n_{3} \in N$ such that $h_{2} n_{3}=n_{1} h_{2}$. Thus, $h_{1} n_{1} h_{2} n_{2}=h_{1}\left(n_{1} h_{2}\right) n_{2}=h_{1}\left(h_{2} n_{3}\right) n_{2}=h_{1} h_{2} n_{3} n_{2} \in H N$, and closure is satisfied. To show the existence of inverses in $H N$, let $h n \in H N$ where $h \in H$ and $n \in N$. Then it's inverse is $n^{-1} h^{-1}$. However, again since N is normal in G, there exist $n^{-1}, n_{4} \in N$ such that $h n^{-1} h^{-1}=n_{4} \Rightarrow n^{-1} h^{-1}=h^{-1} n_{4} \in H N$. Therefore, inverses exist in $H N$, and $H N$ is a subgroup of G. Furthermore, $N \subseteq H N$ since every element of N can be written as $e \cdot n$ where $e \in H$ and $n \in N$.

And finally, we need to state and prove our isomorphism from $H / H \cap N$ to $H N / N$. In this case, define $f: H / H \cap N \rightarrow H N / N$ by $f[(H \cap N) h]=N h$. To show that f is a homomorphism, observe that
$f\left[(H \cap N) h_{1}\right] \cdot f\left[(H \cap N) h_{2}\right]=N h_{1} \cdot N h_{2}=N\left(h_{1} h_{2}\right)=f\left[(H \cap N) h_{1} h_{2}\right] \quad$ Notice, too, that elements in $H / H \cap N$ look like $\left\{H \cap N,(H \cap N) h_{1},(H \cap N) h_{2},(H \cap N) h_{3}, \ldots\right\}$ where $h_{1}, h_{2}, h_{3}, \ldots \notin H \cap N$, and the corresponding elements in $H N / N$ via f look like $\left\{N, N h_{1}, N h_{2}, N h_{3}, \ldots\right\}$. From this it should be clear that $\operatorname{Ker}(f)=H \cap N$, the identity in $H / H \cap N$, because if $h \notin H \cap N$, then it gets mapped to $N h \neq N$, where N is the identity in $H N / N$. Thus, from our previous proof on homomorphisms and one-toone functions, it follows that f is one-to-one. And finally, to show that f is onto, suppose that $N h n \in H N / N$, where $h \in H$ and $n \in N$. Then since N is a normal subgroup, we can rewrite $h n$ as $n_{1} h$ for some $n_{1} \in N$. Hence, $N h n=N n_{1} h=N h=f[(H \cap N) h]$, and therefore, f is onto and $H / H \cap N \cong H N / N$.

THE FHMP ISOMOMPMHEM THEOREM

Discussion: This Third Isomorphism Theorem is in some ways a continuation of our Correspondence Theorem in that it establishes an isomorphism between a quotient group and a particular quotient of another quotient group.

The Third Isomorphism Theorem: Let G be a group, let N and H be normal subgroups of G, and suppose that $N \subseteq H \subseteq G$. Then H / N is a normal subgroup of G / N, and $(G / N) /(H / N) \cong G / H$.

Proof: It follows immediately from (3) of the Correspondence Theorem that H / N is a normal subgroup of G / N. Now let $i: G \rightarrow G / N$ be the natural homomorphism, and let $j: G / N \rightarrow(G / N) /(H / N)$ be another natural homomorphism. Then $j \circ i$ is a homomorphism from G onto $(G / N) /(H / N)$.

$$
G \xrightarrow{i} G / N \xrightarrow{j}(G / N) /(H / N)
$$

Hence, our First Isomorphism Theorem tells us that $(G / N) /(H / N)$ is isomorphic to $G / \operatorname{Ker}(j \circ i)$. Thus, we just need to figure out what is contained in $\operatorname{Ker}(j \circ i)$. Hence, let $h \in H \subseteq G$. Then $N h \in H / N \subseteq G / N$ tells us that $h \in \operatorname{Ker}(j \circ i)$. On the other hand, if $g \in G$, but $g \notin H$, then $N g \notin H / N$, and, thus, $g \notin \operatorname{Ker}(j \circ i)$. Therefore, $\operatorname{Ker}(j \circ i)=H$, and by the First Isomorphism Theorem, G / H is isomorphic to $(G / N) /(H / N)$.

AN APPLTEATHON

Discussion: Recall that in a permutation group, every permutation can be classified as even or odd and it can easily be shown that the even permutations form a normal subgroup of any permutation group. In particular, if S_{n} is the group of all permutations that can be made of n objects, then the normal subgroup of all even permutations is called the alternating group of degree n, A_{n}, and in the theorem below we show that for $n \geq 2$, the number of elements in A_{n} is $\left|A_{n}\right|=\frac{n!}{2}$.

Definition: If S_{n} is the group of all permutations that can be made of n objects (known as the symmetric group of degree n), then the alternating group of degree n, A_{n}, is the subgroup of all even permutations in S_{n}. Also, since the identity is counted as an even permutation, this subgroup of S_{n} always exists.

Theorem: If S_{n} is the symmetric group of degree n for $n \geq 2$, then $\left|A_{n}\right|=\frac{\left|S_{n}\right|}{2}=\frac{n!}{2}$.

Proof: We can define a surjective (onto) homomorphism $f: S_{n} \rightarrow \mathbb{Z}_{2}$ by $f(p)=\left\{\begin{array}{ll}0 & \text { if } p \text { is an even permutation } \\ 1 & \text { if } p \text { is an odd permutation }\end{array}\right.$.

For S_{n} with $n \geq 2$, it should be clear that S_{n} will contain both even and odd permutations. For example, it contains the identity which is an even permutation, and it contains transpositions of two elements which are odd permutations. Thus, $S_{n} \neq A_{n}$. However, A_{n} is the Kernel of f, and, thus, $\mathbb{Z}_{2} \cong S_{n} / \operatorname{Ker}(f)=S_{n} / A_{n}$. From this it immediately follows that $2=\left|\mathbb{Z}_{2}\right|=\left|S_{n} / A_{n}\right|=\left|S_{n}\right| /\left|A_{n}\right|=\frac{n!}{\left|A_{2}\right|} \Rightarrow\left|A_{n}\right|=\frac{n!}{2}$.

AOTHEE APPLHCATHOM

Discussion: Frankly, I found this result rather interesting!

Theorem: A group of permutations of odd order consists of only even permutations.

Proof: Let G be a group of permutations such that $|G|$ is odd. If $|G|=1$, then the only permutation in G is the identity which is even. If $|G|=3$, then G is the cyclic group of order 3 (since up to isomorphism there exists only one group of order 3), and we can represent the permutations as $\{(),(1,2,3),(1,3,2)\}$, and each of these permutations is even. Thus, assume that $|G|$ is odd and greater than three. Then G has more than two elements which are not the identity. Also, as before, define $f: G \rightarrow \mathbb{Z}_{2}$ by $f(p)=\left\{\begin{array}{ll}0 & \text { if } p \text { is an even permutation } \\ 1 & \text { if } p \text { is an odd permutation }\end{array}\right.$.

If $\operatorname{Ker}(f)=G$, then every permutation in G is even, and we are done. Thus, assume that not every permutation in G is even, i.e. that some are odd. In this case, $f: G \rightarrow \mathbb{Z}_{2}$ will be an onto function, and we have that $2=\left|\mathbb{Z}_{2}\right|=|G / \operatorname{Ker}(f)|=|G| /|\operatorname{Ker}(f)| \Rightarrow|G|=2 \cdot \operatorname{Ker}(f)$. But this contradicts our assumption that $|G|$ is odd, and therefore, a group of permutations of odd order consists of only even permutations.

A THTPD APPLHEATOM

Discussion: Below, we define an isomorphism from a group onto itself as an automorphism, and we show that the operation of conjugation that we introduced back in Part 2 results in a very important automorphism that we call an inner automorphism.

Definition: An isomorphism from a group G onto itself is called an automorphism.

Theorem: Let G be a group, let $g \in G$, and define a function $f_{g}: G \rightarrow G$ by $f_{g}(a)=g^{-1} a g$ for every $a \in G$. Then f_{g} is an automorphism.

Proof: Let G be a group, let $g \in G$, and define a function $f_{g}: G \rightarrow G$ by $f_{g}(a)=g^{-1} a g$ for every $a \in G$. To show that f_{g} is an automorphism, we need to show that it is a homomorphism, it's onto, and it's one-to-one. To show that it's a homomorphism, let $a, b \in G$. Then
$f_{g}(a) f_{g}(b)=g^{-1} a g \cdot g^{-1} b g=g^{-1} a \cdot e \cdot b g=g^{-1}(a b) g=f_{g}(a b)$. To show that it's onto, let $a \in G$. Then $g a g^{-1}$ is also an element of G, and $f_{g}\left(g a g^{-1}\right)=g^{-1}\left(g a g^{-1}\right) g=e \cdot a \cdot e=a$. And finally, to show that $f_{g}: G \rightarrow G$ is one-to-one, suppose $a \in \operatorname{Ker}\left(f_{g}\right)$. Then $f_{g}(a)=e \Rightarrow g^{-1} a g=e \Rightarrow a=g e g^{-1}=e$. Hence, $\operatorname{Ker}\left(f_{g}\right)$ consists only of e, and the homomorphism is one-to-one as well as onto. Therefore, $f_{g}: G \rightarrow G$ defined by $f_{g}(a)=g^{-1} a g$ is an automorphism. Furthermore, this particular type of automorphism is called an inner automorphism.

Corollary: Let G be a group, let $g \in G$, and define a function $f_{g}: G \rightarrow G$ by $f_{g}(a)=g a g^{-1}$ for every $a \in G$. Then f_{g} is an automorphism.

Proof: The proof of the corollary is identical to that of the theorem above it. Just switch g with g^{-1} and you're done!

A POUPTH MESURT

Discussion: We introduced the notion of a commutator back in Part 2, and in Theorem 21 of Part 9 we proved that the subgroup generated by forming all finite products of the commutators in our group is a normal subgroup of our group. In the theorem below, we show that the quotient group of our group by the commutator subgroup is always abelian. Furthermore, it could even be shown that the kernel of any quotient group that is abelian must contain this commutator subgroup. However, this last part we leave for you to ponder.

Theorem: Let G be a group, and let G^{\prime} be the derived or commutator subgroup, the subgroup generated by all products in G of the form $a^{-1} b^{-1} a b$. Then G / G^{\prime} is abelian.

Proof: Let $\pi: G \rightarrow G / G^{\prime}$ be the natural homomorphism where $\pi(g)=G^{\prime} g$. To show that G / G^{\prime} is abelian, we need to show that if $G^{\prime} a, G^{\prime} b \in G / G^{\prime}$, then $G^{\prime} a G^{\prime} b=G^{\prime} b G^{\prime} a$. Another way to express this equation is as $\left[G^{\prime} a\right]^{-1}\left[G^{\prime} b\right]^{-1} G^{\prime} a G^{\prime} b=G^{\prime}$, the identity in G / G^{\prime}. However, this is easy to verify since $\left[G^{\prime} a\right]^{-1}\left[G^{\prime} b\right]^{-1} G^{\prime} a G^{\prime} b=\left(G^{\prime} a^{-1}\right)\left(G^{\prime} b^{-1}\right) G^{\prime} a G^{\prime} b=G^{\prime}\left(a^{-1} b^{-1} a b\right)$. Hence, since $a^{-1} b^{-1} a b$ is a commutator, it follows that $G^{\prime}\left(a^{-1} b^{-1} a b\right)=G^{\prime}$, the identity in G / G^{\prime}. Therefore, $\left[G^{\prime} a\right]^{-1}\left[G^{\prime} b\right]^{-1} G^{\prime} a G^{\prime} b=G^{\prime}\left(a^{-1} b^{-1} a b\right)=G^{\prime}$, the identity in G / G^{\prime}, implies that $G^{\prime} a G^{\prime} b=G^{\prime} b G^{\prime} a$ and G / G^{\prime} is abelian.

We are now going to examine not only some quotient groups, but also quotients of quotients and quotients of quotients of quotients in order to get a feel for what they are really like. But first, let's consider the following. Suppose that we have a finite group G with normal, nontrivial subgroups N, M, and R such that $N \subset M \subset R \subset G$. Then we know that the elements of G / N can be represented as $G / N=\left\{N, N a_{1}, \ldots, N a_{j}\right\}$ where N is the identity element and every other element of G / N is equal to the coset N times an element of G, in this case represented by a_{1}, \ldots, a_{j}. We now want to argue that quotients of quotients will have a similar representation. Thus, we will next consider $(G / N) /(M / N)$.

By the Third Isomorphism Theorem we know that $(G / N) /(M / N) \cong G / M$. However, let's think of what the actual elements of $(G / N) /(M / N)$ will look like. First, recall that the elements of G / N have the form $G / N=\left\{N, N a_{1}, \ldots, N a_{j}\right\}$. Also, if M / N is a normal subgroup of G / N, then its elements will have the form $M / N=\left\{N, N b_{1}, \ldots, N b_{k}\right\}$ where b_{1}, \ldots, b_{k} are elements of G. If we now try to depict a typical element of $(G / N) /(M / N)$, then these elements are going to be cosets in G / N of M / N. In other words, a typical element will look like $\frac{M}{N} \cdot N g$ where $g \in G$. However, because $N \in M / N$, under the multiplication defined in $(G / N) /(M / N)$ we have that $\frac{M}{N} \cdot N=\frac{M}{N}$, and hence, $\frac{M}{N} \cdot N g=\frac{M}{N} \cdot g$. Remember, though, that when we simplify $\frac{M}{N} \cdot N$, we're not multiplying numerical fractions together which would result in $\frac{M}{N} \cdot N=\frac{M}{\not X} \cdot \not X=M$. No, instead we are multiplying elements of the group $M / N=\left\{N, N b_{1}, \ldots, N b_{k}\right\}$ by N, and since N is an element of the group M / N, the
result is that $\frac{M}{N} \cdot N=\frac{M}{N}$. And the ultimate consequence of all this is that a typical element of $(G / N) /(M / N)$ can be found just by multiplying $\frac{M}{N}$ by an element of G. Now let's look at yet another quotient in order to convince ourselves that this pattern will continue to hold!

If we now consider $[(G / N) /(M / N)] /[(R / N) /(M / N)]$, then again we know from our Third Isomorphism Theorem that this will be isomorphic to G / R However, in the context of $[(G / N) /(M / N)] /[(R / N) /(M / N)]$ a typical element will be equal to $\frac{R / N}{M / N}$ times an element of $(G / N) /(M / N)$. But an element of $(G / N) /(M / N)$ will have the appearance of $\frac{M}{N}$ times an element of $\frac{G}{N}$, and an element of $\frac{G}{N}$ will have the form $N g$ where $g \in G$. Hence, an element of $[(G / N) /(M / N)] /[(R / N) /(M / N)]$ will look like $\frac{R / N}{M / N} \cdot \frac{M}{N} \cdot N g$. But again since $N \in \frac{M}{N}$, we have that $\frac{M}{N} \cdot N=\frac{M}{N}$, and since $\frac{M}{N} \in \frac{R / N}{M / N}$, it follows that $\frac{R / N}{M / N} \cdot \frac{M}{N}=\frac{R / N}{M / N}$. Thus, $\frac{R / N}{M / N} \cdot \frac{M}{N} \cdot N g=\frac{R / N}{M / N} \cdot g$, and once again we can find the elements of something like $[(G / N) /(M / N)] /[(R / N) /(M / N)]$ just by multiplying $(R / N) /(M / N)$ by appropriate elements of G, and knowing that we can take this little shortcut will make it easier to write down the various elements of quotients of quotients.

As an illustration, let's start with the group $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The order of G is $|G|=16$, and the elements of G, expressed as coordinates (not permutations) are,

$$
G=\left\{\begin{array}{c}
(0,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1),(0,1,1,1), \\
(1,0,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,0),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,1,1,1)
\end{array}\right\}
$$

Since these elements are expressed as coordinates modulo 2, when we "multiply" them we actually just add them together coordinatewise using the rule that $1+1=0$. For example, $(1,0,1,0)+(0,1,1,1)=(1+0,0+1,1+1,0+1)=(1,1,0,1)$. Also, this group is abelian, and so all of its subgroups are normal. In particular, let's consider the following subgroups:

$$
\begin{gathered}
N_{1}=\{(0,0,0,0),(1,0,0,0)\}=\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
N_{2}=\{(0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,0,0)\}=\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{gathered}
$$

$$
N_{3}=\{(0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,0,0),(0,0,1,0),(1,0,1,0),(0,1,1,0),(1,1,1,0)\}
$$

$$
=\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0) \\
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}
$$

Notice that $N_{1} \subset N_{2} \subset N_{3}$. Furthermore, $\left|G / N_{1}\right|=8$, and the cosets in G / N_{1} are,

$$
\begin{aligned}
& G / N_{1}=\left\{\begin{array}{c}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,1,0,0),\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,1,0),\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,0,1), \\
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,1,1,0),\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,1,0,1),\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,1,1),\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,1,1,1)
\end{array}\right\} \\
& =\left\{\begin{array}{r}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,1,0) \\
(1,0,1,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,0,1) \\
(1,0,0,1)
\end{array}\right\}, \\
\left\{\begin{array}{l}
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,1,0,1) \\
(1,1,0,1)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,1,1) \\
(1,0,1,1)
\end{array}\right\},\left\{\begin{array}{l}
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$

We want to now look at G / N_{2} which by our Third isomorphism theorem is isomorphic to $\left(G / N_{1}\right) /\left(N_{2} / N_{1}\right)$. Thus, we'll first write down the cosets for G / N_{2} and then compare this to the cosets in $\left(G / N_{1}\right) /\left(N_{2} / N_{1}\right)$ and remember that we can always find quotients of quotients by multiplying the subgroup we are factoring out by an appropriate element of our original group G. In particular, $\left|G / N_{2}\right|=4$, and the cosets in G / N_{2} are,

$$
\begin{aligned}
& G / N_{2}=\left\{\begin{array}{l}
\left.\left(\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,0),\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,0,1),\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,1)\right\} \\
\left.=\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,0,1) \\
(1,0,0,1) \\
(0,1,0,1) \\
(1,1,0,1)
\end{array}\right\},\left\{\begin{array}{c}
(0,0,1,1) \\
(1,0,1,1) \\
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}\right\}
\end{array}\right.
\end{aligned}
$$

Now we want to compare this to the cosets in $\left(G / N_{1}\right) /\left(N_{2} / N_{1}\right)$, so let's first write down N_{2} / N_{1}.

$$
\begin{aligned}
& N_{2} / N_{1}=\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,1,0,0)\right\}=\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}\right\} \\
& =\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$

Since,

$$
G / N_{1}=\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,1,0) \\
(1,0,1,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,0,1) \\
(1,0,0,1)
\end{array}\right\}, \\
\left\{\begin{array}{c}
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,1,0,1) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,1,1) \\
(1,0,1,1)
\end{array}\right\},\left\{\begin{array}{l}
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}
\end{array}\right\},
$$

We have that,

$$
\begin{aligned}
& \left(G / N_{1}\right) /\left(N_{2} / N_{1}\right) \\
& \left.=\left\{\begin{array}{l}
\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}\right. \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\}(0,0,1,0),\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\}(0,0,0,1),\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\}(0,0,1,1)\right\} \\
& \left.\left.=\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,1,0) \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,0)
\end{array}\right\},\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,0,1) \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},(0,0,0,1)\right\},\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,1,1) \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,1)
\end{array}\right\}\right\} \\
& \left.=\left\{\begin{array}{l}
\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}\right. \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,1,0) \\
(1,0,1,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,1) \\
(1,0,0,1)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,1) \\
(1,1,0,1)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,1,1) \\
(1,0,1,1)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}
\end{array}\right\}\right\}
\end{aligned}
$$

Notice now the structural similarity between $\left(G / N_{1}\right) /\left(N_{2} / N_{1}\right)$ and G / N_{2}.

$$
G / N_{2}=\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,0,1) \\
(1,0,0,1) \\
(0,1,0,1) \\
(1,1,0,1)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,1,1) \\
(1,0,1,1) \\
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right)\right\}
$$

And now we'll move on to G / N_{3} which is isomorphic to both $\left(G / N_{2}\right) /\left(N_{3} / N_{2}\right)$ and $\left[\left(G / N_{1}\right) /\left(N_{2} / N_{1}\right)\right] /\left[\left(N_{3} / N_{1}\right) /\left(N_{2} / N_{1}\right)\right]$ and which has order equal to 2. As before, we'll start with the simplest quotient group, G / N_{3}, and we'll methodically construct the other quotient groups so that we can observe the similarities. Thus, $\left|G / N_{3}\right|=2$, and the cosets in G / N_{3} are,

To construct $\left(G / N_{2}\right) /\left(N_{3} / N_{2}\right)$, we must first write down N_{3} / N_{2}.

$$
\begin{aligned}
& \left.N_{3} / N_{2}=\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,0)\right\}=\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}\right\} \\
& =\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\} \\
\left\{\begin{array}{l}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$

And since,

$$
\begin{aligned}
& G / N_{2}=\left\{\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,0),\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,0,1),\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,1)\right\} \\
& \left.=\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,0,1) \\
(1,0,0,1) \\
(0,1,0,1) \\
(1,1,0,1)
\end{array}\right\},\left\{\begin{array}{l}
(0,0,1,1) \\
(1,0,1,1) \\
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}\right\}
\end{aligned}
$$

we have that,

$$
\begin{aligned}
& \left.\left(G / N_{2}\right) /\left(N_{3} / N_{2}\right)=\left\{\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\} \\
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}\right\}(0,0,0,1)\right\} \\
& =\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\} \\
\left\{\begin{array}{l}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\},\left\{\begin{array}{l}
\left(\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,0,1)
\end{array}\right\}\left\{\begin{array}{l}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}(0,0,0,1)
\end{array}\right\}=\left\{\begin{array}{l}
\left.\left\{\begin{array}{l}
(0,0,0,0) \\
\left(\begin{array}{c}
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\} \\
\left(\begin{array}{c}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{l}
\left\{\begin{array}{c}
(0,0,0,1) \\
(1,0,0,1) \\
(0,1,0,1) \\
(1,1,0,1)
\end{array}\right\} \\
\left(\begin{array}{c}
(0,0,1,1) \\
(1,0,1,1) \\
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}
\end{array}\right\}\right\}
\end{array}\right\}
\end{aligned}
$$

Again, notice the structural similarity between this and G / N_{3}.

$$
\left.G / N_{3}=\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0) \\
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,0,0,1) \\
(1,0,0,1) \\
(0,1,0,1) \\
(1,1,0,1) \\
(0,0,1,1) \\
(1,0,1,1) \\
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}\right\}
$$

And finally, we want to construct the cosets for $\left[\left(G / N_{1}\right) /\left(N_{2} / N_{1}\right)\right] /\left[\left(N_{3} / N_{1}\right) /\left(N_{2} / N_{1}\right)\right]$. We'll start first with N_{2} / N_{1}, then N_{3} / N_{1} followed by $\left(N_{3} / N_{1}\right) /\left(N_{2} / N_{1}\right)$.

$$
\begin{aligned}
& N_{2} / N_{1}=\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,1,0,0)\right\}=\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}\right\} \\
& =\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& N_{3} / N_{1}=\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,1,0,0),\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,1,0),\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,1,1,0)\right\} \\
& =\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,0,1,0) \\
(1,0,1,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}\right\}
\end{aligned}
$$

$$
\left.\left(N_{3} / N_{1}\right) /\left(N_{2} / N_{1}\right)=\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\}(0,0,1,0)\right\}
$$

$$
\left.=\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,1,0) \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,0)
\end{array}\right\}\right\}
$$

$$
\left.=\left\{\begin{array}{l}
\left\{\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}\right. \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,1,0) \\
(1,0,1,0)
\end{array}\right\} \\
\left\{\begin{array}{l}
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}
\end{array}\right\}\right\}
$$

We previously found the following cosets for $\left(G / N_{1}\right) /\left(N_{2} / N_{1}\right)$.

$$
\begin{aligned}
& \left(G / N_{1}\right) /\left(N_{2} / N_{1}\right) \\
& =\left\{\left\{\begin{array}{l}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\}(0,0,1,0),\left\{\begin{array}{l}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\}(0,0,0,1),\left\{\begin{array}{l}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\}(0,0,1,1)\right\} \\
& \left.=\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,1,0) \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,0)
\end{array}\right\},\left\{\begin{array}{l}
\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,0,1) \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,0,1)
\end{array}\right\},\left\{\begin{array}{l}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}(0,0,1,1) \\
\left\{\begin{array}{l}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}(0,0,1,1)
\end{array}\right\}\right\} \\
& \left.=\left\{\begin{array}{l}
\left\{\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0)
\end{array}\right\}\right. \\
\left\{\begin{array}{c}
(0,1,0,0) \\
(1,1,0,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,1,0) \\
(1,0,1,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,1) \\
(1,0,0,1)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,0,1) \\
(1,1,0,1)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,1,1) \\
(1,0,1,1)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}
\end{array}\right\}\right\}
\end{aligned}
$$

Hence, we can now write down the cosets for $\left[\left(G / N_{1}\right) /\left(N_{2} / N_{1}\right)\right] /\left[\left(N_{3} / N_{1}\right) /\left(N_{2} / N_{1}\right)\right]$ as follows,

Again, we want to notice the structural similarities between the three isomorphic groups.

$$
\begin{aligned}
& \left.G / N_{3}=\left\{\begin{array}{l}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0,0) \\
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\},\left\{\begin{array}{c}
(0,0,0,1) \\
(1,0,0,1) \\
(0,1,0,1) \\
(1,1,0,1) \\
(0,0,1,1) \\
(1,0,1,1) \\
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}\right\} \\
& \left.\left(G / N_{2}\right) /\left(N_{3} / N_{2}\right)=\left\{\begin{array}{l}
\left\{\begin{array}{c}
(0,0,0,0) \\
(1,0,0,0) \\
(0,1,0,0) \\
(1,1,0)
\end{array}\right\} \\
\left\{\begin{array}{c}
(0,0,1,0) \\
(1,0,1,0) \\
(0,1,1,0) \\
(1,1,1,0)
\end{array}\right\}
\end{array}\right\},\left\{\begin{array}{c}
\left\{\begin{array}{c}
(0,0,0,1) \\
(1,0,0,1) \\
(0,1,0,1) \\
(1,1,0,1)
\end{array}\right\} \\
\left(\begin{array}{c}
(0,0,1,1) \\
(1,0,1,1) \\
(0,1,1,1) \\
(1,1,1,1)
\end{array}\right\}
\end{array}\right\}\right\}
\end{aligned}
$$

Among other things, this hopefully illustrates that as we continue to take quotients of quotients, every coset in the resulting quotient group can still be written as an element of G times the identity in that particular quotient of quotients. Divide and conquer!

BUPMSTDE: COMTTIMG THEOPEM

Consider this situation. You have just solved Rubik's cube, but you also instinctively know that if you rotated the cube 90° in any of six directions, then you would still consider the cube to still be in the same solved configuration. Thus, certain movements of the cube don't really result in what we consider a different configuration. And now our problem is this. Suppose we color the faces of the cube with six different colors and that we are also allowed to rotate the cube as described above. Then how many truly different color configurations are possible when we allow for rotations of the cube? This is the type of question we'll learn to answer in this chapter with the help of what we call orbits, stabilizers, fixers, and Burnside's Counting Theorem.

Remember: There are a few definitions and theorems you might want to recall before you wade any further into this section. First, when we say that G is a group that acts on a set of objects X, that means that each element of G corresponds to a permutation of the elements of X. For example, consider the equilateral triangle below with vertices labeled by 1,2 , or 3.

We can let $X=\{1,2,3\}$ and our group G can correspond to the permutations of these numbers created by either rotating the above triangle clockwise through angles that are integer multiples of 120° or by flipping the triangle about one of the indicated axes of symmetry or by some combination of these moves. By doing so, we can identify six distinct permutations which can be represented as follows.
$g_{1}=$ the identity $=e=()$
$g_{2}=(1,2,3)$ [Recall that this permutation means $1 \rightarrow 2,2 \rightarrow 3, \& 3 \rightarrow 1$]
$g_{3}=(1,3,2)$
$g_{4}=(2,3)$
$g_{5}=(1,3)$
$g_{6}=(1,2)$

We will use this example down below, so remember it. Also, recall that we denote the number of elements in a set or group by putting absolute value signs around the symbol for that set or group. Hence, for the group G above, we have $|G|=6$.

And finally, recall that if H is a subgroup of a finite group G, then the left coset of H in G created by $a \in G$ is $a H=\{a h \mid h \in H\}$. Additionally, by Lagrange's Theorem (Part 9, Theorems $13 \& 14$), the number of left cosets of H in G is a divisor of G
and is denoted by $[G: H]=\frac{|G|}{|H|}$. Notice that even though in the past we have generally examined right cosets, for the proofs that follow it will be easier this time to deal with left cosets.

Definition: Let G be a group that acts on a set X, and let $x \in X$. The orbit of x by \underline{G} is the set $\operatorname{Orbit}_{G}(x)=\{g(x) \mid g \in G\}$. In other words, the orbit of x consists of all elements of X that x can be changed into by the various elements of G.

Theorem: Let G be a group that acts on a set X, and let \equiv be a relation on X defined by $x \equiv y$ if and only if $y=g(x)$ for some $g \in G$. Then \equiv is an equivalence relation.

Proof: Recall that we need to show that this relationship is reflexive, symmetric, and transitive. Let's begin!

1. (reflexive) Let $e \in G$ be the identity element in G. Then, by definition, e leaves every element of X fixed so that $e(x)=x$. Hence, $x \equiv x$ and \equiv is reflexive.
2. (symmetric) Suppose $x \equiv y$. Then there exists $g \in G$ such that $g(x)=y$. However, this implies that $g^{-1}(y)=x$ and that $y \equiv x$. Thus, \equiv is symmetric.
3. (transitive) Suppose there exist $x, y, z \in X$ such that $x \equiv y$ and $y \equiv z$. Then there exist functions $g_{1}, g_{2} \in G$ such that $g_{1}(x)=y$ and $g_{2}(y)=z$. Now let $g_{3}=g_{2} \circ g_{1} \in G$. Then $g_{3}(x)=\left(g_{2} \circ g_{1}\right)(x)=g_{2}\left(g_{1}(x)\right)=g_{2}(y)=z$. Therefore, $x \equiv z$ and \equiv is transitive.

It now follows that \equiv is an equivalence relation on X, and, hence, it partitions X into a series of disjoint subsets whose union is X. Also, it should be clear that each subset of this partition represents a single orbit created by the permutations in G when applied to the elements in the set X.

Corollary: If x and y belong to the same orbit, then $\operatorname{Orbit}_{G}(x)=\operatorname{Orbit}_{G}(y)$ and, consequently, $\left|\operatorname{Orbit}_{G}(x)\right|=\left|\operatorname{Orbit}_{G}(y)\right| . \quad\left(\operatorname{Recall}\right.$ that $\left|\operatorname{Orbit}_{G}(x)\right|$ means the number of elements in Orbit $\left._{G}(x).\right)$

Definition: Let G be a group that acts upon a set X, and let $x \in X$. Then the stabilizer of x by G is Stabilizer $_{G}(x)=G_{x}=\{g \in G \mid g(x)=x\}$.

Theorem: If G is a group that acts on a set X, and if $x \in X$, then the stabilizer of x by G is a subgroup of G.

Proof: To verify that $\operatorname{Stabilizer}_{G}(x)=G_{x}$ is a subgroup of G, we need to show that for every $g \in \operatorname{Stabilizer}_{G}(x)=G_{x}$ we have that $g^{-1} \in \operatorname{Stabilizer}_{G}(x)=G_{x}$, and that for every $g_{1}, g_{2} \in \operatorname{Stabilizer}_{G}(x)=G_{\chi}$, we have that $g_{1} \circ g_{2} \in \operatorname{Stabilizer}_{G}(x)=G_{x}$.

Thus, suppose $g \in \operatorname{Stabilizer}_{G}(x)=G_{x}$. Then $x=e(x)=\left(g^{-1} \circ g\right)(x)=g^{-1}(g(x))=g^{-1}(x)$. Hence, $g^{-1} \in \operatorname{Stabilizer}_{G}(x)=G_{x}$.

Now suppose $g_{1}, g_{2} \in \operatorname{Stabilizer}_{G}(x)=G_{x}$. Then $\left(g_{1} \circ g_{2}\right)(x)=g_{1}\left(g_{2}(x)\right)=g_{1}(x)=x$.
Consequently, $g_{1} \circ g_{2} \in \operatorname{Stabilizer}_{G}(x)=G_{x}$.

Therefore, it now follows that $\operatorname{Stabilizer}_{G}(x)=G_{x}$ is a subgroup of G.

Theorem: If G is a finite group that acts on a set X, and if $x \in X$, then the number of elements in the orbit of x is $\left|\operatorname{Orbit}_{G}(x)\right|=\left[G: G_{x}\right]=\frac{|G|}{\left|G_{x}\right|}=\frac{|G|}{\left|\operatorname{Stabilizer}_{G}(x)\right|}$.

Proof: Since Stabilizer $_{G}(x)=G_{x}$ is a subgroup of G, we can consider the left cosets of G_{x} in G. In particular, notice that if $g_{1}, g_{2} \in \operatorname{Stabilizer}_{G}(x)=G_{x}$, then $g_{1}(x)=x=g_{2}(x)$. Now consider a left coset $h G_{x}$ and suppose $h_{1}, h_{2} \in h G_{x}$. Then $h_{1}=h g_{1} \& h_{2}=h g_{2}$ for some $g_{1}, g_{2} \in G_{x} \Rightarrow h=h_{1} g_{1}^{-1} \Rightarrow h_{2}=h g_{2}=\left(h_{1} g_{1}^{-1}\right) g_{2}=h_{1}\left(g_{1}^{-1} g_{2}\right)=h_{1} g$ where $g=g_{1}^{-1} g_{2} \in G_{x}$. Hence, $h_{2}(x)=\left(h_{1} g\right)(x)=\left(h_{1} \circ g\right)(x)=h_{1}(g(x))=h_{1}(x)$. Thus, all elements in the same left coset of G_{x} yield the same value when applied to x.

Furthermore, if $a G_{x}$ and $b G_{x}$ are two different left cosets of G_{x}, then $a(x) \neq b(x)$ since, otherwise, if it were true that $a(x)=y=b(x)$, then $\left(a^{-1} b\right)(x)=\left(a^{-1} \circ b\right)(x)=a^{-1}(b(x))=a^{-1}(y)=x \Rightarrow a^{-1} b=g$ for some $g \in G_{x} \Rightarrow a g=a\left(a^{-1} b\right)$ $=\left(a a^{-1}\right) b=e \cdot b=b \Rightarrow a$ and b belong to the same left coset of G_{x}. But this contradicts our assumption that $a G_{x} \neq b G_{x}$.

From the above it follows that we can find all the elements in the orbit of x by simply picking an arbitrary function from each left coset of G_{x} and applying it to x. In particular, the number of elements in the orbit of x is the same as the number of left cosets of G_{x} in G. Therefore, by Lagrange's Theorem, $\left|\operatorname{Orbit}_{G}(x)\right|=\left[G: G_{x}\right]=\frac{|G|}{\left|G_{x}\right|}=\frac{|G|}{\left|\operatorname{Stabilizer}_{G}(x)\right|}$.

Corollary: We can also rewrite $\quad\left|\operatorname{Orbit}_{G}(x)\right|=\frac{|G|}{\left|G_{x}\right|}=\frac{|G|}{\left|\operatorname{Stabilizer}_{G}(x)\right|} \quad$ as $\left|G_{x}\right|=\left|\operatorname{Stabilizer}_{G}(x)\right|=\frac{|G|}{\left|\operatorname{Orbit}_{G}(x)\right|}$.

Definition: Let G be a group that acts upon a set X, and let $x \in X$. Then the fixer of g in X is Fixer $_{X}(g)=\{x \in X \mid g(x)=x\}$.

Theorem: Let G be a group that acts on a set X and let $A=\{(g, x) \mid g(x)=x$ where $g \in G$ and $x \in X\}$. Then the number of elements in A, denoted by $|A|$, is $|A|=\sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|=\sum_{x \in X}\left|G_{x}\right|=\sum_{g \in G}\left|F_{i x e r}^{X}(g)\right|$.

Proof: The statement is obvious once you realize that $\sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|$ and $\sum_{g \in G} \mid$ Fixer $_{X}(g) \mid$ are just counting the same thing in two different ways. In $\sum_{x \in X} \mid$ Stabilizer $_{G}(x) \mid$, we're fixing an $x \in X$ and then counting up all the functions $g \in G$ such that $g(x)=x$. And then we go on to the next $x \in X$. On the other hand, in $\sum_{g \in G} \mid$ Fixer $_{X}(g) \mid$ we fix $g \in G$ and then count up the number of elements $x \in X$ such that $g(x)=x$. And then we move on to another $g \in G$.

As an example, suppose $X=\{1,2,3\}, G=\left\{g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}\right\}$, (as defined at the beginning of this chapter), and $A=\left\{\left(g_{1}, 1\right),\left(g_{1}, 2\right),\left(g_{1}, 3\right),\left(g_{4}, 1\right),\left(g_{5}, 2\right),\left(g_{6}, 3\right)\right\}$. Then $|A|=6$, and we can count this total in either of the two ways below.

\mathbf{x}	\mid Stabilizer $(\mathbf{x}) \mid$
1	2
2	2
3	2
Sum=6	

\mathbf{g}	\mid Fixer $(\mathbf{g}) \mid$
g1	3
g2	0
g3	0
g4	1
g5	1
g6	1
Sum $=6$	

In other words, 1 is stabilized by $g_{1} \& g_{4}, 2$ is stabilized by $g_{1} \& g_{5}$, and 3 is stabilized by $g_{1} \& g_{6}$. On the other hand, g_{1} fixes $1,2, \& 3, g_{2}$ and g_{3} fix no elements in X, g_{4} fixes $1, g_{5}$ fixes 2 , and g_{6} fixes 3 . Either way, the final sum is the same. Thus, $|A|=\sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|=\sum_{x \in X}\left|G_{x}\right|=\sum_{g \in G}\left|\operatorname{Fixer}_{X}(g)\right|$.

Burnside's Counting Theorem: If G is a finite group that acts on a set X, then the number of orbits created by G acting on X is $\left.\frac{1}{|G|} \sum_{x \in X}\left|G_{x}\right|=\frac{1}{|G|} \sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|=\frac{1}{|G|} \sum_{g \in G} \right\rvert\,$ Fixer $_{X}(g) \mid$.

Proof: At this point, we have pretty much developed all the pieces of the puzzle, and we just need to put them together. Recall that our corollary above says that $\left|G_{x}\right|=\left|\operatorname{Stabilizer}_{G}(x)\right|=\frac{|G|}{\left|\operatorname{Orbit}_{G}(x)\right|}$. Hence,
$\frac{1}{|G|} \sum_{x \in X}\left|G_{x}\right|=\frac{1}{|G|} \sum_{x \in X} \frac{|G|}{\left|\operatorname{Orbit}_{G}(x)\right|}=\frac{|G|}{|G|} \sum_{x \in X} \frac{1}{\mid \text { Orbit }_{G}(x) \mid}=\sum_{x \in X} \frac{1}{\mid \text { Orbit }_{G}(x) \mid}$. Now what is this last expression going to add up to? Well, suppose, for example, that one particular orbit by a group G contains just three points $-\mathrm{a}, \mathrm{b}$, and c. In this case, $\operatorname{Orbit}_{G}(a)=\operatorname{Orbit}_{G}(b)=\operatorname{Orbit}_{G}(c) \quad, \quad$ and $\quad\left|\operatorname{Orbit}_{G}(a)\right|=\left|\operatorname{Orbit}_{G}(b)\right|=\left|\operatorname{Orbit}_{G}(c)\right|=3 \quad$. Consequently, $\frac{1}{\mid \text { Orbit }_{G}(a) \mid}+\frac{1}{\left|\operatorname{Orbit}_{G}(b)\right|}+\frac{1}{\mid \text { Orbit }_{G}(c) \mid}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$. Similarly, if an orbit produced by a group G consisted of four elements, d, e, f, and g, then we would
have $\frac{1}{\left|\operatorname{Orbit}_{G}(d)\right|}+\frac{1}{\left|\operatorname{Orbit}_{G}(e)\right|}+\frac{1}{\left|\operatorname{Orbit}_{G}(f)\right|}+\frac{1}{\left|\operatorname{Orbit}_{G}(g)\right|}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1$. Thus, if we arrange the sum $\sum_{x \in X} \frac{1}{\left|\operatorname{Orbit}_{G}(x)\right|}$ in such a way that we add up all the terms corresponding to the elements of one orbit before going on to the next orbit, then the sum simply becomes $1+1+\ldots+1$ where the term " 1 " occurs as many times as there are distinct orbits in X produced by the action of the group G. In other words, $\frac{1}{|G|} \sum_{x \in X}\left|G_{x}\right|=\frac{1}{|G|} \sum_{x \in X} \frac{|G|}{\left|\operatorname{Orbit}_{G}(x)\right|}=\frac{|G|}{|G|} \sum_{x \in X} \frac{1}{\left|\operatorname{Orbit}_{G}(x)\right|}=\sum_{x \in X} \frac{1}{\left|\operatorname{Orbit}_{G}(x)\right|}$ is equal to the total number of orbits produced on X by G. And since one of our theorems above demonstrated that $\sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|=\sum_{x \in X}\left|G_{x}\right|=\sum_{g \in G}\left|\operatorname{Fixer}_{G}(g)\right|$, we can also write this result as $\frac{1}{|G|} \sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|=\frac{1}{|G|} \sum_{g \in G}\left|\operatorname{Fixer}_{X}(g)\right|$ is equal to the number of orbits on X produced by G.

Example 1: Let's apply this theorem to the example at the top of this chapter where G is the group of six permutations we can make of the elements of $X=\{1,2,3\}$.

$g_{1}=$ the identity $=e=()$
$g_{2}=(1,2,3)$
$g_{3}=(1,3,2)$
$g_{4}=(2,3)$
$g_{5}=(1,3)$
$g_{6}=(1,2)$

On the one hand, it should be clear that there is only one orbit consisting of $\{1,2,3\}$. This is true because we can change each of these elements into any of the others just by repeated applications of a clockwise rotation of our triangle.

| x | \|Stabilizer(x)| | g | \|Fixer(g)| |
| :---: | :---: | :---: | :---: |
| | | g1 | 3 |
| | | g2 | 0 |
| | | g3 | 0 |
| 1 | 2 | g4 | 1 |
| 2 | 2 | g5 | 1 |
| 3 | 2 | g6 | 1 |

Additionally, by counting up for each $x \in X$ the number of elements in $\operatorname{Stabilizer}(x)$, and by counting up for each $g \in G$ the number of elements in Fixer (g), we obtain the same result from Burnside's Counting Theorem,

$$
\left.\frac{1}{|G|} \sum_{x \in X} \right\rvert\, \text { Stabilizer }_{G}(x)\left|=\frac{1}{|G|} \sum_{g \in G}\right| \text { Fixer }_{X}(g) \left\lvert\,=\frac{1}{6} \cdot 6=1\right.
$$

Example 2: Let $X=\{1,2,3,4\}$ and let $G=\{(),(1,2),(3,4),(1,2)(3,4)\},|G|=4$. This group is called the Klein 4-group, and it is analogous to the states that can result when you have two lamps, one to your left and one to your right. You can leave both lamps off (the identity), or you can turn on the lamp on your left, or you can turn on the lamp on your right, or you can turn on both lamps. Each transposition
in our group $G,(1,2)$ and $(3,4)$, is analogous to flipping a switch on a lamp, thus turning the lamp on or off.

Now as for the number of orbits that X will have under the action of G, it should be clear that there are two. We can change 1 to 2 and we can change 3 to 4 and that's it. Hence, we might write Orbit1 $=\{1,2\}$ and Orbit $2=\{3,4\}$. And if we count the orbits using Burnside's Counting Theorem, then once again we get the same result.

\mathbf{x}	\mid Stabilizer $(\mathbf{x}) \mid$
1	2
2	2
3	2
4	2

\mathbf{g}	\mid Fixer $(\mathbf{g} \mathbf{\|} \mid$
()	4
$(1,2)$	2
$(3,4)$	2
$(1,2)(3,4)$	0
Sum=8	

Hence, $\frac{1}{|G|} \sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|=\frac{1}{4} \cdot 8=2$ and $\left.\frac{1}{|G|} \sum_{g \in G} \right\rvert\,$ Fixer $_{X}(g) \left\lvert\,=\frac{1}{4} \cdot 8=2\right.$.

Example 3: Let $X=\{1,2,3\}$ and let $G=\{(),(1,2,3),(1,3,2)\},|G|=3$. Again, since the permutations in G can change 1 into 2 and 1 into 3 , there should be only one orbit, Orbit $1=\{1,2,3\}$. We can confirm this using Burnside's Counting Theorem.

Thus, the number of orbits is $\frac{1}{|G|} \sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|=\frac{1}{|G|} \sum_{g \in G}\left|\operatorname{Fixer}_{X}(g)\right|=\frac{1}{3} \cdot 3=1$.

Notice, too, that if we label the vertices of an equilateral triangle with the numbers 1,2 , and 3 , then we can interpret the permutations in G as corresponding to clockwise rotations of $0^{\circ}, 120^{\circ}$, and 240°, respectively.

Example 4: Let X equal the set of all distinct arrangements of the numbers 1, 2, and 3 on the vertices of an equilateral triangle, and let $G=\{(),(1,2,3),(1,3,2)\}$, $|G|=3$.

Notice that the permutations in our group G can once again be thought of as clockwise rotations of our triangle through angles that are multiples of 120°, but our set X is different from what it was in the previous example. In particular, X is comprised of the following six arrangements:

Using Burnside's Counting Theorem, we discover that there are two orbits.

\mathbf{x}	\mid Stabilizer $(\mathbf{x}) \mid$
1	1
2	1
3	1
4	1
5	1
6	1
Sum $=6$	

\mathbf{g}	\mid Fixer $(\mathbf{g}) \mid$
(1)	6
$(1,2,3)$	0
$(1,3,2)$	0
Sum=6	

The number of orbits is $\frac{1}{|G|} \sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|=\frac{1}{|G|} \sum_{g \in G}\left|\operatorname{Fixer}_{X}(g)\right|=\frac{1}{3} \cdot 6=2$.

Notice that Orbit1 could be the configurations of the triangles in the first row above, and Orbit 2 corresponds to the configurations in the second row above.

Example 5: Suppose you have four colors, red, green, blue, and yellow, and you paint each edge of a square a different color, and let X be the set of all possible color configurations. For example, one such configuration could be top=red, bottom=blue, left=green, and right=yellow, and another possible configuration would be top=green, bottom=red, left=blue, and right=green. In all, the number of possible configurations is $4!=4 \cdot 3 \cdot 2 \cdot 1=24$. This is because we have four choices for the top color, then three left for the bottom color, two choices for the left side color, and then only one choice left for the right side color.

For our group, we will use D_{4}, the symmetries of a square. In other words, we can rotate our square clockwise through angles that are integer multiples of 90°, or we can flip our square about any of four axes of symmetry.

The number of elements in this group is eight, $\left|D_{4}\right|=8$, and if we label the vertices of our square $1,2,3$, and 4 , then we can represent D_{4} as the following set of permutations, $D_{4}=\{(),(1,2,3,4),(1,4,3,2),(2,4),(1,3),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}$.

If two color configurations are in the same orbit, then we can change one into the other through some sequence of rotations and flips. Thus, the number of truly distinct color configurations possible is equal to the number of orbits in X created by D_{4}. Fortunately, this is easy to count. All we need to realize is that the identity keeps all 24 color configurations fixed while every other rotation or flip keeps none of the color configurations fixed (even though some vertices may remain fixed).

\mathbf{g}	\mid Fixer $(\mathbf{g}) \mid$
()	24
$(1,2,3,4)$	0
$(1,4,3,2)$	0
$(2,4)$	0
$(1,3)$	0
$(1,2)(3,4)$	0
$(1,3)(2,4)$	0
$(1,4)(2,3)$	0
Sum $=24$	

Hence, the number of orbits is $\left.\frac{1}{\left|D_{4}\right|} \sum_{x \in X} \right\rvert\,$ Stabilizer $_{D_{4}}(x)\left|=\frac{1}{\left|D_{4}\right|} \sum_{g \in D_{4}}\right|$ Fixer $_{X}(g) \left\lvert\,=\frac{1}{8} \cdot 24=3\right.$.

Example 6: We'll now give a quick answer to the problem we posed at the beginning of this chapter where we can paint the six faces of a cube with six colors such that each color is used only once. This allows for $6!=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=720$ ways to paint the cube. However, we also allow rotations that are integer multiples of 90° in any of six directions, and this will make some of our coloring schemes equivalent to others. In particular, two color schemes
will be equivalent if the are in the same orbit created by our rotation group G, and so the number of distinct color schemes will be the same as the number of orbits that G creates when it acts on our colored cube. Using the same logic as before, we can say that the identity of our group fixes all 720 coloring schemes, but every other element in G changes one color scheme into another. Thus, the total number of coloring schemes fixed by G is 720 . Now, however, we need to know how many elements there are in G, but that's not hard to count if we realize that our cube has four diagonal lines going through the center, and our usual 90° rotations can create any possible permutation of these four diagonal lines.

Alternatively, think of taking a typical Rubik's cube and trying to count the different ways you can rotate it so that in the end everything is still oriented the same with respect to top, bottom, front, back, left, and right. In this case, you could say that we have 6 choices for the color you want on top, 4 choices for the color you want in front, and then everything else is determined by that. Hence, we can count the number of elements in G either as $|G|=6 \cdot 4=24$ or $|G|=4!=4 \cdot 3 \cdot 2 \cdot 1=24$, and from this it follows that the number of orbits created by G for the coloring schemes for our cube is $\left.\frac{1}{|G|} \sum_{x \in X} \right\rvert\,$ Stabilizer $_{G}(x)\left|=\frac{1}{|G|} \sum_{g \in G}\right|$ Fixer $_{X}(g) \left\lvert\,=\frac{1}{24} \cdot 720=30\right.$. In other words, there are 30 ways to color the faces of our cube that are distinct from one another when we allow for rotations of the cube.

MATHEMATHCAL HMDUTHON

Mathematical induction is a standard proof technique for showing that some proposition P about natural numbers holds true for all $n \in \mathbb{N}$ where, as a reminder, $\mathbb{N}=\{1,2,3,4, \ldots\}$. The basic idea is that you prove your proposition is true for some starting point such as $n=1$, and then you prove that if it is true for some arbitrary natural number n, then it's true for $n+1$. If you prove both of these things, then you've established that your proposition is true for $n=1$, and if it's true for $n=1$, then it's true for $n=2$, and if it's true for $n=2$, then it's true for $n=3$, and so on and so on.

Mathematical Induction: If P is a proposition about natural numbers $n \in \mathbb{N}$, then P is true for all $n \in \mathbb{N}$ if,

1. P is true for $n=1$, and
2. P true for $n \in \mathbb{N} \Rightarrow P$ is true for $n+1 \in \mathbb{N}$.

There are several variations we can do of this basic principle. For example, if we begin by showing that P is true for $n=0$, then we could possibly prove that P is true for all whole numbers $W=\{0,1,2,3,4, \ldots\}$. Similarly, if we started our argument by showing that P is true for $n=10$, then a successful induction argument could show that P is true for all natural numbers greater than or equal to 10. Another variant form of mathematical induction is shown below.

The Second Principle of Mathematical Induction: If P is a proposition about natural numbers $n \in \mathbb{N}$, then P is true for all $n \in \mathbb{N}$ if,

1. P is true for $n=1$, and
2. P true for all natural numbers less than $n \in \mathbb{N} \Rightarrow P$ is true for $n \in \mathbb{N}$.

We'll now give a few examples of proofs that use mathematical induction.

Prove: $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Proof: Let $n=1$. Then $\frac{1(1+1)}{2}=\frac{2}{2}=1=\sum_{k=1}^{1} k$. Hence, the statement is true for $n=1$.
Assume now that the statement is true for some natural number n, and consider if it is true for $n+1$. Clearly,

$$
\sum_{k=1}^{n+1} k=\left(\sum_{k=1}^{n} k\right)+n+1=\frac{n(n+1)}{2}+n+1=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}=\frac{(n+1)[(n+1)+1]}{2} .
$$

Hence, if the formula is true for n, then it is also true for $n+1$. Therefore, by mathematical induction, $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ for all natural numbers n.

Prove: $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all $n \in \mathbb{N}$

Proof: Let $n=1$. Then $\frac{1(1+1)(2+1)}{6}=\frac{6}{6}=1=\sum_{k=1}^{1} k^{2}$. Hence, the statement is true for $n=1$. Assume now that the statement is true for some natural number n, and consider if it is true for $n+1$. Clearly,

$$
\begin{aligned}
& \sum_{k=1}^{n+1} k^{2}=\left(\sum_{k=1}^{n} k^{2}\right)+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+\frac{6(n+1)^{2}}{6}=\frac{(n+1)[n(2 n+1)+6(n+1)]}{6} \\
& =\frac{(n+1)\left[2 n^{2}+7 n+6\right]}{6}=\frac{(n+1)(n+2)(2 n+3)}{6}=\frac{(n+1)[(n+1)+1][2(n+1)+1]}{6} .
\end{aligned}
$$

Hence, if the formula is true for n, then it is also true for $n+1$. Therefore, by mathematical induction, $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all natural numbers n.

As a final exercise, see if you can find the flaw in the following inductive argument that all horses are the same color.

By way of induction, suppose that you have a set containing $n=1$ horses. Then clearly all the horses in that set are the same color. Now assume that it is true that in any set of n horses, all the horses have the same color (our induction hypothesis). At this point we want to argue that it is also true that any set of $n+1$ horses will also all be the same color. Thus, suppose we are given a set containing $n+1$ horses. If we remove one horse, then by our inductive hypothesis the remaining n horses will all be the same color. Now return the horse we originally removed and remove a different horse. Then once again our inductive hypothesis states that the resulting set of n horses all have the same color. From this it follows that the two horses we successively removed have the same color, and therefore, all of the horses in our set of $n+1$ horses have the same color. It now follows by mathematical induction that for any set of n horses, $n \in \mathbb{N}$, all the horses have the same color.

Solution: In the reading of the above argument, one often imagines a case where we might have, for example, 10 horses. We remove one horse, and then our induction hypothesis says that the remaining 9 horses are all the same color. We then replace our first horse, remove another horse, and again our induction hypothesis says that the remaining 9 horses are all the same color. And then finally, we conclude that because of the overlap of the two situations that all 10 horses are the same color. It is, indeed, clear that the induction argument works for the case of $n=10$. However, where the argument breaks down is for $n=2$. When we have 2 horses, then we can remove either one, but the resulting singleton sets this time have no intersection or overlap, and thus, we can't conclude that the two horses have to be of the same color. This is the one break in the chain of the induction argument that at first glance would appear to prove the assertion true for all natural numbers n.

COMTUGAL MATH

We've already introduced the definition of the conjugate of x by a as being the product $x^{a}=a^{-1} x a$. However, many group theorists prefer to define the conjugate slightly differently as $x^{a}=a x a^{-1}$, and so below we'll switch to that definition so that you can become more familiar with it. Remember, though, that in the long run, it really doesn't make any difference which definition you use because if $a \in G$, then $a^{-1} \in G$ also, and both conjugates, $a x a^{-1}$ and $a^{-1} x a$, will reside in G. Additionally, another change in notation we will make is that we will use the symbol " \sim " instead of " \equiv " to denote an equivalence relation. Again, both symbols have been used for this purpose, and it's good to be familiar with several different notations for a particular concept. For the same reason, we will also work with left cosets this time instead of right cosets. And with that said, let's explore conjugates in greater depth!

Conjugates, Conjugacy Classes, and Conjugate Subgroups

The main goal in this first section is to present a few basic mathematical facts about conjugates, and because these are just basic facts, we've color coded both the definitions and theorems with blue. Enjoy!

Definition: Let G be a group and let $x, a \in G$. Then the conjugate of x by a is $a x a^{-1}$.

In Part 2 we introduced the idea of an equivalence relation which generalizes the notion of equality. In particular, for a condition to be an equivalence relation, it must be reflexive, symmetric, and transitive just like equality is. And now we'll prove that if we divide a group G into subsets of elements that are conjugate to
one another, then that results in an equivalence relation among the elements of the group G.

Theorem A: Let G be a group. Then conjugacy of elements in G is an equivalence relation.

Proof: Let $x \sim y$ mean that x is conjugate to y. In other words, $x \sim y$ implies that there exists $a \in G$ such that $a x a^{-1}=y$. Then to show that conjugacy of elements in G is an equivalence relation we have to show that it is reflexive, symmetric, and transitive.

1. (reflexive): Let $x \in G$ and let e be the identity element in G. Then the conjugate of x by e is exe $e^{-1}=$ exe $=x e=x$. Therefore, $x \sim x$, and \sim is reflexive .
2. (symmetric): Let $x, y \in G$ such that x is conjugate to y. Then there exists $a \in G$ such that $a x a^{-1}=y$. Hence, the conjugate of y by a^{-1} is $a^{-1} y a=a^{-1}\left(a x a^{-1}\right) a=\left(a^{-1} a\right) x\left(a^{-1} a\right)=$ exe $=x$. Therefore, if $x \sim y$, then $y \sim x$ and, thus, ~ is symmetric.
3. (transitive): Suppose $x \sim y$ and $y \sim z$ for some $x, y, z \in G$. Then there exists $a, b \in G$ such that $a x a^{-1}=y$ and byb $^{-1}=z$. Hence, $z=b y b^{-1}==b\left(a x a^{-1}\right) b^{-1}=(b a) x\left(a^{-1} b^{-1}\right)=(b a) x(b a)^{-1}$ which implies that $x \sim z$ and, thus, ~ is transitive.

Therefore, it now follows that conjugacy of elements is an equivalence relation on G.

A consequence of conjugacy defining an equivalence relation on G is that G can be partitioned into a collection of disjoint subsets whose union is G, and the
elements in each subset are conjugate to one another. Furthermore, the number of elements in G is equal to the sum of the number of elements in each individual conjugacy class. Also, notice that the different conjugacy classes need not be the same size. For example, the conjugacy class of the identity is just the identity since for each $a \in G$ we always have that $a e a^{-1}=a a^{-1}=e$. However, it is reasonable to expect that other conjugacy classes will exist that consist of more than one element, and the following theorem shows that this will always be the case if G is nonabelian.

Theorem B: G is abelian if and only if every conjugacy class in G contains just one element.

Proof: Suppose G is ableian and let $x, a \in G$. Then $a x a^{-1}=a a^{-1} x=a a^{-1} x=e x=x$. Thus, the conjugacy class of x contains just one element. Now suppose that for all $x \in G$ that the conjugacy class of x contains just one element. Then we know this element must be x since $e x e^{-1}=x$. Hence, it follows that the conjugate of x by any $y \in G$ also equals x. Thus, if $x, y \in G$, then

$$
y x y^{-1}=x \Rightarrow\left(y x y^{-1}\right) y=x y \Rightarrow y x\left(y^{-1} y\right)=x y \Rightarrow y x e=x y \Rightarrow y x=x y . \text { Therefore, } G \text { is ableian. }
$$

Corollary B: The above theorem is logically equivalent to saying that G is nonabelian if and only if there exists a conjugacy class in G that contains more than just one element.

And now, for future reference we are just going to restate without proof Theorem 22 from Part 9 and then we will move toward some deeper results regarding conjugates.

Theorem 22 (Part 9): Let G be a group, H a subgroup of G, and let $a \in G$. Then $a H a^{-1}$ is a subgroup of G where $a H a^{-1}=\left\{a h a^{-1} \mid h \in H\right\}$.

From Theorem 22 (Part 9) we know that the conjugate of a subgroup is another subgroup. We'll now show that the relation of two subgroups being conjugate to one another is an equivalence relation.

Theorem C: Let G be a group, let H_{1} and H_{2} be subgroups of G, and define a relation \sim by $H_{1} \sim H_{2}$ if and only if there exists $a \in G$ such that $H_{2}=a H_{1} a^{-1}$. Then ~ is an equivalence relation.

Proof: As usual, we need to show that \sim is reflexive, symmetric, and transitive.

1. (reflexive): If H is a subgroup of G, then since $H=e H e=e H e^{-1}, H \sim H$ and, hence, ~ is reflexive.
2. (symmetric): If H_{1} and H_{2} are subgroups of G with $H_{1} \sim H_{2}$, then there exists $a \in G$ such that $H_{2}=a H_{1} a^{-1}$. Consequently, it follows that $H_{1}=a^{-1} H_{2} a$ and $H_{2} \sim H_{1}$. Thus, ~ is symmetric.
3. (transitive): Suppose H_{1}, H_{2}, and H_{3} are subgroups of G with $H_{1} \sim H_{2}$ and $H_{2} \sim H_{3}$. Then there exist $a, b \in G$ such that $a H_{1} a^{-1}=H_{2}$ and $b H_{2} b^{-1}=H_{3}$. Hence, $H_{3}=b H_{2} b^{-1}=b\left(a H_{1} a^{-1}\right) b^{-1}=(b a) H_{1}\left(a^{-1} b^{-1}\right)=(b a) H_{1}(b a)^{-1}$ implies that $H_{1} \sim H_{3}$. Therefore, \sim is transitive, and, hence, \sim is an equivalence relation.

In our chapter, A Third Application, from Part 10 we proved that if G is a group, $g \in G$, and $f_{g}: G \rightarrow G$ is defined by $f_{g}(a)=g^{-1} a g$ for every $a \in G$, then f_{g} is an automorphism, an isomorphism from G onto G, and likewise it is so when we define $f_{g}(a)=g a g^{-1}$. In particular, we call such an isomorphism an inner automoprhism. A consequence of this and the above Theorem 22 is the following result.

Theorem D: If G is a finite group, H_{1} and H_{2} are subgroups of G, and $a \in G$ such that $a H_{1} a^{-1}=H_{2}$, then $\left|H_{1}\right|=\left|H_{2}\right|$.

Proof: In order to show that $\left|H_{1}\right|=\left|H_{2}\right|$, it suffices to show that $f_{a}: H_{1} \rightarrow H_{2}$ defined by $f_{a}(x)=a x a^{-1}$ is a bijection (one-to-one and onto). But we already know this from the theorem mentioned above that we proved in the chapter titled A Third Application. This theorem tells us that $f_{a}: G \rightarrow G$ defined by $f_{a}(x)=a x a^{-1}$ is an isomorphism. Hence, if we simply restrict the domain of f_{a} to any subset of G and then look at the image of that subset under f_{a}, then the result will also be a bijection. Therefore, $f_{a}: H_{1} \rightarrow H_{2}$ is a bijection, and it follows that $\left|H_{1}\right|=\left|H_{2}\right|$.

Centers, Centralizers, the Class Equation, and Cauchy's Theorem

Everything is this section is geared toward proving Cauchy's Theorem that says that if a prime p divides the order of a group G, then G has a subgroup of order p, and we've highlighted all the definitions and theorems in red to show that they belong together. Also, in Part 2 we previously defined the center of a group as the set of all elements in the group that commute with every other element. We'll now introduce the notion of a centralizer of a single element, and you'll see that its definition is similar to that of the center of a group. Additionally, the centralizer is going to be central (pun intended!) to our development of the Class Equation.

Definition: Let $a \in G$, a group. Then the centralizer of a in G, denoted by $C_{G}(a)$, is the set of all elements in G that commute with a. Notice that $C_{G}(a)$ is never empty since $e, a \in C_{G}(a)$.

Our next step is to establish that the centralizer of an element a is always a subgroup of our group G.

Theorem E: $C_{G}(a)$ is a subgroup of G.

Proof: To show that $C_{G}(a)$ is a subgroup of G, we need to show that for every $x \in C_{G}(a)$ that $x^{-1} \in C_{G}(a)$, and we need to show that for every $x, y \in C_{G}(a)$ that $x y \in C_{G}(a)$.

We'll first establish the existence of inverses. Thus, suppose $x \in C_{G}(a)$. Then $x a=a x \Rightarrow a=x^{-1} a x \Rightarrow a x^{-1}=x^{-1} a x \cdot x^{-1}=x^{-1} a \cdot e=x^{-1} a \Rightarrow x^{-1} \in C_{G}(a)$.

Now we'll show closure under multiplication. Thus, suppose $x, y \in C_{G}(a)$. Then $x y(a)=x(y a)=x(a y)=(x a) y=(a x) y=a(x y)$. Thus, $x y \in C_{G}(a)$, and, therefore, $C_{G}(a)$ is a subgroup of G.

And now we'll show that if $C_{G}(a)$ is the centralizer of a in a group G, then elements from the same left coset of $C_{G}(a)$ in G will always produce the same conjugate of a in G. And a consequence of this will be that the number of distinct conjugates of a in G is equal to the number of left cosets of $C_{G}(a)$ in G.

Theorem F: If $C_{G}(a)$ is the centralizer of a in a group G, then $x a x^{-1}=y a y^{-1}$ for $x, y \in G$ if and only if x and y belong to the same left coset of $C_{G}(a)$ in G.

Proof: Suppose x and y belong to the same left coset of $C_{G}(a)$ in G. Then $x=y h$ for some $h \in C_{G}(a)$. Recall, also, that since $h \in C_{G}(a)$, then, by definition, h commutes with a. Hence,

$$
x a x^{-1}=(y h) a(y h)^{-1}=y(h a)\left(h^{-1} y^{-1}\right)=y(a h)\left(h^{-1} y^{-1}\right)=y a\left(h h^{-1}\right) y^{-1}=y a e y^{-1}=y a y^{-1} .
$$

Now suppose that $x a x^{-1}=y a y^{-1}$. Then $x a x^{-1}=y a y^{-1} \Rightarrow\left(y^{-1} x\right) a x^{-1}=a y^{-1} \Rightarrow\left(y^{-1} x\right) a=a\left(y^{-1} x\right) \Rightarrow y^{-1} x \in C_{G}(a)$ which means that there exists $h \in C_{G}(a)$ such that $y^{-1} x=h$. Hence, $y h=y\left(y^{-1} x\right)=\left(y y^{-1}\right) x=e x=x$, $h \in C_{G}(a)$, which implies that x and y belong to the same left coset of $C_{G}(a)$ in G.

Corollary F: If $C_{G}(a)$ is the centralizer of a in a finite group G, then the number of distinct conjugates of a in G is the same as the number of left cosets of $C_{G}(a)$ in G, and by Lagrange's Theorem, this number is $\left[G: C_{G}(a)\right]=\frac{|G|}{\left|C_{G}(a)\right|}$.

Recall that we noted previously that the number of elements in a finite group G, $|G|$, is equal to the sum of the number of elements in each distinct conjugacy class of G. Also, from Corollary F above it follows that the number of elements in a conjugacy class containing a particular $a \in G$ is $\left[G: C_{G}(a)\right]=\frac{|G|}{\left|C_{G}(a)\right|}$, and from this it follows that $|G|=\sum_{a} \frac{|G|}{\left|C_{G}(a)\right|}$ where for each distinct conjugacy class, $a \in G$ represents a single representative from that class. In other words, begin by picking $a \in G$. Then its conjugacy class is the set of all elements that $a \in G$ is conjugate to, and the number of elements in this conjugacy class to is equal to $\frac{|G|}{\left|C_{G}(a)\right|}$. If there now exists $b \in G$ such that a is not conjugate to b, then we can add on to this the number of elements that are conjugate to b. In other words, form the sum $\frac{|G|}{\left|C_{G}(a)\right|}+\frac{|G|}{\left|C_{G}(b)\right|}$. And now we can continue in this manner until we have accounted for each element in G, and when we arrive at that point, then we will have that the number of elements in G is equal to the sum of the number of elements in each conjugacy class in G. That is,
$|G|=\frac{|G|}{\left|C_{G}(a)\right|}+\frac{|G|}{\left|C_{G}(b)\right|}+\ldots+\frac{|G|}{\left|C_{G}(m)\right|}=\sum_{a} \frac{|G|}{\left|C_{G}(a)\right|}$ where for each distinct conjugacy class, $a \in G$ represents a single representative from that class.

Recall now once again the definition of the center of a group that was first introduced in Part 2.

Definition: The center of a group G, denoted by $Z(G)$, is the set of all elements in G that commute with every other element in G.

Since each element in $Z(G)$, the center of G, creates a conjugacy class with only one element (itself) in it, we can rewrite the above equation $|G|=\sum_{a} \frac{|G|}{\left|C_{G}(a)\right|}$ as follows, and this is what is usually known as the Class Equation:

The Class Equation: The order of a group G is $|G|=|Z(G)|+\sum_{a \approx Z(G)} \frac{|G|}{C_{G}(a) \mid}$ where $a \in G$ such that $a \notin Z(G)$ and in our summation only a single $a \in G$ is chosen from each distinct conjugacy class that contains more than one element.

We're now going to go down a path that will ultimately show us that if a prime p divides the order of a finite group, then our group has a subgroup of order p. Enjoy the ride!

Definition: If $|G|=p^{n}$ for p a prime, then G is called a p-group.

Theorem G: If G is a p-group, $|G|=p^{n}$ for p a prime, then $|Z(G)|>1$.

Proof: Let $z=|Z(G)|$. Then $z \geq 1$ since $e \in Z(G)$. Also, if $Z(G) \neq G$, then there exists $b \in G$ such that $b \notin Z(G)$. Furthermore, the centralizer of b in $G, C_{G}(b)$, is a
proper subgroup of G since, otherwise, if we had $C_{G}(b)=G$, then everything in G would commute with b, and b would be an element of $Z(G)$. Thus, it also follows that $|Z(G)|<\left|C_{G}(b)\right|<|G|$, and by Lagrange's Theorem, $\left|C_{G}(b)\right|$ divides $|G|$. Since $|G|=p^{n}$, it now follows that $\left|C_{G}(b)\right|=p^{m}$ where $1 \leq m<n$ (NOTE: $m \neq 0$ since both e and b belong to $C_{G}(b)$). In particular, we'll denote the power of p that corresponds to the order of $C_{G}(b)$ by m_{b}, and we'll write $\left|C_{G}(b)\right|=p^{m_{b}}$. The rest now follows easily from the Class Equation. By this equation, $|G|=p^{n}=|Z(G)|+\sum_{b \notin Z(G)} \frac{|G|}{\left|C_{G}(b)\right|}$ where $b \notin Z(G)$ and we choose only one b from each of the distinct conjugacy classes. The Class Equation can clearly be rewritten as $|G|-\sum_{b \notin Z(G)} \frac{|G|}{\left|C_{G}(b)\right|}=|Z(G)|$ which now implies that $p^{n}-\sum_{b \notin Z(G)} \frac{p^{n}}{p^{m_{b}}}=|Z(G)|$. Also, since for each term in our summation, $m_{b}<n$, it follows that p can be factored out of each term on the left-hand side of the equation to give us $p\left[p^{n-1}-\sum_{b} \frac{p^{n-1}}{p^{m_{b}}}\right]=|Z(G)|$. Since p divides the left-hand side of this equation, it must also divide the righthand side, and, thus, $|Z(G)|>1$. In particular, $|Z(G)|$ is at least p.

Corollary G: If $|G|=p^{n}, p$ a prime, then $|Z(G)|=p^{k}$ where $k \in \mathbb{N}$, the counting numbers, and $1 \leq k \leq n$.

Definition: Suppose m and n are natural numbers such that their only common natural number divisor is 1 . Then we say that m and n are relatively prime.

As an example, neither 6 nor 35 is prime, but they are relatively prime since their only common natural number divisor is 1 .

This next theorem proves a basic fact that we will then use in the proof of the theorem that follows it.

Theorem H: If H and N are subgroups of G with $N \triangleleft G$, then
$H N=\{h n \mid h \in H$ and $n \in N\}$ is a subgroup of G,

Proof: Let H and N be subgroups of G with $N \triangleleft G$. To show that $H N$ is a subgroup, we need to show closure and existence of Inverses. Thus, let $h_{1} n_{1}$ and $h_{2} n_{2}$. be elements of $H N$ where $h_{1}, h_{2} \in H$ and $n_{1}, n_{2} \in N$, and consider $h_{1} n_{1} \cdot h_{2} n_{2}$. Since $N \triangleleft G$, there exists $n_{3} \in N$ such that $n_{1} h_{2}=h_{2} n_{3}$. Hence, $h_{1} n_{1} h_{2} n_{2}=h_{1} h_{3} n_{1} n_{2} \in H N$, and $H N$ is closed under multiplication.

Now consider $h n \in H N$. Then $(h n)^{-1}=n^{-1} h^{-1}$. However, again since $N \triangleleft G$, we have that there exists $n_{3} \in N$ such that $(h n)^{-1}=n^{-1} h^{-1}=h^{-1} n_{3} \in H N$, and hence, inverses exist in $H N$. Therefore, $H N$ is a subgroup of G.

Corollary H : If G is abelian and H_{1} and H_{2} are both subgroups of G, then $H_{1} \cdot H_{2}=\left\{h_{1} h_{2} \mid h_{1}, h_{2} \in G\right\}$ is a normal subgroup of G.

Proof: Since G is abelian, all of its subgroups are normal. Hence, $H_{1} \cdot H_{2}$ is a normal subngroup of G.

Theorem I: Suppose G is abelian and $|G|=p^{n} m$ where p is prime and $p \& m$ are relatively prime. Then G has a subgroup of order p.

Proof: Let $x \in G$.
(Case 1) If the order of the cyclic subgroup generated by x is p, then we're done.
(Case 2) If the order of the cyclic subgroup generated by x is p^{k} with $2 \leq k \leq n$, (i.e. $|\langle x\rangle|=p^{k}$), then $x^{\frac{p^{k}}{p}}=x^{p^{k-1}}$ generates a subgroup of this cyclic group generated by x such that this subgroup has order $p,\left(\left|\left\langle x^{p^{k-1}}\right\rangle\right|=p\right)$, where $\left(x^{p^{k-1}}\right)^{p}=x^{p^{k-1} \cdot p}=x^{p^{k}}=e$, and we are done.
(Case 3) If $|\langle x\rangle|=p^{k} q$ where $q>1$ and $1 \leq k \leq n, q$ divides m, and p \& q are relatively prime, then $x^{\frac{p^{k} q}{p}}=x^{p^{k-1} q}$ generates a subgroup of $\langle x\rangle$ of order p since $\left(x^{p^{k-1} q}\right)^{p}=x^{p^{k-1} q \cdot p}=x^{p^{k} q}=e$, and again, we are done.
(Case 4) Suppose that for every non-trivial element x_{i} of G we have that $\left|\left\langle x_{i}\right\rangle\right|=q_{i}$ where, regardless of the value of $i, q_{i}>1, q_{i}$ divides m, and $p \& q_{i}$ are relatively prime. Then G is generated by such non-trivial elements since, by hypothesis, every non-trivial element in G is of this type. Now, let a_{1}, \ldots, a_{k} be a minimal set of such elements that can be used to generate G, let $H_{1}=\left\langle a_{1}\right\rangle, \ldots, H_{k}=\left\langle a_{k}\right\rangle$, and suppose $\left|H_{1}\right|=m_{1}, \ldots,\left|H_{k}\right|=m_{k}$. Then each of m_{1}, \ldots, m_{k} divides m, and thus, each of m_{1}, \ldots, m_{k} is relatively prime to p. Now consider $H_{1} \cdot H_{2}$. Since G is abelian, we know that $H_{1} \cdot H_{2}$ is a normal subgroup of G, and by the second isomorphism theorem it follows that $\frac{H_{1}}{H_{1} \cap H_{2}} \cong \frac{H_{1} \cdot H_{2}}{H_{2}}$. But his
implies that $\left|\frac{H_{1}}{H_{1} \cap H_{2}}\right|=\left|\frac{H_{1} \cdot H_{2}}{H_{2}}\right| \Rightarrow \frac{\left|H_{1}\right|}{\left|H_{1} \cap H_{2}\right|}=\frac{\left|H_{1} \cdot H_{2}\right|}{\left|H_{2}\right|} \Rightarrow \frac{\left|H_{1}\right| \cdot\left|H_{2}\right|}{\left|H_{1} \cap H_{2}\right|}=\left|H_{1} \cdot H_{2}\right|$. Notice, too, that $H_{1} \cap H_{2}$ is a subgroup of both H_{1} and H_{2}, and since $\left|H_{1}\right|$ and $\left|H_{2}\right|$ are both relatively prime to p and since $\left|H_{1} \cap H_{2}\right|$ divides both $\left|H_{1}\right|$ and $\left|H_{2}\right|$, it follows that $\left|H_{1} \cap H_{2}\right|$ is also relatively prime to p. Now consider this. Since $\left|H_{1} \cdot H_{2}\right|=\frac{\left|H_{1}\right| \cdot\left|H_{2}\right|}{\left|H_{1} \cap H_{2}\right|}$, it follows that the largest $\left|H_{1} \cdot H_{2}\right|$ can be is $\left|H_{1}\right| \cdot\left|H_{2}\right|$ and this happens if $H_{1} \cap H_{2}=e$. However, if $H_{1} \cap H_{2} \neq e$, then we still have that $\left|H_{1} \cdot H_{2}\right|=\frac{\left|H_{1}\right| \cdot\left|H_{2}\right|}{\left|H_{1} \cap H_{2}\right|}$, and since the numbers in both numerator and denominator are both relatively prime to p, it follows that their ratio is also relatively prime to p. If we now continue multiplying subgroups together, then we will have that $G=H_{1} \cdot H_{2} \cdot \ldots \cdot H_{k}$ and by repeating our previous argument that $\left|H_{1} \cdot H_{2} \cdot \ldots \cdot H_{k}\right|$ is relatively prime to p. But this is a contradiction since $\left|H_{1} \cdot H_{2} \cdot \ldots \cdot H_{k}\right|=|G|=p^{n} m$ is not relatively prime to p. Thus, case 4 can't occur, and our theorem is proved by cases 1 through 3.

Corollary I: If G is abelian and $|G|=p^{n}$ where p is a prime, then G has a subgroup of order p.

Cauchy's Theorem: If G is a finite group and p is a prime such that p divides $n=|G|$, then G has cyclic subgroup of order p.

Proof: We'll let p be a prime, and we'll proceed by induction on n, the order of the group. In this case, the smallest possible value for $|G|$ such that a prime p divides $|G|$ is p itself. But in this case, every nontrivial element of G generates a cyclic subgroup of order p, and the theorem is true for $n=p$. Thus, let's assume that $|G|=n>p$, where p divides n, and by way of induction we'll also assume that
if G has a subgroup H of any order $m<n$ such that p divides m, then H (and, hence, G) has a cyclic subgroup of order p. We'll now extend this result to the case $m=n$.

If G is abelian, then the result has already been established by Theorem I and Corollary I. Thus, assume that G is not abelian and let $x \in G$ such that $x \notin Z(G)$, the center of G. Note that if there were no elements in G that did not belong to the center, then G would be abelian. Also, let $C_{G}(x)$ be the centralizer of x, the set of all elements of G that commute with x. Then $\left|C_{G}(x)\right|<|G|$ since, otherwise, we would have $C_{G}(x)=G$ which would mean that every element in G would commute with x, and, hence, x would belong to $Z(G)$. Thus, $\left|C_{G}(x)\right|<|G|$, and if p divides $\left|C_{G}(x)\right|$, then our induction hypothesis tells us that $C_{G}(x)$ has a cyclic subgroup of order p, and, thus, G has a cyclic subgroup of order p, and we're done. Hence, assume that p doesn't divide $\left|C_{G}(x)\right|$.

If p divides $|G|$ but p does not divide $\left|C_{G}(x)\right|$, then clearly p must divide $\frac{|G|}{\left|C_{G}(x)\right|}$. Now consider the Class Equation $|G|=|Z(G)|+\sum_{x \notin Z(G)} \frac{|G|}{\left|C_{G}(x)\right|}$ where $x \notin Z(G)$ and we pick just one x from each conjugacy class that doesn't contain elements of the center, $Z(G)$. If we rewrite this equation as $|G|-\sum_{x \notin Z(G)} \frac{|G|}{\left|C_{G}(x)\right|}=|Z(G)|$, then p divides the left-hand side of this equation, and so it must divide $|Z(G)|$ as well. But since $Z(G)$ is abelian, Theorem I and Corollary I guarantee that $Z(G)$ has a cyclic subgroup of order p, and this subgroup is a subgroup of G as well. Therefore, G has a cyclic subgroup of order p, and the theorem is proved by mathematical induction.

Additional Results

Below are a few additional proofs of theorems that I like, but which aren't used by me to prove any other results. Nonetheless, l've included them here because (1) I like them, and (2) maybe someday I will use them to prove something else! Also, to distinguish them from the other results in this chapter, I've color coded them as green.

Theorem J: If G is a finite group such that $Z(G)=e$, then G is isomorphic to a permutation group that may be obtained by conjugation by elements of G. In particular, each $g \in G$ is associated with a permutation of elements in G by applying gxg^{-1} to every $x \in G$.

Proof: Let G be a finite group such that $Z(G)=e$, and let $g \in G$. Then conjugation by g produces a permutation of the elements of G. We know this because it follows from our cancellation laws that if $x, y \in G$, then $g x g^{-1}=g y g^{-1}$ if and only if $x=y$. Thus, if the elements of G are labeled $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, then $g x_{1} g^{-1}, g x_{2} g^{-1}, g x_{3} g^{-1}, \ldots, g x_{n} g^{-1}$ produces a permutation of this list.

Now let A be the group generated by all permutations of the sort described above, and define $T: G \rightarrow A$ by setting $T(g)$ equal to the permutation of elements of G created by mapping x to $g x g^{-1}$ for all $x \in G$. We'll now show that T is an isomorphism. Thus, let $g_{1}, g_{2} \in G$ and let's examine the effect that $T\left(g_{1} \cdot g_{2}\right)$ and $T\left(g_{1}\right) \cdot T\left(g_{2}\right)$ have on an arbitrary $x \in G$. First, note that $\left[T\left(g_{1} \cdot g_{2}\right)\right](x)=\left(g_{1} g_{2}\right) x\left(g_{1} g_{2}\right)^{-1}=\left(g_{1} g_{2}\right) \times\left(g_{2}^{-1} g_{1}^{-1}\right) . \quad$ Second, note that since we multiply permutations by following one by another, we can think of $T\left(g_{1}\right) \cdot T\left(g_{2}\right)$ essentially as a composition of functions. In other words, to evaluate $\left[T\left(g_{1}\right) \cdot T\left(g_{2}\right)\right](x)$ for $x \in G$, we first conjugate x by g_{2} and then we follow that result with conjugation by g_{1}. [Note, too, that we are now applying our
permutations in order from right to left instead of left to right in order to make the direction correspond to our function notation.] Thus, $\left[T\left(g_{1}\right) \cdot T\left(g_{2}\right)\right](x)=\left[T\left(g_{1}\right)\right]\left(g_{2} x g_{2}^{-1}\right)=g_{1}\left(g_{2} x g_{2}^{-1}\right) g_{1}^{-1}=\left(g_{1} g_{2}\right) x\left(g_{2}{ }^{-1} g_{1}^{-1}\right)$ $=\left(g_{1} g_{2}\right) x\left(g_{1} g_{2}\right)^{-1}=\left[T\left(g_{1} \cdot g_{2}\right)\right](x)$. Therefore, $T: G \rightarrow A$ is a homomorphism.

To show that T is an isomorhphism we will show first that $\operatorname{Ker}(T)=e$. Thus, suppose that $x \in G$ is an arbitrary element of G and $g \in \operatorname{Ker}(T)$. Then $[T(g)](x)=g \times g^{-1}=x$ since g must be mapped onto the identity permutation in A. But this implies that $g x=x g$ and, hence, $g \in Z(G)$, the center of G. However, since part of our hypothesis is that $Z(G)=e$, it follows that $\operatorname{Ker}(T)=e$ and $T: G \rightarrow A$ is one-to-one. Furthermore, $T: G \rightarrow A$ is also onto since T is a homomorphism and A is generated by elements of the form $T(g)$. Consequently, $T: G \rightarrow A$ is an isomorphism and, therefore, G is isomorphic to a group of permutations of the elements of G.

Theorem K: If G is a group such that $|G|=p^{2}$ where p is a prime, then G is abelian.

Proof: By Theorem G, it follows that $|Z(G)|>1$. Hence, by Lagrange's Theorem, either $|Z(G)|=p$ or $|Z(G)|=p^{2}$. If $|Z(G)|=p^{2}$, then $Z(G)=G$ which implies that G is abelian and we are done. Thus, suppose $|Z(G)|=p$. Then $Z(G)$ is cyclic, and, thus, $Z(G)=\langle a\rangle$ for some $a \in Z(G)$ with $a \neq e$. Now consider $x \in G$ such that $x \notin Z(G)$. Then clearly $Z(G) \subseteq C_{G}(x)$, the set of all elements of G that commute with x. However, since $x \in C_{G}(x)$ and $x \notin Z(G)$, it follows that $|Z(G)|<\left|C_{G}(x)\right|$. But this means that $\left|C_{G}(x)\right|=p^{2}$, and, hence, $C_{G}(x)=G$. And this now implies that everything in G commutes with x, and, thus, $x \in Z(G)$. However, this contradicts our assumption that $|Z(G)|=p$ and there exists an $x \in G$ such that $x \notin Z(G)$.

Consequently, this assumption is wrong (since it has led to a contradiction), and $Z(G)=G$ which implies that G is abelian.

Theorem L: If G is a group such that $|G|=p^{n}$ where p is a prime, then G contains a normal subgroup of order p^{n-1}.

Proof: We prove this theorem by applying mathematical induction to the power n. Thus, suppose $|G|=p^{1}=p$. Then $p^{1-1}=p^{0}=1$, and $\{e\}$ is a normal subgroup of order 1. Hence, the theorem is true for $n=1$. Now suppose that our theorem is true for all k such that $1 \leq k<n$, and we'll prove that our theorem is also true for $k=n$. Hence, suppose that $|G|=p^{n}$ where $n>1$. Then by Theorem $G,|Z(G)|>1$ and so there exists $a \in Z(G)$ such that $a \neq e$. Furthermore, since $|G|=p^{n}$, it follows that $|\langle a\rangle|=p^{m}$ for some m such that $1 \leq m \leq n$. Hence, consider $a^{\frac{p^{m}}{p}}$. Clearly, $\left(a^{\frac{p^{m}}{p}}\right)^{p}=a^{p^{m}}=e \Rightarrow\left|\left\langle a^{\frac{p^{m}}{p}}\right\rangle\right|=p$ (in particular since $a \neq e$), and $\left\langle a^{\frac{p^{m}}{p}}\right\rangle=\left\langle a^{p^{m-1}}\right\rangle$ is a normal subgroup of G since $a \in Z(G)$. Now let $b=a^{\frac{p^{m}}{p}}=a^{p^{m-1}}$, let $H=\langle b\rangle=\left\langle a^{\frac{p^{m}}{p}}\right\rangle=\left\langle a^{p^{m-1}}\right\rangle \triangleleft G$, and consider G / H where $|G / H|=|G| /|H|=\frac{p^{n}}{p}=p^{n-1}$. By our induction hypothesis, G / H has a normal subgroup of the form N / H of order $p^{(n-1)-1}=p^{n-2}$ where $H \subseteq N \subseteq G$. However, by our Correspondence Theorem it follows that $N \triangleleft G \quad$ and $\quad p^{n-2}=|N / H|=|N| /|H|=\frac{|N|}{p} . \quad$ Thus, $|N|=p^{n-2} p=p^{n-1}$, and the theorem is proved by mathematical induction.

Corollary L: If G is a group such that $|G|=p^{n}$ where p is a prime, then G contains a subgroup of order p^{k} for every integer k such that $0 \leq k \leq n$.

THP SULOM THEOREMS

Recall that Lagrange's Theorem tells us that the if G is a finite group and if H is a subgroup of G, then the number of elements in H is a divisor of the number of elements in G, or in other words, $|H|$ divides $|G|$. Also, as we've mentioned before, it would be nice if having a natural number m divide the order of a group G would automatically guarantee that G has a subgroup of order m, but unfortunately, we know that this is not something that always happens. For example, if we consider the symmetric group S_{4}, the group of all permutations of four objects, then the subgroup of S_{4} that consists of all even permutations, the alternating group A_{4}, is a group of order 12 that has no subgroup of order 6 in spite of the fact that 6 divides 12. Thus, knowing that a number divides the order of a finite group is not enough for us to conclude that the group has also a subgroup of that order. Nonetheless, a remarkable set of theorems known as the Sylow Theorems (named for their discoverer Peter Ludwig Sylow, 1832-1918) does give us some conditions under which a divisor of the order of a finite group will also ensure a subgroup of that order. Additionally, the Sylow Theorems tell us many more things about how the subgroup structure of a finite group relates to the order of the group. But first, before we prove those theorems, here are a few definitions and other facts you might want to recall.

Definitions: Let X be a set and let G be a group.

$$
\begin{aligned}
& \operatorname{Fixer}_{X}(g)=X_{g}=\{x \in X \mid g(x)=x \text { for } g \in G\} \\
& \text { Stabilizer }_{G}(x)=G_{x}=\{g \in G \mid g(x)=x \text { for } x \in X\} \\
& \text { Orbit }_{G}(x)=\{y \in X \mid g(x)=y \text { for some } g \in G \text { and } x, y \in X\}
\end{aligned}
$$

Definition: To the above we will add the following definition of the center of X under G (the center when a group G acts on a set X) as Center ${ }_{G}(X)=Z_{G}(X)=\{x \in X \mid g(x)=x$ for all $g \in G\}$. Notice that we define things this way because if G is acting on G by conjugation, then we get back the usual definition for the center of G. In other words, if Center $_{G}(G)=Z_{G}(G)=\left\{x \in G \mid g(x)=g x g^{-1}=x\right.$ for all $\left.g \in G\right\}$, then $x \in G$ is in this center if and only if $g x g^{-1}=x$ for all $g \in G$ if and only if $g x=x g$ for all $g \in G$.

Fact: Recall from our chapter in Part 10 on Orbits, Stabilizers, Fixers, and Burnside's Counting Theorem that if G is a finite group that acts on a set X, and if $x \in X$, then the number of elements in the orbit of x is $\left|\operatorname{Orbit}_{G}(x)\right|=\left[G: G_{x}\right]=\frac{|G|}{\left|G_{x}\right|}=\frac{|G|}{\left|\operatorname{Stabilizer}_{G}(x)\right|}$. From this we derived Burnside's Counting Theorem, that the number of orbits created by G acting on X is $\left.\frac{1}{|G|} \sum_{x \in X}\left|G_{x}\right|=\frac{1}{|G|} \sum_{x \in X}\left|\operatorname{Stabilizer}_{G}(x)\right|=\frac{1}{|G|} \sum_{g \in G} \right\rvert\,$ Fixer $_{X}(g) \mid$ (This would be a good time to review Burnside's Counting Theorem!). Also, recall the Class Equation (see Conjugal Math in Part 10) $|G|=|Z(G)|+\sum_{x \notin Z(G)} \frac{|G|}{\left|C_{G}(x)\right|}$ where in our summation only a single value x is chosen from each distinct conjugacy class that contains more than one element. The Class Equation simply says that the number of elements in G is just the sum of the number of elements in each orbit where an orbit is produced by letting elements of G act upon G itself by means of conjugation. What might now start to become obvious to you is that the traditional Class Equation is just a special case of a group G acting on a set X where in this case $X=G$ and the permutations are created by the operation of conjugation. We can replace this special case, however, by the following more general formula that states that the number of elements in the set X is the sum of the number of elements in each orbit produced by permutations in G, or in other words,
$|X|=\left|Z_{G}(X)\right|+\sum_{x \notin Z_{G}(X)} \frac{|G|}{\left|G_{x}\right|}$ where each $x \notin Z_{G}(X)$ corresponds to a distinct orbit of x produced by elements of G. To argue this formula somewhat informally, suppose that $x \notin Z_{G}(X)$ and consider the cosets of G_{x} in G where $G_{x}=\{g \in G \mid g(x)=x$ for $x \in X\}$. Now suppose that a and b belong to the same coset of G_{x} in G. Then there exists $h \in G_{x}$ such that $a=b h$. Consequently, $a(x)=b h(x)=b(h(x))=b(x)$. On the other hand, if $a(x)=b(x)$, then $b^{-1} a(x)=x \Rightarrow b^{-1} a \in G_{x} \Rightarrow b^{-1} a=h$ for some $h \in G_{x} . \quad$ But $b^{-1} a=h \Rightarrow a=b h \Rightarrow a$ and b belong to the same coset of G_{x} in G. Thus, $a(x)=b(x)$ if and only if a and b belong to the same coset of G_{x} in G, and from this it follows that the number of cosets of G_{x} in G is equal to the number of images of x produced by elements of G. Or to state it differently, the number of elements in the orbit of x is equal to the number of cosets of G_{x} in G which in turn is equal to $\frac{|G|}{\left|G_{x}\right|}$. And from this it now easily follows that the number of elements in X is equal to the number of elements in the center of X under $G, Z_{G}(X)$, plus the number of elements in the orbit of x for each distinct orbit that is generated by an element $x \in X$ via elements of G such that $x \notin Z_{G}(X)$. Or in other words, $|X|=\left|Z_{G}(X)\right|+\sum_{x \notin Z_{G}(X)} \frac{|G|}{\left|G_{x}\right|}$. And now we'll prove a useful theorem about groups of order p^{n}.

Theorem I: Let G be a group such that $|G|=p^{n}$ and let X be a set that G acts on. Then $|X|-\left|Z_{G}(X)\right|$ is divisible by p.

Proof: Since Stabilizer ${ }_{G}(x)=G_{x}=\{g \in G \mid g(x)=x$ for $x \in X\}$ is a subgroup of $G,\left|G_{x}\right|$ divides $|G|$, and since $|G|=p^{n}$, it follows that $\left|G_{x}\right|=p^{k}$ where $0 \leq k \leq n$. Recall, too, from Theorem G in Conjugal Math that since $|G|=p^{n}$, it follows that $|Z(G)|>1$ and, in particular, $|Z(G)|$ is equal to p raised to a power that is greater than or equal to

1. We will now use our generalized Class Equation, $|X|=\left|Z_{G}(X)\right|+\sum_{x \notin Z_{G}(X)} \frac{|G|}{\left|G_{x}\right|}$ where in our summation only a single value x is chosen from each distinct orbit under G that contains more than one element. In this case, we can conclude that $G_{x} \neq G$ since if it were, then we would have $x \in Z_{G}(X)$. Thus, we now have that $\left|G_{x}\right|<|G|$, and, hence, $\frac{|G|}{\left|G_{x}\right|}=p^{m}$ where $0<m<n$. Therefore, p divides $\sum_{x} \frac{|G|}{\left|G_{x}\right|}=|X|-\left|Z_{G}(X)\right|$, and we're done.

We first defined in Part 9 what the centralizer of an element is, and now we'll define a slightly more general concept known as the normalizer.

Definition: If H is a subgroup of a group G, then the set of all $x \in G$ such that $x H x^{-1}=H$ is called the normalizer of H in G and is denoted by $N_{G}(H)$.

It should be clear that $H \subseteq N_{G}(H)$. Also, our first task will be to prove that the normalizer of a subgroup H is yet another subgroup of our group G.

Theorem II: If H is a subgroup of a group G, then the normalizer of H in G is a subgroup of G.

Proof: To show that $N_{G}(H)$ is a subgroup of G, we need to establish both closure and existence of inverses. Thus, suppose $x, y \in N_{G}(H)$. Then
$(x y) H(x y)^{-1}=x y H y^{-1} x^{-1}=x\left(y H y^{-1}\right) x^{-1}=x H x^{-1}=H$. Therefore, $x y \in N_{G}(H)$

Now suppose $x \in N_{G}(H)$ and consider $x^{-1} H x$. Clearly,
$x^{-1} H x=x^{-1}(H) x=x^{-1}\left(x H x^{-1}\right) x=\left(x^{-1} x\right) H\left(x^{-1} x\right)=e H e=H$. Hence, $x^{-1} \in N_{G}(H)$, and therefore, H is a subgroup of G.

Next, we'll prove another preliminary results that will help us to complete the proofs of the Sylow Theorems.

Theorem III: If H is a p-subgroup (i.e. a subgroup of order p^{n} for some $n \in \mathbb{N}$) of a finite group G for some prime p, then $\frac{|G|}{|H|}-\frac{\left|N_{G}(H)\right|}{|H|}$ is divisible by p.

Proof: Let X be the set of left cosets of H in G, and let H act on X by letting $h(x H)=(h x) H$ where $x \in G$ and $h \in H$. Then $Z_{H}(X) \subseteq X$ is the set of left cosets of H in G such that $h(x H)=x H$ for all $h \in H$. Given such a left coset we have that $h(x H)=x H \Leftrightarrow h x H=x H \Leftrightarrow x^{-1} h x H=H \Leftrightarrow x^{-1} h x \in H$ for all $h \in H$, and this in turn means that $x \in N_{G}(H)$, the normalizer of H in G. In other words, $x \in N_{G}(H)$ if and only if $x^{-1} h x \in H$ when $h \in H$ if and only if $x^{-1} h x H=H$ if and only if $h x H=x H$ if and only if $h(x H)=x H$ for all $h \in H$ if and only if $x H \in Z_{H}(X)$. To put it another way, a coset $x H$ belongs to the center $Z_{H}(X)$ if and only if x is an element of the normalizer of H in G. And how many such distinct cosets of H are there that can be created using elements of $N_{G}(H)$? That is given by $\left|\frac{N_{G}(H)}{H}\right|=\frac{\left|N_{G}(H)\right|}{|H|}$. For example, suppose that there are exactly eight cosets of H in G that we can denote by $x_{1} H, x_{2} H, x_{3} H, x_{4} H, x_{5} H, x_{6} H, x_{7} H, x_{8} H$, and suppose also that with regard to these cosets that only $x_{1}, x_{2} \in N_{G}(H)$. Then $Z_{G}(X)=\left\{x_{1} H, x_{2} H\right\}$, and, $\left|Z_{H}(X)\right|=\frac{\left|N_{G}(H)\right|}{|H|}=\left|\frac{N_{G}(H)}{H}\right|$.

Additionally, since H is a p-subgroup, $|H|=p^{n}$ for some $n \in \mathbb{N}$. Furthermore, Theorem I of this section tells us that p divides $|X|-\left|Z_{H}(X)\right|$. But in this case
$|X|=$ the number of left-cosets of H in $G=\frac{|G|}{|H|}$ and $\left|Z_{H}(X)\right|=\frac{\left|N_{G}(H)\right|}{|H|}$. Therefore, p divides $\frac{|G|}{|H|}-\frac{\left|N_{G}(H)\right|}{|H|}$.

Corollary III: If $|G|=p^{n} m$ where $n \geq 1$ and p is a prime that does not divide m and if H is a subgroup of G such that $|H|=p^{i}$ for $1 \leq i<n$, then $N_{G}(H) \neq H$ and p divides $\left|N_{G}(H) / H\right|$.

Proof: By Theorem III, p divides $\frac{|G|}{|H|}-\frac{\left|N_{G}(H)\right|}{|H|}$. However, since $|G|=p^{n} m$ and $|H|=p^{i}$ for $1 \leq i<n$, it immediately follows that p divides $\frac{|G|}{|H|}=\frac{p^{n} m}{p^{i}}=p^{n-i} m$. Hence, p must also divide $\frac{\left|N_{G}(H)\right|}{|H|}$, the second part of our expression above. However, this also means that $\frac{\left|N_{G}(H)\right|}{|H|} \neq 1$, and therefore, $N_{G}(H) \neq H$.

And now, we are finally ready to prove the first Sylow Theorem. Also, compare this First Sylow Theorem to Theorem K and Corollary K in the section on Conjugal Math. The two results are not identical, but they are very similar.

The First Sylow Theorem: Let G be a finite group and let $|G|=p^{n} m$ where $n \geq 1$ and p is a prime that does not divide m. Then:

1. G contains a subgroup of order p^{i} for each i such that $1 \leq i \leq n$.
2. Every subgroup H of G of order p^{i} is a normal subgroup of a subgroup of order p^{i+1} for $1 \leq i<n$.

Proof: (1) We will proceed by using an argument that is similar in form to mathematical induction on the power of p. Thus, suppose that G is a finite group and that $|G|=p^{n} m$ where $n \geq 1$ and p is a prime that does not divide m. Then, by Cauchy's Theorem, we know that a subgroup of order $p=p^{1}$ exists. If $n=1$, then we're done. Thus, suppose that $n>1$. Now let H be a subgroup such that $|H|=p$, and let's consider $N_{G}(H)$, the normalizer of H in G. By definition, H is a normal subgroup of $N_{G}(H), H \triangleleft N_{G}(H)$. Also, by the Corollary III to Theorem III above, $N_{G}(H) \neq H$ and p divides $\left|N_{G}(H) / H\right|$. Hence, since $\left|N_{G}(H) / H\right|$ is divisible by p, it follows from Cauchy's Theorem that $N_{G}(H) / H$ has a subgroup K / H of order p where $K=\left\{x \in N_{G}(h) \mid x H \in K / H\right\}$ and K is a subgroup of $N_{G}(H)$. Hence, K is also a subgroup of G. Furthermore, since $p=|K / H|=\frac{|K|}{|H|}=\frac{|K|}{p}$, it now follows that $|K|=p^{2}$. Again, if $n=2$, then we're done. But if $n>2$, then we can just repeat the above argument using K and $N_{G}(K)$ to conclude that there exists a subgroup of G of order p^{3}, and if necessary we can keep repeating the argument until we have shown the existence of a subgroup of order p^{n}.
(2) For the second part of this theorem, note that $H \triangleleft N_{G}(H), H \leq K$, and $K \leq N_{G}(H)$, (since $\left.K / H \leq N_{G}(H) / H\right)$. Since every element of K is also an element of $N_{G}(H)$, it follows that if $k \in K$, then $k H k^{-1}=H$. Hence, $H \triangleleft K$ where $|H|=p$ and $|K|=p^{2}$. We can now just repeat the above argument, if necessary, to show that there is a subgroup L of order p^{3} such that $K \triangleleft L$, and we can keep going until we have finally found a subgroup of order p^{n-1} that is a normal subgroup of a subgroup of order p^{n}.

We defined a Sylow subgroup previously in Part 2, but we'll repeat it again for reference. And then the Second Sylow Theorem will tell us that any two Sylow psubgroups of a group G are conjugate.

Definition: If G is a finite group and $|G|=p^{n} m$ where $n \geq 1$ and p is a prime that does not divide m, then any subgroup of G of order p^{n} is called a Sylow p subgroup.

The Second Sylow Theorem: If P_{1} and P_{2} are distinct Sylow p-subgroups of a finite group G, then P_{1} and P_{2} are conjugate.

Proof: Let $X=$ the set of left cosets of P_{1} in G and let P_{2} act on X as follows: If $x P_{1} \in X$ and $y \in P_{2}$, then $y\left(x P_{1}\right)=(y x) P_{1}$. Also, let $Z_{P_{2}}(X)=\left\{x P_{1} \in X \mid\right.$ for every $\left.y \in P_{2}, y\left(x P_{1}\right)=(y x) P_{1}=x P_{1}\right\} . \quad$ Then by Theorem I, $|X|-\left|Z_{P_{2}}(X)\right|$ is divisible by p. Also, since $|X|=\frac{|G|}{\left|P_{1}\right|}$ is not divisible by p (since P_{1} is a Sylow p-subgroup), it follows that $\left|Z_{P_{2}}(X)\right| \neq 0$. Hence, $y x P_{1}=x P_{1}$ for all $y \in P_{2} \Leftrightarrow x^{-1} y x P_{1}=P$ for all $y \in P_{21} \Leftrightarrow x^{-1} y x \in P_{1}$ for all $y \in P_{2} \Leftrightarrow x^{-1} P_{2} x \leq P_{1}$. However, since $\left|P_{1}\right|=\left|P_{2}\right|$ (since they are both Sylow p-subgroups), we can conclude that $x^{-1} P_{2} x=P_{1}$, and P_{1} and P_{2} are conjugate.

And finally, the Third Sylow Theorem shows us a couple of interesting restrictions on the possible number of Sylow p-subgroups for a given group G.

The Third Sylow Theorem: If G is a finite group and if a prime p divides G, then the number of Sylow p-subgroups minus one is also divisible by p. Additionally, the number of Sylow p-subgroups is a divisor of $|G|$.

Proof: Let P be a Sylow p-subgroup for a fixed prime p, and let X be the set of all Sylow p-subgroups in G, and let P act on X by conjugation. Then by Theorem I, $|X|-\left|Z_{P}(X)\right|$ is divisible by p. If $T \in Z_{P}(X)$, then $x T x^{-1}=T$ for all $x \in P$. Hence, $P \leq N_{G}(T)$. Also, $T \leq N_{G}(T)$. Furthermore, since P and T are both Sylow p subgroups of G, they are also Sylow p-subgroups of $N_{G}(T)$, and since T and P are conjugate with $T \triangleleft N_{G}(T)$, it follows that $T=P$. Thus, $Z_{P}(X)=\{T\}=\{P\}$, and $\left|Z_{P}(X)\right|=1$. Hence, p divides $|X|-\left|Z_{P}(X)\right|=|X|-1$.

Now let G act on X by conjugation. Then since all the Sylow p-subgroups are conjugate, G produces only one orbit on X. Thus, if $P \in X$, then $|X|=\mid$ orbit of $P \left\lvert\,=\frac{|G|}{\left|G_{P}\right|}=\frac{|G|}{\mid \text { Stabilizer }_{G}(P) \mid}\right.$. Since we can rewrite this as \mid Stabilizer $_{G}(P) \left\lvert\,=\frac{|G|}{|X|}\right.$, it follows that the number of Sylow p-subgroups is a divisor of $|G|$.

Corollary 3a: If G is a finite group such that $|G|=p^{n} m$ where p is a prime that does not divide m, then the number of Sylow p-subgroups is a divisor of m.

Proof: Let k be the number of Sylow p-subgroups. Then k divides $|G|=p^{n} m$. Additionally, p divides $k-1$. If $k=p^{i} q$ for $1 \leq i \leq n$ and q a divisor of m, then we have a problem since p does not evenly divide $p^{i} q-1$. Therefore, $k=q$ where q is a divisor of m.

Corollary 3b: If G is a finite group such that $|G|=p^{n} m$ where p is a prime that does not divide m and if P is a Sylow p-subgroup, then the number of Sylow psubgroups is equal to $\left[G: N_{G}(P)\right]=\frac{|G|}{\left|N_{G}(P)\right|}$.

Proof: Let's consider the left cosets of $N_{G}(P)$ in G. If $x \in N_{G}(P)$, then $x P x^{-1}=P$. Furthermore, if $y \cdot N_{G}(P)=z \cdot N_{G}(P)$, then $z^{-1} y \cdot N_{G}(P)=N_{G}(P)$. But this means that $z^{-1} y \in N_{G}(P)$ and, hence, $\left(z^{-1} y\right) P\left(z^{-1} y\right)^{-1}=P \Leftrightarrow\left(z^{-1} y\right) P\left(y^{-1} z\right)=P \Leftrightarrow y P y^{-1}=z P z^{-1}$. In other words, two elements belong to the same left coset of $N_{G}(P)$ if and only if they generate the same conjugate subgroup of P. Thus, the number of distinct conjugate subgroups of P is equal to the number of left cosets of $N_{G}(P)$ in G, and this, in turn, is equal to $\left[G: N_{G}(P)\right]=\frac{|G|}{\left|N_{G}(P)\right|}$.

Notice now that while l've labeled this result as a corollary to the Third Sylow Theorem, the proof appears to be entirely independent of that theorem. Thus, let me clarify the connection. Above we have used $N_{G}(P)$ where P is a Sylow p subgroup and $x \in N_{G}(P)$ if and only if $x P x^{-1}=P$. If we look back at our proof of the Third Sylow Theorem, then we see that in that proof we let X be the set of all Sylow p-subgroups in G for a fixed prime p and we let G act on X by conjugation. We also concluded in that proof that the number of conjugates of P is equal to $\frac{|G|}{\mid \text { Stabilizer }_{G}(P) \mid}$. However, notice that Stabilizer $_{G}(P)=\{g \in G \mid g(P)=P\}=\left\{g \in G \mid g P^{-1}=P\right\}=N_{G}(P)$.

Hence, $\frac{|G|}{\mid \text { Stabilizer }_{G}(P) \mid}=\frac{|G|}{\left|N_{G}(P)\right|}$

Corollary 3C: If G is a finite abelian group and $|G|=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdot \ldots \cdot p_{k}^{n_{k}}$ for primes $p_{1}, p_{2}, \ldots, p_{k}$, then $G=S_{p_{1}} \oplus S_{p_{2}} \oplus \ldots \oplus S_{p_{k}}$ where each $S_{p_{i}}$ is a Sylow p_{i}-subgroup.

Proof: We know that each $S_{p_{i}}$ is normal in G (since G is abelian), that $\left|S_{p_{i}}\right|=p_{i}^{n_{i}}$, that $S_{p_{i}} \cap S_{p_{j}}=e$ when $i \neq j$, and that $\left|S_{p_{1}} \oplus S_{p_{2}} \oplus \ldots \oplus S_{p_{k}}\right|=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdot \ldots \cdot p_{k}^{n_{k}}$. Therefore, it must follow that $G=S_{p_{1}} \oplus S_{p_{2}} \oplus \ldots \oplus S_{p_{k}}$.

GBOMP8

A very important result in finite group theory is the Fundamental Theorem of Finite Abelian Groups that essentially says that every finite abelian group can be written as a direct sum (or product) of cyclic p-groups (cyclic groups of order of the form p^{n} where p is a prime). This theorem basically determines for us all the possibilities for any abelian group of finite order. For example, suppose G is abelian and $|G|=12=2^{2} \cdot 3$. Then by the Fundamental Theorem of Finite Abelian Groups the only possibilities for G are $G \cong \mathbb{Z}_{12} \cong \mathbb{Z}_{4} \oplus \mathbb{Z}_{3}$ or $G \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$. And that's it! There are no other possible formulations for G, and it is the power of the Fundamental Theorem of Finite Abelian Groups that tells us this!

The Fundamental Theorem of Finite Abelian Groups is an advanced theorem in group theory, but the bulk of the work is done by the preliminary theorem given below. Once we prove this theorem, the rest will be easy. Additionally, proofs of more advanced theorems are difficult simply because you often have to juggle several things in your head at once in order to understand what is going on. Consequently, I have tried to make the proof below as simple as I can by breaking it up into cases, by providing additional verbiage and explanation, and by occasionally color coding parts of the proof in order to make it clearer what to focus on. Nonetheless, no matter how good my efforts are to simplify it, you may still need to read through the proof several times before it makes complete sense. Good luck!

Theorem: Let G be a finite abelian group such that $|G|=p^{n}$ for some prime p. Then $G=A \oplus Q$ where A is a cyclic subgroup of G that is of maximal order.

Proof: Let G be an abelian group such that $|G|=p^{n}$ for some prime p. We will essentially proceed by induction on n.
(Case 1) If $n=1$, then $|G|=p, G$ is cyclic, we can let $A=\langle a\rangle$ for any $a \in G$ such that $a \neq e, G=A$, and we are done.
(Case 2) Suppose that $n \neq 1$ and that G is cyclic. Then there exists $a \in G$ such that $a \neq e$ and $A=\langle a\rangle=G$, and, again, we are done.
(Case 3) Suppose now that $n \neq 1$ and that G is not cyclic. Also assume the induction hypothesis that the theorem is true for any finite abelian group G of order p^{m} with $m<n$. If G is not cyclic, then there exists $a \in G$ such that $a \neq e$ and $A=\langle a\rangle \neq G$ and $|A|=|\langle a\rangle|=p^{m}$. We may also assume that p^{m} is the largest order of any such cyclic subgroup of G, and since by hypothesis G is not cyclic, it follows that $p^{m}<p^{n}$ and, hence, $m<n$. Consequently, there also exists $b \in G-A$ such that $b \neq e, B=\langle b\rangle$, and $|B|=|\langle b\rangle|=p^{r}$ where $1<p^{r} \leq p^{m}<p^{n}$, and let's also assume that $A \cap B=e$. Now consider G / B. We have that $|G / B|=\frac{|G|}{|B|}=\frac{p^{n}}{p^{r}}=p^{n-r} \neq 1$. Also, since by hypothesis $A \cap B=\langle a\rangle \cap\langle b\rangle=e$, it follows that for $a B \in G / B$, $|\langle a B\rangle|=|\langle a\rangle|=|A|=p^{m}$ because otherwise if $|\langle a B\rangle|=p^{k}$ for some $k<m$, then $(a B)^{p^{k}}=a^{p^{k}} B=B$ implies that $a^{p^{k}} \in B$ which in turn means either that $\langle a\rangle \cap\langle b\rangle \neq e$ or that $|\langle a\rangle|=p^{k}<p^{m}$. And neither of these statements corresponds to what we have assumed. Hence, $|\langle a B\rangle|=|\langle a\rangle|=|A|=p^{m}$. Now, using our induction hypothesis (since $|G / B|=p^{n-r} \neq 1$ and $n-r<n$), we have that $G / B=\langle a B\rangle \oplus Q / B$ for some
subgroup Q of G such that $B \leq Q \leq G$. We now ask the question is $A \cap Q=e$? If not, then there exists $a^{i} \in A \cap Q$ such that $a^{i} \neq e$ and $a^{i} \notin B$ (since we assumed $A \cap B=e)$. Hence, $a^{i} B \in\langle a B\rangle \cap Q / B$ and $a^{i} B \neq B$. But this contradicts our induction hypothesis that $G / B=\langle a B\rangle \oplus Q / B$ since by definition of a direct sum we must have $\langle a B\rangle \cap Q / B=B$, the identity in G / B, and this would imply that $a^{i} B=B$. Therefore, it must be true that $A \cap Q=e$. Furthermore, since $G / B=\langle a B\rangle \oplus Q / B$, it follows that $G=A Q$, and since $A \cap Q=e$, we now have that $G=A \oplus Q$. And this completes the induction argument for this case. By the way, it might be of interest to also notice that if $|B|=|\langle b\rangle|=p^{r}$, then $\left|\left\langle b^{p^{r-1}}\right\rangle\right|=p$ and $A \cap B=e=\langle a\rangle \cap\left\langle b^{p^{r-1}}\right\rangle$. In other words, if G has a cyclic subgroup of order p^{r} whose intersection with A is e, then G also has a cyclic subgroup of order p whose intersection with A is e.
(Case 4) Now suppose that we have as before that $A=\langle a\rangle, b \in G-A$, and $1 \neq|\langle b\rangle|=p^{r} \leq p^{m}=|\langle a\rangle|<p^{n}=|G|$, and this time let's suppose that $\langle a\rangle \cap\langle b\rangle \neq e$. In this case, just as we assumed that p^{m} is the maximum order for any cyclic subgroup of G, we may also assume that p^{r} is the minimum order for any cyclic subgroup of G that meets the conditions above. In particular, if we consider b^{p}, then $\left|\left\langle b^{p}\right\rangle\right|=p^{r-1}$ since $\left(b^{p}\right)^{p^{r-1}}=b^{p \cdot p p^{-1}}=b^{p^{r}}=e$. Also, $\left|\left\langle b^{p}\right\rangle\right|=p^{r-1}<p^{r}=|\langle b\rangle|$ implies that either $\langle a\rangle \cap\left\langle b^{p}\right\rangle=e$ or $b^{p} \notin G-A$ (since by hypothesis $\langle b\rangle$ represents a group of minimum order that meets all the conditions above, and $\left|\left\langle b^{p}\right\rangle\right|<|\langle b\rangle|$). If $\langle a\rangle \cap\left\langle b^{p}\right\rangle=e$, then $b^{p} \notin A$, and Case 3 applies. On the other hand, if $b^{p} \in A$ (which is the same as saying $b^{p} \notin G-A$), then there exists a positive integer i such that $b^{p}=a^{i}$. Our claim now is that p divides i, and we'll prove this claim using proof by contradiction. Thus, assume that p does not divide i. Then it is also true that p^{m} does not divide $\frac{i p^{m}}{p}=i p^{m-1}$ since p does not divide i and p^{m}
does not divide p^{m-1}. Hence, $\frac{i p^{m}}{p}=i p^{m-1}$ is not a multiple of $p^{m}=|\langle a\rangle|$, and therefore, $\quad a^{\frac{i p^{m}}{p}}=a^{i p^{m-1}} \neq e \quad$ But on the other hand, $a^{i p^{m-1}}=\left(a^{i}\right)^{p^{m-1}}=\left(b^{p}\right)^{p^{m-1}}=\left(b^{p}\right)^{p^{m} / p}=b^{p^{m}}=\left(b^{p^{r}}\right)^{p^{m /} / p^{r}}=(e)^{p^{m} / p^{r}}=e$, and this is a contradiction to our previous statement that $a^{i p^{m-1}} \neq e$. Therefore, p divides i, and so we can write $i=j p$ for some positive integer j. Now let $y=a^{-j} b$. If y is an element of A, then $a^{j} y=b$ is also an element of A, contradicting our assumption that $b \notin A$. Thus, $y \notin A$. Furthermore, $y^{p}=\left(a^{-j} b\right)^{p}=a^{-j p} b^{p}=a^{-i} a^{i}=e$. But since we have found an element $y \notin A$ such that $y^{p}=e$ for p a prime, it follows also that $\langle a\rangle \cap\langle y\rangle=e$ and we can now repeat our earlier argument from Case 3 to conclude that there exists a subgroup Q such that $G=A \oplus Q$.

Corollary: Since when G is an abelian group such that $|G|=p^{n}$ for some prime p, we can write $G=A \oplus Q$ where A is a cyclic subgroup of G that is of maximal order, it follows that we can do the same with Q and then continue until we have G written as a direct sum of cyclic p-groups.

The Fundamental Theorem of Finite Abelian Groups: If G is a finite abelian group such that $|G|=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdot \ldots \cdot p_{k}^{n_{k}}$ for primes $p_{1}, p_{2}, \ldots, p_{k}$, then we can write G as a direct sum of cyclic p-groups using each prime p_{i} that divides the order of G.

Proof: Our last corollary to the Third Sylow theorem showed that we can write G as a direct sum of its Sylow p-subgroups, $G=S_{p_{1}} \oplus S_{p_{2}} \oplus \ldots \oplus S_{p_{k}}$. Also, our theorem and corollary above show that each Sylow p-subgroup can be written as a direct sum of cyclic p-groups. Thus, combining these results, we can also write G as a direct sum of cyclic p-groups using each prime p_{i} that divides the order of G.

HOW TO USE BAP (PADT OO)

As usual we will begin as usual by repeating all the GAP commands with learned up to this point so that you don't have to reference earlier parts of this work, and then at the end we'll introduce in red a few new GAP commands.

1. How can I redisplay the previous command in order to edit it?

Press down on the control key and then also press p. In other words, "Ctrl p".
2. If the program gets in a loop and shows you the prompt "brk>" instead of "gap>", how can I exit the loop?

Press down on the control key and then also press d. In other words, "Ctrl d".
3. How can I exit the program?

Either click on the "close" box for the window, or type "quit;" and press "Enter."
4. How do I find the inverse of a permutation?
gap> $\mathrm{a}:=(1,2,3,4)$;
(1,2,3,4)
gap> $a^{\wedge}-1$;
$(1,4,3,2)$
5. How can I multiply permutations and raise permutations to powers?
gap> $(1,2)^{*}(1,2,3)$;
$(1,3)$
gap> (1,2,3)^2;
$(1,3,2)$
gap> $(1,2,3)^{\wedge}-1$;
$(1,3,2)$
gap> $(1,2,3)^{\wedge}-2 ;$
$(1,2,3)$
gap> $\mathrm{a}:=(1,2,3)$;
$(1,2,3)$
gap> $\mathrm{b}:=(1,2)$;
$(1,2)$
gap> a*b;
$(2,3)$
gap> $\mathrm{a}^{\wedge} 2$;
$(1,3,2)$
gap> $a^{\wedge}-2$;
$(1,2,3)$
gap> $\mathrm{a}^{\wedge} 3 ;$
0
gap> $a^{\wedge}-3 ;$
()
gap> (a*b)^2;
()
gap> (a*b)^3;
$(2,3)$
6. How can I create a group from permutations, find the size of the group, and find the elements in the group?
gap> $\mathrm{a}:=(1,2)$;
$(1,2)$
gap> $\mathrm{b}:=(1,2,3)$;
$(1,2,3)$
gap> g1:=Group(a,b);
Group([$(1,2),(1,2,3)])$
gap> Size(g1);
6
gap> Elements(g1);
[$),(2,3),(1,2),(1,2,3),(1,3,2),(1,3)]$
gap> g2:=Group([(1,2),(1,2,3)]);
Group([(1,2), (1,2,3)])
gap> g3:=Group((1,2),(2,3,4));
Group([(1,2), (2,3,4)])
7. How can I create a cyclic group of order 3?
gap> $\mathrm{a}:=(1,2,3)$;
(1,2,3)
gap> g1:=Group(a);
Group([$(1,2,3)])$
gap> Size(g1);
3
gap> Elements(g1);
[()$,(1,2,3),(1,3,2)$]
gap> g2:=Group((1,2,3));
$\operatorname{Group}([(1,2,3)])$
gap> g3: =CyclicGroup(lsPermgroup, 3);
Group([(1,2,3)])
8. How can I create a multiplication table for the cyclic group of order 3 that I just created?
gap> ShowMultiplicationTable(g1);

*	\| ()	$(1,2,3)$	$(1,3,2)$
()	()	$(1,2,3)$	$(1,3,2)$
$(1,2,3)$	$(1,2,3)$	$(1,3,2)$	()
$(1,3,2)$	$\mid(1,3,2)$	()	1,2,3)

9. How do I determine if a group is abelian?
```
gap> g1:=Group((1,2,3));
Group([ (1,2,3) ])
gap> IsAbelian(g1);
true
gap> g2:=Group((1,2),(1,2,3));
Group([ (1,2), (1,2,3) ])
gap> IsAbelian(g2);
false
```

10. What do I type in order to get help for a command like "Elements?"
gap> ?Elements
11. How do I find all subgroups of a group?
```
gap> a:=(1, 2,3);
(1,2,3)
```

```
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2,3), (2,3) ])
gap> Size(g);
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> h:=Al|Subgroups(g);
[Group(()),Group([ (2,3) ]),Group([ (1,2) ]), Group([ (1,3)]),
Group([(1,2,3) ]), Group([(1,2,3),(2,3)])]
gap> List(h,i->E| ements(i));
[[() ], [ (), (2,3)],[(), (1, 2)], [ (), (1,3)], [ (), (1, 2,3),
(1,3,2)],[(),(2,3),(1,2), (1,2,3), (1,3,2), (1,3)] ]
gap> Elements(h[1]);
[() ]
gap> Elements(h[2]);
[(), (2,3) ]
gap> Elements(h[3]);
[(), (1,2) ]
gap> Elements(h[4]);
[ (), (1,3) ]
gap> Elements(h[5]);
[(), (1,2,3),(1,3,2) ]
gap> Elements(h[6]);
[(),(2,3),(1,2),'(1, 2, 3), (1,3,2), (1,3)]
```

12. How do I find the subgroup generated by particular permutations?
```
gap> g:=Group((1,2),(1,2,3));
Groupl[(1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> h:=Subgroup(g,[(1,2)]);
Group([ (1,2) ])
gap> Elements(h);
[(), (1,2)]
```

13. How do I determine if a subgroup is normal?
```
gap> g:=Group((1,2),(1,2,3));
Group([ (1,2), (1,2,3) ])
gap> h1:=Group((1,2));
Group([ (1,2)])
```

```
gap> | sNormal(g,h1);
gap> h2:=Group((1,2,3));
Group([ (1, 2,3) ])
gap> | sNormal(g,h2);
true
```

14. How do I find all normal subgroups of a group?
```
gap> g:=Group((1, 2),(1, 2,3));
Group([ (1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> n:=Normal Subgroups(g); 
gap> Elements(n[1]);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> Elements(n[2]);
[(), (1,2,3),(1,3,2) ]
gap> Elements(n[3]);
[ () ]
```

15. How do I determine if a group is simple?
```
gap> g:=Group((1,2),(1,2,3));
Group([ (1,2),(1,2,3)])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> |sSimple(g);
false
gap> h:=Group((1,2));
Group([ (1,2)])
gap> Elements(h);
[ (), (1, 2) ]
gap> |ssimple(h);
true
```


16. How do I find the right cosets of a subset H of G ?

```
gap> g:=Group([(1, 2, 3), (1, 2)]);
Group([ (1,2,3), (1,2)'])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3),(1,3,2), (1,3)]
gap> h:=Subgroup(g,[(1,2)]);
Group([ (1,2) ])
gap> El ements(h);
gap> c:=RightCosets(g,h);
[RightCoset(Group( [(1,2) ], (, ()), RightCoset(Group( [ (1, 2) ] ),(1, 3, 2)),
gap> List(c,i->E| ements(i));
[[(),(1,2)],[(2,3), (1,3,2) ], [ (1, 2,3), (1,3) ] ]
gap> Elements(c[1]);
[(), (1,2) ]
gap> Elements(c[2]);
gap> Elements(c[3]);
gap> rc:=RightCoset(h, (1, 2, 3));
RightCoset(Group([ (1, 2) ]),(1, 2, 3))
gap> Elements(rc);
[(1,2,3), (1,3) ]
gap> rc:=h*(1, 2, 3);
RightCoset(Group(['(1,2) ]),(1, 2, 3))
gap> Elements(rc);
[(1,2,3), (1,3) ]
```

17. How can I create a quotient (factor) group?
```
gap> g:=Group([(1, 2, 3), (1,2)]);
Group([ (1,2,3), (1,2) ])
gap> Elements(g);
[(), (2,3),(1, 2),(1, 2,3), (1,3,2), (1,3)]
gap> n:=Group((1, 2,3));
Group([ (1, 2,3) ])
gap> Elements(n);
[(), (1,2,3),(1,3,2) ]
gap> | sNormal(g,n);
true
gap> c:=RightCosets(g,n);
[RightCoset(Group([(1,2,3) ]),()), RightCoset(Group([ (1, 2,3) ]),(2,3)) ]
```

```
gap> Elements(c[1]);
[(), (1,2,3), (1,3,2) ]
gap> Elements(c[2]);
[(2,3),(1,2),(1,3) ]
gap> f:=FactorGroup(g,n);
Group([ f1 ])
gap> Elements(f);
[ <identity> of ..., fl ]
gap> ShowMultiplicationTable(f);
* | <identity> of ...f1
<identity> of ... <identity> of ... f1
fl fl fl <identity> of ...
```

18. How do I find the center of a group?
```
gap> a:=(1, 2,3);
(1,2,3)
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2, 3), (2,3) ])
gap> Center(g);
Group(())
gap> c:=Center(g);
Group(())
gap> Elements(c);
[ () ]
gap> a:=(1, 2,3,4);
(1, 2, 3, 4)
gap> b:=(1,3);
(1,3)
gap> g:=Group(a,b);
Group([ (1, 2,3,4),'(1,3) ])
gap> c:=Center(g);
Group([ (1,3)(2,4) ])
gap> Elements(c);
[(), (1,3)(2,4)]
```

19. How do I find the commutator (derived) subgroup of a group?
gap> a: $=(1,2,3)$;
(1, 2, 3)
```
gap> b:=(2,3);
(2,3)
gap>g:=Group(a,b);
Groupl[ (1, 2, 3),, (2,3) ])
gap> d:=DerivedSubgroup(g);
Group([ (1,3,2) ])
gap> Elements(d);
[(),(1,2,3),(1,3,2) ]
gap> a:=(1, 2,3,4);
(1,2,3,4)
gap> b:=(1,3);
(1,3)
gap>g:=Group(a,b);
Group([ (1,2,3,4), (1,3) ])
gap> d:=DerivedSubgroup(g);
Group([ (1,3)(2,4)])
gap> Elements(d);
[(), (1,3)(2,4)]
```

20. How do I find all Sylow p-subgroups for a given group?
```
gap> a:=(1, 2, 3);
(1,2,3)
gap> b:=(2,3);
(2,3)
gap> g:=Group(a,b);
Group([ (1, 2,3),(2,3) ])
gap>Size(g);
gap> Factorslnt(6);
[ 2, 3 ]
gap> sylow2:=SylowSubgroup(g,2);
gap> | sNormal(g,sy| ow2);
false
gap> c:=ConjugateSubgroups(g, sylow2);
[Group([(2,3) ]), Group([(1,3)])', Group([ (1,2) ])]
gap> Elements(c[1]);
[(), (2,3) ]
gap> Elements(c[2]);
[(), (1,3)]
gap> Elements(c[3]);
[ (), (1,2) ]
gap> sylow3:=SylowSubgroup(g, 3);
Group([ (1, 2,3) ])
```

```
gap> | sNormal(g,sy| ow3);
true
gap> El ements(sylow3);
[(),(1,2,3),(1,3,2)]
```

21. How can I create the Rubik's cube group using GAP?

First you need to save the following permutations as a pure text file with the name rubik.txt to your C-drive before you can import it into GAP.

```
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18) (11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22)(18,21,23,20) (6,25,43,16)(7,28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);
```

And now you can read the file into GAP and begin exploring.

```
gap> Read("C:/rubik.txt");
gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>
gap> Size(rubik);
432520003274489856000
```

22. How can I find the center of the Rubik's cube group?
```
gap> c:=Center(rubik);
Group([ (2,34)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29,36)(31,4
5)(39,47) ])
gap> Size(c);
gap> Elements(c);
[39,47) [ [4)(4,10)(5,26)(7,18)(12,37)(13,20)(15,44)(21,28)(23,42)(29, 36)(31,45)
```

```
gap> d:=DerivedSubgroup(rubik);
<permutation group with 5 generators>
gap>Size(d);
21626001637244928000
gap> |sNormal(rubik,d);
true
```

24. How can I find the quotient (factor) group of the Rubik's cube group by its commutator (derived) subgroup?
```
gap> d:=DerivedSubgroup(rubik);
<permutation group of size 21626001637244928000 with 5 generators>
gap> f:=FactorGroup(rubik,d);
Group([f1 ])
gap> Size(f);
```

25. How can I find some Sylow p-subgroups of the Rubik's cube group?
```
gap> Read("C:/rubik.txt");
gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>
gap> Size(rubik);
43252003274489856000
gap> Factorslnt(43252003274489856000);
12,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 2, 2, 2, 2, 2, 2, 2, 2,
gap> sylow2:=SylowSubgroup(rubik, 2) ;
<permutation group of size 134217728 with 27 generators>
gap> sylow3:=SylowSubgroup(rubik,3);
<permutation group of size 4782969 with 14 generators>
gap> sylow5: =SylowSubgroup(rubik, 5);
<permutation group of size 125 with'3 generators>
gap> sylow7:=SylowSubgroup(rubik,7);
<permutation group of size 49 with 2 generators>
gap> sylow11:=SylowSubgroup(rubik,11);
Group([ (4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18) ])
```

```
gap> Elements(sylowl1);
(1), (4,5,36,21,31,15,39,13,42,7,12)(10, 26,29,28,45,44,47,20,23,18,37),
(4,7,13,15,21,5,12,42,39,31,36)(10,18,20,44,28,26,37,23,47,45,29),
(4,12,7,42,13,39,15,31,21,36,5)(10,37,18,23,20,47,44,45,28,29,26),
(4,13,21,12,39,36,7,15,5,42,31)(10,20,28,37,47,29,18,44,26,23,45),
(4,15,12,31,7,21,42,36,13,5,39)(10,44,37,45,18,28,23,29,20,26,47),
(4,21,39,7,5,31,13,12,36,15,42)(10, 28,47,18,26,45,20,37,29,44, 23),
(4,31,42,5,15,7,36,39,12,21,13)(10,45,23,26,44,18,29,47,37,28,20),
(4,36,31,39,42,12,5,21,15,13,7)(10,29,45,47,23,37,26,28,44,20,18),
(4,39,5,13,36,42,21,7,31,12,15)(10,47,26,20,29,23,28,18,45,37,44),
(4,42,15,36,12,13,31,5,7,39,21)(10,23,44,29,37,20,45,26,18,47,28) ]
gap> I sNormal(rubik, sylow2);
false
gap> IsNormal(rubik,sylow3);
false
gap> | sNormal(rubik, sylow5);
false
gap> |sNormal(rubik,sylow7);
false
gap> | sNormal(rubik,sylowl1);
false
```

NOTE: All of the Sylow p-subgroups found above have conjugates, but the sheer size of the Rubik's cube group makes it too difficult to pursue them on a typical desktop computer.
26. How do I determine if a group is cyclic?

```
gap> a:=(1,2,3)*(4,5,6,7);
(1,2,3)(4,5,6,7)
gap>g:=Group(a);
Group([ (1, 2,3)(4,5,6,7) ])
gap>Size(g);
12
gap> |sCyclic(g);
true
```

27. How do I create a dihedral group with $2 n$ elements for an n-sided regular polygon?
```
gap> d4:=Dihedral Group(|spermGroup,8);
Group([ (1, 2, 3,4), (2,4) ])
```

gap> Elements(d4);
$[(),(2,4),(1,2)(3,4),(1,2,3,4),(1,3),(1,3)(2,4),(1,4,3,2),(1,4)(2,3)]$
28. How can I express the elements of a dihedral group as rotations and flips rather than as permutations?

```
gap> d3:=Di hedral Group(6);
<pc group of size 6 with 2 generators>
gap> Elements(d3);
[<identity> of ..., f1,f2,f1*f2,f2^2,f1*f2^2 ]
```


29. How do I create a symmetric group of degree n with n! elements?

```
gap> s4:=SymmetricGroup(4);
Sym( [ 1 .. 4 ] )
gap> Size(s4):
gap> Elements(s4);
[1,2,3,4),(1,2,4,3),(1,2,4),(2,4,3),(2,4),(1,2),(1,2)(3,4), (1, 2,3),
(1,3,4,2),(1,3),(1,3,4),(1,3)(2,4),(1,3,2,4),(1,4,3,2),(1,4,2),(1,4,3)
(1,4), (1,4,2,3), (1,4)(2,3) ]
```

30. How do I create an alternating group of degree n with $\frac{n!}{2}$ elements?
```
gap> a4:=AlternatingGroup(4);
Alt( [ 1 .. 4 ] )
gap> Size(a4);
gap> Elements(a4);
[(),(2,3,4),(2,4,3),(1,2)(3,4),(1,2,3),(1,2,4), (1,3,2), (1,3,4),
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3) ]
```


31. How do I create a direct product of two or more groups?

```
gap> g1:=Group((1, 2, 3));
gap>g2:=Group((4,5));
gap> dp:=DirectProduct(g1,g2)
Group([(1,2,3), (4,5) [),
gap> Size(dp);
gap> Elements(dp);
[(),(4,5),(1,2,3),(1,2,3)(4,5),(1,3,2), (1,3,2)(4,5) ]
gap> ShowMultiplicationTable(dp);
(1,3,2)(4,5)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ) & () & \((4,5)\) & \((1,2,3)\) & \((1,2,3)(4,5)\) & ( \(1,3,2\) ) & \\
\hline \((1,3,2)(4,5)\) & & ( & & & & \\
\hline \((1,2,3)\) & \((1,2,3)\) & \((1,2,3)(4,5)\) & \((1,3,2)\) & \((1,3,2)(4,5)\) & & \((4,5)\) \\
\hline \((1,2,3)(4,5)\) & \((1,2,3)(4,5)\) & \((1,2,3)(4,5)\) & \((1,3,2)(4,5)\) & \((1,3,2)\) & \((4,5)\) & () \\
\hline \((1,3,2)\) & \((1,3,2)\) & \((1,3,2)(4,5)\) & () & \((4,5)\) & \((1,2,3)\) & \\
\hline \[
\begin{aligned}
& (1,2,3)(4,5) \\
& (1,3,2)(4,5)
\end{aligned}
\] & \((1,3,2)(4,5)\) & (1,3,2) & \((4,5)\) & () & \((1,2,3)(4,5)\) & \((1,2,3)\) \\
\hline
\end{tabular}
```


32. How can I create the Quaternion group?

```
gap> a:=(1, 2, 5, 6)*(3,8,7,4);
(1, 2,5,6) (3, 8,7,4)
gap>b:=(1,4,5,8)*(2,7,6,3);
(1,4,5,8)(2,7,6,3)
gap> q:=Group(a,b);
Group([ (1, 2,5,6)(3,8,7,4), (1,4,5,8)(2,7,6,3) ])
g
gap> |sAbelian(q);
false
gap> Elements(q);
[(), (1,2,5,6) (3,8,7,4), (1,3,5,7)(2,4,6,8), (1,4,5,8)(2,7,6,3),
(1,5)(2,6)(3,7)(4,8), (1,6,5,2) (3,4,7,8),
    (1,7,5,3)(2,8,6,4), (1,8,5,4)(2,3,6,7) ]
gap> q:=QuaternionGroup(l sPermGroup, 8);
Group([ (1,5,3,7)(2,8,4,6),(1, 2, 3,4)(5,6,7,8) ])
gap>Size(q);
gap> \sAbelian(q);
false
gap> Elements(q);
[(), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6)
(1,5,3,7)(2,8,4,6),(1,6,3,8)(2,5,4,7),
    (1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5) ]
```

```
gap> c6:=CyclicGroup(IsPermGroup, 6);
Group([ (1, 2, 3, 4,5,6) ])
gap>Size(c6);
gap> GeneratorsOf Group(c6);
[(1, 2, 3, 4, 5, 6) ]
gap> d4:=Di hedral Group(I sPermGroup, 8);
Group([ (1, 2,3,4), (2,4) ])
gap> Size(d4);
gap> GeneratorsOf Group(d4);
gap> s 5:=SymmetricGroup(5);
Sym( [1 .. 5 ] )
gap> Size(s5);
gap> GeneratorsOf Group(s5);
[ (1, 2, 3,4,5), (1, 2)
gap> a5:=AlternatingGroup(5);
Alt( [ 1 .. 5 ] )
gap> Size(a5);
6
gap> GeneratorsOf Group(a5);
[(1, 2, 3,4,5),(3,4,5)]
gap>q:=QuaternionGroup(IsPermGroup, 8);
gap> Size(q);
gap> GeneratorsOf Group(q);
[(1,5,3,7)(2,8,4,6),(1,2,3,4)(5,6,7,8)]
```

34. How do I find the conjugate of a permutation in the form $a^{b}=b^{-1} a b$?
```
gap> a:=(1, 2, 3,4,5);
(1,2,3,4,5)
```

```
gap>b:=(2,4,5);
```

(2,4,5)
$g a p>a^{\wedge} b ;$
$(1,4,3,5,2)$
gap> $b^{\wedge}-1^{*} a^{*} b$
$(1,4,3,5,2)$
35. How do I divide up a group into classes of elements that are conjugate to one another? (Note that "conjugacy" is an equivalence relation on our group G. That means that G can be separated into nonintersecting subsets that contain only elements that are conjugate to one another.)

```
gap> d3:=Di hedral Group(I sPermGroup,6);
Group([ (1, 2,3), (2,3) ])
gap> Size(d3);
gap> Elements(d3);
[(),(2,3),(1,2),(1,2,3), (1,3,2), (1,3)]
gap> cc:=ConjugacyCl asses(d3);
[()^G, (2,3)^G, (1, 2, 3)^G ]
gap> Elements(cc[1]);
[() ]
gap> Elements(cc[2]);
[(2,3), (1,2), (1,3) ]
gap> Elements(cc[3]);
[(1,2,3), (1,3,2)]
```

36. How do I input a 3x3 matrix in GAP and display in its usual rectangular format?
gap> $x:=[[1,2,3],[4,5,6],[7,8,9]]$;
$[11,2,3],[4,5,6],[7,8,9]]$

```
gap> x:=[[1, 2],[3,4]];
gap> y: =[ [ 5, 6],[7, 8]];
gap> PrintArray(x+y);
gap> PrintArray(x-y);
gap> PrintArray(x*y);
```

38. How do I multiply a matrix by a number (scalar)?
gap> $x:=\left[\begin{array}{l}1,2],[3,4]] ; \\ 1,2],[3,4]\end{array}\right.$
$\left[\begin{array}{l}\text { gap> PrintArray }(x) \text {; } \\ {\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]}\end{array}\right]$

39. How do I find the inverse of a matrix?
gap> $x:=\left[\begin{array}{l}[1,2],[3,4]] ;\end{array}\right.$

gap> xinverse: $=x^{\wedge}$ - 1 ;
[$\left[\begin{array}{ll}2,1],[3 / 2, & 1 / 2]\end{array}\right]$
```
gap> PrintArray(xinverse);
gap> xinverse:=1/x;
[ap> -2, 1],[ 3/2, - 1/2 ] ]
gap> PrintArray(xinverse);
gap> PrintArray(x*xinverse);
[[[\begin{array}{llll}{1,}&{0}\\{0,}&{1}\end{array}]
```

40. How do I find the transpose of a matrix?
```
gap> x:=[[1, 2],[3,4]];
gap> PrintArray(x);
[[[1, 2 [ ], ]
gap> xtranspose:=TransposedMat(x);
[[ 1, 3], [ 2, 4 ] ]
gap> PrintArray(xtranspose);
```


41. How do I find the determinant of a matrix?

```
gap> x:=[[1, 2],[3,4]];
```

$\left[\begin{array}{l}\text { gap> } \operatorname{PrintArray}(x) ; \\ {\left[\begin{array}{lll}1, & 2\end{array}\right],}\end{array}\right.$
gap ${ }_{-2}$ Determinant Mat (x);
42. How do I find the orbits that the Rubik's cube group creates on the set $\{1,2,3, \ldots, 48\} ?$

In Windows, use Notepad to type the following file, and save it to your C-drive.

```
r:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
l:= (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
u:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18) (11,35,27,19);
d:=(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40);
f:=(17,19,24,22) (18,21,23,20) (6,25,43,16) (7, 28,42,13)(8,30,41,11);
b:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);
```

Now enter the following commands.

```
gap>> Read("C:/rubik.txt");
gap>
gap> rubik:=Group(r,l,u,d,f,b);
<permutation group with 6 generators>
gap> Orbit(rubik,1);
[1, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27, 16,
35, 25, 32]
gap> Orbit(rubik, 2);
[2, 5, 13, 18, 36, 37, 42, 39, 34, 12, 10, 31, 15, 7, 4, 26, 20, 45, 21, 44,
47, 28, 29, 23]
gap> 0:=Orbits(rubik);
[14, 17, 3, 14, 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27,
16, 35, 25, 32 ],
[2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15,
gap>Size(0);
```

gap>Elements(0);

```
[ [1, 17, 3, 14,
16, 35, 25, 32 ], 41, 9, 19, 38, 8, 22, 48, 40, 43, 11, 33, 46, 24, 6, 30, 27,
[ 2, 5, 12, 36, 7, 10, 47, 45, 34, 4, 28, 13, 44, 29, 21, 26, 37, 20, 42, 15,
```

43. How do I work with functions in GAP?
```
gap>f:=x->x^2;
function( x ) .... end
gap>g:=x->x+2;
gap>f(3);
gap>g(3);
gap>f(g(3));
gapp>g(f(3));
```

44. If a group G acts on a set X, how do I find the stabilizer subgroup for a point in X ?
$g a p>a:=(1,2,3)$;
$(1,2,3)$

$(2,3)$
gap> $g:=\operatorname{Group}(a, b)$;
$\operatorname{Groupl}(1,2,3),(2,3)])$
gap> s: =Stabilizer(g, 1);
Group $([2,3)])$
${\underset{2}{2}}_{2} \mathrm{p}>\operatorname{Size}(\mathrm{s})$;
gap> Elements(s);
$[(1),(2,3)$]
45. How do I find the centralizer of an element or subgroup?
```
gap> g:=Group((1,2,3,4),(1,2));
Group([ (1,2,3,4), (1,2) ])
gap>c:=Centralizer(g,(1, 2, 3));
Group([ (1, 2,3) ])
gap> Elements(c);
[(), (1, 2, 3), (1, 3, 2) ]
```

gap> c: =Centralizer(g, Subgroup(g, [(1, 2, 3)]));
Group([(1, 2, 3)])
gap> Elements(c);
[() , ($1,2,3$), ($1,3,2)$]
gap> $c:=C e n t r a l i z e r(g, \operatorname{Subgroup}(g,[(1,2,3),(1,2)])$);
Group(())
gap>Elements(c);
[()]
46. How do I find the normalizer of a subgroup?

```
gap>g:=Group([(1,2,3),(1,2)]);
Group([ (1,2,3), (1,2) ])
gap> Elements(g);
[(),(2,3),(1,2),(1,2,3), (1, 3, 2), (1,3)]
gap> h: =Subgroup(g,[(1,2)]);
Group([ (1,2) ])
gap> Elements(h);
[(), (1,2) ]
gap> n:=Normalizer(g,h);
Group([ (1,2) ])
gap> Elements(n);
[(), (1, 2) ]
gap> h: =Subgroup(g,[(1,2,3)]);
Group([ (1,2,3) ]
gap> Elements(h);
[(), (1,2,3), (1, 3, 2) ]
gap> n:=Normalizer(g,h);
Group([ (1,2,3), (2,3)])
gap> Elements(n);
[(),(2,3),(1, 2),(1,2,3),(1,3,2), (1,3)]
```


SUAPMADY (PADT OOS

In part 10 we've covered quite a lot! And yet there are many more topics in group theory that l've have paid little or no attention to. The bottom line is that there is always much, much more to learn, and it is likely that no book will ever exhaust what is known or what can be known. I have simply focused on those things I like best and those things that I consider most important. And if you've made it this far, then you are, indeed, exceptional. The rest of the journey is now up to you. However, for now you want to be familiar with the following topics that we discussed in Part 10.

- Homomorphisms
- Isomorphisms
- Kernel of a homomorphism
- The natural homomorphism
- The correspondence theorem
- The $1^{\text {st }}$ isomorphism theorem
- The $2^{\text {nd }}$ isomorphism theorem
- The $3^{\text {rd }}$ isomorphism theorem
- Quotient groups
- Orbits
- Stabilizers
- Fixers
- Burnside's Counting Theorem
- Mathematical induction
- Conjugacy classes
- The Class Equation
- The $1^{\text {st }}$ Sylow theorem
- The $2^{\text {nd }}$ Sylow theorem
- The $3^{\text {rd }}$ Sylow theorem
- The Fundamental Theorem of Finite Abelian Groups

PRAETTES (PARTMO)

1. Construct proofs for each of the three isomorphism theorems.

The First Isomorphism Theorem: Let $f: A \rightarrow B$ be a homomorphism from a group A onto a group B, and let $N=\operatorname{Ker}(f)$. Then $A / \operatorname{Ker}(f)=A / N \cong B$.

The Second Isomorphism Theorem: If H and N are subgroups of a group G with N normal in G, then $H / H \cap N \cong H N / N$.

The Third Isomorphism Theorem: Let G be a group, let N and H be normal subgroups of G, and suppose that $N \subseteq H \subseteq G$. Then H / N is a normal subgroup of G / N, and $(G / N) /(H / N) \cong G / H$.
2. If S_{5} acts on the set $X=\{1,2,3,4,5\}$, find the size and elements of the stabilizer subgroup Stabilizer ${ }_{S_{5}}(2)$.
3. Suppose you have a pentagonal bracelet with 5 differently colored, equally spaced beads, and suppose that you either rotate the bracelet clockwise through multiples of 72°, or you can flip the bracelet about any of 5 axes of symmetry. .Then the dihedral group D_{5} acts upon the beads of this regular pentagon that may be labeled by $X=\{1,2,3,4,5\}$. Use Burnside's Counting Theorem to find the number of orbits in X under the action by D_{5}.
4. Use the Fundamental Theorem of Abelian Groups to find all abelian groups of order 16.
5. You have done exceptionally well to make it to this point. Now relax!

PRACTICE (PADT

1. Construct proofs for each of the three isomorphism theorems.

The First Isomorphism Theorem: Let $f: A \rightarrow B$ be a homomorphism from a group A onto a group B, and let $N=\operatorname{Ker}(f)$. Then $A / \operatorname{Ker}(f)=A / N \cong B$.

Proof: Recall that $\pi: A \rightarrow A / N$ defined by $\pi(a)=N a$ is called the natural homomorphism. Now define a function i from A / N to B by $i(N a)=f(a)$. What we want to do now is to verify that i is an isomorphism from A / N to B. First, we will show that this function is onto. Thus, if $b \in B$, then there exists $a \in A$ such that $f(a)=b$ since f is onto. Hence, $i(\pi(a))=i(N a)=f(a)=b$ shows that i is also onto.

To show that i is one-to-one, let $N x, N y \in A / N$ such that $N x \neq N y$. Then, in particular, $N x$ and $N y$ have no elements in common because if they did, then we would have $n_{1} x=n_{2} y \Rightarrow x=n_{1}^{-1} n_{2} y \Rightarrow x \in N y \Rightarrow N x=N y$. Furthermore, $f(x) \neq f(y)$ because if $f(x)=f(y)$, then $e=f(x) f(y)^{-1}=f(x) f\left(y^{-1}\right)=f\left(x y^{-1}\right)$ implies that $x y^{-1} \in N=\operatorname{Ker}(f)$ which implies that $x y^{-1}=n \in N \Rightarrow x=n y \Rightarrow N x=N y$. But his contradicts our assumption that $N x \neq N y$, and, hence, $N x \neq N y \Rightarrow f(x) \neq f(y)$, and so $i: A / N \rightarrow B$ is onto-to-one.

Before we show that $i: A / N \rightarrow B$ is a homomorphism, notice that it doesn't matter what representative we use from a coset such as Na. In other words, since $N=\operatorname{Ker}(f)$, if $a, b \in N a$, then $a=n b$ and $f(a)=f(n b)=f(n) f(b)=e \cdot f(b)=f(b)$. Hence, it is also true that $i(a)=i(b)$. Now let $N x, N y \in A / N$. Then $i(N x N y)=i(N x y)=f(x y)=f(x) f(y)=i(N x) i(N y)$. Therefore, $i: A / N \rightarrow B$ is an isomorphism, and $A / \operatorname{Ker}(f)=A / N \cong B$.

The Second Isomorphism Theorem: If H and N are subgroups of a group G with N normal in G, then $H / H \cap N \cong H N / N$.

Proof: Recall that earlier we proved that if H is a subgroup of G, then there will exist a corresponding subgroup of G / N that is obtained by looking at the cosets $N h$ where $h \in H$. This theorem, the Second Isomorphism Theorem, sharpens and clarifies the result. To prove it, though, we first need to show that $H \cap N$ is a normal subgroup of H and that $H N$ is a subgroup of G that contains N. So let's begin!

To show that $H \cap N$ is a normal subgroup of H, we first need to show that it is at least a subgroup by verifying properties of closure and existence of inverses. Thus, let $n_{1}, n_{2} \in H \cap N$. Since $n_{1}, n_{2} \in H$, a subgroup of G, it follows that $n_{1} n_{2} \in H$. But by the same token, $n_{1}, n_{2} \in N$ implies that $n_{1} n_{2} \in N$. Hence, $n_{1} n_{2} \in H \cap N$, and closure is satisfied.

Now suppose that $n \in H \cap N$. Then an inverse to n exists in both H and in N. In other words, $n^{-1} \in H$ and $n^{-1} \in N$ implies that $n^{-1} \in H \cap N$. Thus, existence of inverses is satisfied, and $H \cap N$ is a subgroup of H.

To show that $H \cap N$ is a normal subgroup of H, let $h \in H$ and let $n \in H \cap N$. Then $h^{-1} n h \in H$ since all three elements belong to H. But on the other hand, $h^{-1} n h \in N$ since N is a normal subgroup of G. Hence, $h^{-1} n h \in H \cap N$, and so $H \cap N$ is a normal subgroup of H.

Now let's show that HN is a subgroup of G. Thus, to show closure, let $h_{1} n_{1}, h_{2} n_{2} \in H N$, and consider the product $h_{1} n_{1} h_{2} n_{2}$. Since N is a normal subgroup of G, every left coset of N is equal to the corresponding right coset, and that means that $h_{2} N=N h_{2}=N n_{1} h_{2}$. Hence, there exists $n_{3} \in N$ such that $n_{1} h_{2}=h_{2} n_{3}$. Thus, $h_{1} n_{1} h_{2} n_{2}=h_{1} h_{2} n_{3} n_{2} \in H N$, and closure is satisfied. To show the existence of inverses
in $H N$, let $h n \in H N$. Then it's inverse is $n^{-1} h^{-1}$. However, again since N is normal in G, there exists $n_{4} \in N$ such that $n^{-1} h^{-1}=h^{-1} n_{4} \in H N$. Therefore, inverses exist in $H N$, and $H N$ is a subgroup of G. Furthermore, $N \subseteq H N$ since every element of N can be written as $e \cdot n$ where $e \in H$ and $n \in N$.

And finally, we need to state and prove our isomorphism from $H / H \cap N$ to $H N / N$. In this case, define $f: H / H \cap N \rightarrow H N / N$ by $f[(H \cap N) h]=N h$. To show that f is a homomorphism, observe that
$f\left[(H \cap N) h_{1}\right] \cdot f\left[(H \cap N) h_{2}\right]=N h_{1} \cdot N h_{2}=N\left(h_{1} h_{2}\right)=f\left[(H \cap N) h_{1} h_{2}\right] \quad$ Notice, too, that elements in $H / H \cap N$ look like $\left\{H \cap N,(H \cap N) h_{1},(H \cap N) h_{2},(H \cap N) h_{3}, \ldots\right\}$ where $h_{1}, h_{2}, h_{3}, \ldots \notin H \cap N$, and the corresponding elements in $H N / N$ look like $\left\{N, N h_{1}, N h_{2}, N h_{3}, \ldots\right\}$. From this it should be clear that $\operatorname{Ker}(f)=H \cap N$ because if $h \notin H \cap N$, then it gets mapped to $N h \neq N$, the identity in $H N / N$. Thus, from previous proof on homomorphisms and one-to-one functions, it follows that f is one-to-one. And finally, to show that f is onto, suppose that $N h n \in H N / N$. Then since N is a normal subgroup, we can rewrite $h n$ as $n_{1} h$ for some $n_{1} \in N$. Hence, $N h n=N n_{1} h=N h=f[(H \cap N) h]$, and therefore, f is onto and $H / H \cap N \cong H N / N$.

The Third Isomorphism Theorem: Let G be a group, let N and H be normal subgroups of G, and suppose that $N \subseteq H \subseteq G$. Then H / N is a normal subgroup of G / N, and $(G / N) /(H / N) \cong G / H$.

Proof: It follows immediately from the Correspondence Theorem that H / N is a normal subgroup of G / N. Now let $i: G \rightarrow G / N$ be the natural homomorphism, and let $j: G / N \rightarrow(G / N) /(H / N)$ be another natural homomorphism. Then $j \circ i$ is a homomorphism from G onto $(G / N) /(H / N)$.

$$
G \xrightarrow{i} G / N \xrightarrow{j}(G / N) /(H / N)
$$

Hence, our First Isomorphism Theorem tells us that $(G / N) /(H / N)$ is isomorphic to $G / \operatorname{Ker}(j \circ i)$. Thus, we just need to figure out what is contained in $\operatorname{Ker}(j \circ i)$. Thus, let $h \in H \subseteq G$. Then $N h \in H / N \subseteq G / N$ tells us that $h \in \operatorname{Ker}(j \circ i)$. On the other hand, if $g \in G$, but $g \notin H$, then $N g \notin H / N$, and, thus, $g \notin \operatorname{Ker}(j \circ i)$. Therefore, $\operatorname{Ker}(j \circ i)=H$, and by the First Isomorphism Theorem, G / H is isomorphic to $(G / N) /(H / N)$.
2. If S_{5} acts on the set $X=\{1,2,3,4,5\}$, find the size and elements of the stabilizer subgroup Stabilizer ${ }_{S_{5}}(2)$.

```
gap> s5:=SymmetricGroup(5);
Sym([1 .. 5 ] )
gap> h:=Stabilizer(s5, 2);
Sym([ 1, 3, 4, 5 ] )
gap> Size(h);
gap> Elements(h);
[(), (4,5),(3,4),(3,4,5),(3,5,4),(3,5), (1,3), (1,3)(4,5), (1,3,4),
(1,3,4,5),(1,3,5,4),(1,3,5), (1,4,3),
    (1,5), (1,3), (1,5,4),(1,4,4,5),(1,4)(3,5), (1,4,3,5), (1,5,4,3), (1,5,3), (1,5,4),
```

3. Suppose you have a pentagonal bracelet with 5 differently colored, equally spaced beads, and suppose that you either rotate the bracelet clockwise through multiples of 72°, or you can flip the bracelet about any of 5 axes of symmetry. .Then the dihedral group D_{5} acts upon the beads of this regular pentagon that may be labeled by $X=\{1,2,3,4,5\}$. Use Burnside's Counting Theorem to find the number of orbits in X under the action by D_{5}.

Suppose you have a pentagonal bracelet with 5 differently colored, equally spaced beads, and suppose that you either rotate the bracelet clockwise through multiples of 72°, or you can flip the bracelet about any of 5 axes of symmetry. Then our set X will consist of $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$ color configurations, and our group is D_{5}, the group of symmetries of a regular pentagon with $\left|D_{5}\right|=10$. Again, if we label the vertices $1,2,3,4$, and 5 , then we can describe D_{5} in terms of the following permutations, $D_{5}=\left\{\begin{array}{l}(),(1,2,3,4,5),(1,3,5,2,4),(1,4,2,5,3),(1,5,4,3,2), \\ (2,5)(3,4),(1,2)(3,5),(1,3)(4,5),(1,4)(2,3),(1,5)(2,4)\end{array}\right\}$.

Now, as before, the identity fixes all $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$ color configurations, and the remaining elements of D_{5} fix none of the configurations. Hence, the number of orbits in X under D_{5} is $\frac{1}{\left|D_{5}\right|} \sum_{x \in X}\left|\operatorname{Stabilizer}_{D_{5}}(x)\right|=\frac{1}{\left|D_{5}\right|} \sum_{g \in D_{5}}\left|\operatorname{Fixer}_{X}(g)\right|=\frac{1}{10} \cdot 120=12$. In other words, there are 12 distinct ways to color the beads with different colors when we allow for the symmetries of the pentagon.
4. Use the Fundamental Theorem of Abelian Groups to find all abelian groups of order 16.
$C_{16}, C_{8} \times C_{2}, C_{4} \times C_{4}, C_{4} \times C_{2} \times C_{2}, C_{2} \times C_{2} \times C_{2} \times C_{2}$
5. You have done exceptionally well to make it to this point. Now relax!

THE GROMP THPOPY IS STBONS My You

