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TTRODUSTIOH (PART 1)

i/:\

Welcome! This is Part 1 of an introduction to group theory that will ultimately be
comprised of ten different parts ranging from the absolute beginning to very
advanced! Group theory (of course!) is a part of higher, abstract algebra, and
this first part primarily introduces the concept of a mathematical group and
illustrates how groups are connected with not only the various cycles in our lives,
but also symmetry and permutations. Also, in order to make each chapter as
brief as possible, often only a single example of a concept is given. However,

many more examples are given in subsequent parts.

In subsequent parts of this book, we’ll continue to introduce some of the basic
concepts, examples, and ideas of group theory, but most of these parts will not
contain any proofs. Instead, we’'ll try to provide some hands-on practice and
illustration by introducing you to Rubik’s cube and to a free software program
called GAP (Groups, Algorithms, and Programming). Eventually, we will
introduce you, in Part 9, to theorem proving via some of the easier and shorter
proofs that one may find in a standard group theory course, and then in Part 10
we will show you some lengthier and more advanced theorems that are very

fundamental to group theory. | hope many of you make it that far!

Group theory is a branch of mathematics that most people have never heard of,
and yet it is of fundamental importance to of mathematics and physics. In fact,
one of its first applications in advanced mathematics was to prove that it is
impossible to construct a general formula for solving all polynomial equations of

degree 5 or higher. In particular, there is no convenient formula for solving 5™
degree equations that look like a,x* +a,x* +a,x* + a,x* +a,x+a, =0 where we have

an x to the 5™ power term, but no higher. Likewise, there is no general formula

for solving all 6" degree polynomial equations, equations that look like



a,x® +a,x° +a,x* +a,x% +a,x2 +a,x+a, =0 where there is an x to the 6" power term,
but no higher. And more generally, for n>5 there is no convenient formula for

solving all equations of the form a x" +a, ;X" +a, ;X" +...+a,x* +ax+a,=0.

Those who have successfully completed a basic algebra course will undoubtedly

b ++/b? —4ac

have seen the quadratic formula, x=— 5 , for solving polynomial
a

equations of degree 2 such as ax* +bx+c=0, but once we get to powers of 5 or
larger in our equation, no such general formula exists. Note, however, that
formulas do exist for solving cubic polynomial equations and polynomial
equations of degree 4, but because of their complexity, they are rarely taught in

basic algebra courses.

Group theory has many important applications besides the one given above, and,
in particular, it is the mathematical tool of choice whenever symmetry or
permutations are involved. That not only makes it the mathematics of modern
particle physics where often all that physicists have to work with are symmetries
at the subatomic level, but also the mathematics behind Rubik's cube.
Additionally, once we give the algebraic definition of a group, we’ll see that many
of the things we study in mathematics are examples of groups, and consequently,
a single theorem about groups can apply to many, many different areas of
mathematics. Thus, my ultimate goal is to give you a sense of what a group is
within the context of mathematics and an understanding that examples of groups
are all around us. Any difficulties that arise in this first part will likely be due not
to the inherent difficulty of the subject, but rather to the fact that new concepts
and ideas are suddenly being thrust upon you. Nevertheless, persevere, and
you will be greatly rewarded. You will learn to see the world through new eyes,
and you will see a world filled with cycles and symmetry and endless

rearrangements of creation!



WHAT I8 A eDOUR?

What is a group? Well, that's a very good question! First and foremost, a group
is a collection of objects that satisfies a small list of algebraic properties. Also, in
mathematics we usually call any well-defined collection a set, and this term is
used for collections even in plain English such as when we talk about a set of
china. The word group can also refer in plain English to some kind of a collection,
but in mathematics we only use this word when our collection satisfies particular
algebraic properties. Thus, | guess the next thing to do is to explain what those

properties are!

The first property is called closure, and this is what it means. First, there has to
be something in our set, at least one element, because otherwise things are
going to be pretty boring if we are just looking at a totally empty set, a collection
of nothing. And second, given any two elements from our set (not necessarily
distinct from one another), there has to be a way of combining them in order to
get back something that is once again in our set. That's why this property is
called closure, because a set with such an operation defines a closed system. In
other words, combining any two elements together doesn’t take us anyplace
other than to just another element in our set. Furthermore, when we have a
closed operation that combines two elements to give us back something in our
original set, we call this a binary operation since binary means two and two
elements are being combined. When we are dealing with numbers from our
familiar number system, the most commonly encountered binary operations are
our familiar addition, subtraction, multiplication, and divison (+,—,-+). However, if
we are just talking about binary operations more abstractly, then we might use a
symbol like "+" to represent that operation, or we might also just use addition,

multiplication, or juxtaposition of elements in order to indicate a binary operation.



Consequently, if elements a and b are being combined, then it might be written
as axb or a+b or a-b or simply as ab.

The next property a group has to have is associativity, and that means that we
can group things with parentheses or other grouping symbols in any way we like
without changing the outcome. This property is usually stated in the form

(ax*b)xc=a=(b*c). This property holds, for example, for our usual addition or

multiplication of numbers.

The third property of a group is the existence of an identity element. What this
means is that we have an element in our set that acts either like the number 0
under addition or like the number 1 under multiplication. For instance, when you
add 0 to a number, you don’'t change that number’s identity, and when you
multiply a number by 1, again you don’t change that number’s identity. When
dealing with a group, some commonly used symbols for the identity element are

0,1, e, or even (). This latter symbol is commonly used in the free computer

program called GAP (Groups, Algorithms, & Programming) that we’ll talk about
later. The identity property is generally expressed by the equation exa=a=axe.

The fourth and final property of a group is the existence of inverses. In arithmetic,
an inverse is something which undoes what you just did. For example, to undo

adding 3 to something, you can just add -3, and to undo multiplying by 2, you

can follow that with a multiplication by 2*=1/2. Notice, too, that in addition
3+(-3)=0 and in multiplication 2-21=2%=1. In other words, in a group,

combining an element with its inverse always gives us back the identity.

Some very important groups have a fifth property called the commutative law that
is written as a*b=b+*a. In plain English, the word commute denotes something
traveling or moving around, and, thus, the commutative law (or property) says
that when we combine things, it doesn’t matter what order we write the elements

down in. We can move them around, if we want to, without changing the final



result. Additionally, when we know that a group is commutative, it is often
customary to use additive notation such as a+b=b+a. And furthermore, a
commutative group is also known as an abelian group. This name is in honor of
the Norwegian mathematician Niels Henrik Abel (1802-1829) who was one of the
founders of group theory. Notice that he didn't live very long, only 27 years.
Nonetheless, take a moment to honor his life by reading about him in the
Wikipedia. And who knows? Maybe future generations will honor your life by

reading about you in the Wikipedia long after you are gone!

Now let's look at a formal definition of a group that incorporates everything we've

been discussing.
Definition: A group is a nonempty set of objects G with a binary operation *
defined such that the following algebraic properties are present:

1. (closure) If a and b are elements of G, then a*b (read as either “a star b”
or “a times b”) is an element of G.

2. (associative law) If a, b, and ¢ are elements of G, then (a*b)*c=ax(b*c).

3. (existence of an identity element) There exists an element e in G such that if
a is any elementin G, the exa=a=ax*e.

4. (existence of inverses) If a is any element in G, then there exists an element
a* (a-inverse) in G such that a*a'=e=a"*a.

If, in addition to the above, the following fifth property is also satisfied, then we

call our group an abelian or commutative group.

5. (commutative law) If a and b are elements of G, then a*b=b=*a.

For convenience, mathematicians usually just write ab or a-b (instead of ax*b) if
we are talking about either groups in general or nonabelian groups in particular,
and we write a+b to denote the binary operation in an abelian or commutative

group. In our next chapter, we’ll look at some familiar examples of groups!
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The first examples of groups that we’ll give are those that we encounter in basic
arithmetic. In particular, the first example we’ll consider is the set of integers
under addition. Two things to notice here, though. First, we have to specify not
only a set of objects, but also the operation that will be used to combine those
objects. Thus, in this case the operation is just the usual addition that we do with
numbers, and the set of objects, the integers, is the set of those numbers that we
usually mark off for our scale on the number line. In other words,

{...-2,-1,0,1,2,...}={0,£1,+2,...} . We usually denote this set by a block letter z
written as Z={...,-2,-1,0,1,2,..}={0,+1,#2,...} . The origin of this notation is the

German word zahlen which means numbers.

So, to continue, the claim is that integers under the operation of addition, written

more formally as (Z,+), form a group. In this group, the identity element is O

since for any integer a we have that a+0=a=0+a, and the inverse of a is its
opposite, —a. Hence, for example, the inverse of 2 in this group is -2, and the
inverse of -2 is —(-2)=2 , and we can easily see that 2+(-2)=0 and
-2+[—~(-2)]=-2+2=0. Also, it's easy to convince ourselves that the sum of two
integers is an integer (closure) and that the associative law holds as in the case,
for example, of 3+(2+1) and (3+2)+1 . In the first instance we have
3+(2+1)=3+3=6, and in the second instance we have (3+2)+1=5+1=6, thus
verifying that 3+(2+1)=(3+2)+1. Hence, since we have a nonempty set along
with an operation for combining the elements of that set, and since this operation
exhibits closure, associativity, an identity element, and the existence of inverses,
it follows that (Z,+) is a group. Furthermore, it's an abelian or commutative
group since, as we know, it doesn’t matter what order we add these numbers in.

We always have that for any two integers a and b, a+b=b+a.



To see a set of ordinary numbers that do not form a group, we need look no

further than (Z,-), the integers under the operation of subtraction. To show that

this is not a group, it suffices to exhibit that the associative property is not always

valid under this operation. Thus, for example, consider 3—-(2-1) and (3-2)-1. If
we reduce the expression on the left, we get 3—-(2-1)=3-1=2, but if we reduce
the expression on the right, we get (3—-2)-1=1-1=0 which is different. Thus, the

associative law doesn’t hold in (Z,-), and this is not a group.

Some other examples of groups include (R*.), (Q.+), (Q-{0}.-), (R-{0},-)and

(R,+). Now let me explain some of the notation. The symbol R* stands for the
positive real numbers (the numbers on the number line that are greater than
zero), Q stands for the rational numbers (numbers that you can write as a ratio
of two integers), and R stands for the real numbers (all the numbers on the
familiar number line and so named because we think of them as the kinds of

numbers that describe the real world). Additionally, Q-{0} means all rational
numbers except for 0, and R-{0} means real numbers except for 0. And now
that we understand the notation, we can describe the groups listed above as:

R*,- ) = the set of positive real numbers under multiplication

. = the set of rational numbers under addition

Q,+

(Q+) =
e (Q-{0},) = the set of nonzero rational numbers under multiplication
(R-{0}

0}, ) = the set of nonzero real numbers under multiplication

Just from these few examples, you can probably get the idea that groups exist
throughout mathematics, and thus, any single theorem that we prove about
groups will apply to many different situations!
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Most of you probably learned about “clock arithmetic” in elementary school. It's
basically like ordinary addition of integers except that when you get to twelve,
you start over. For example, let's consider the image below.

The time shown on this clock is 3 o’clock. And if we add 9 hours to that, then we

get 12 o’clock. So far it's just like saying that 3+9=12. However, if we add 10

hours to 3 o’clock, then we don’t wind up with 13 o’clock. Instead, we start over

after 12 and wind up at 1 again. Hence, in clock arithmetic we say that 3+10=1,

and an easy way to compute this result is to first compute 3+10=13 and then
1, remainder 1

look at the remainder when we divide this result by 12, 12) 13. Thus,

with clock arithmetic we obtain results like the following:



3+1=4
3+2=5
3+3=6
3+4=7
3+5=8
3+6=9
3+7=10
3+8=11
3+9=12
3+10=1
3+11=2
3+12=3

Again, we can think of it in the sense that once we reach 12, everything just
wraps around back to the beginning. Also, observe that in clock arithmetic,
3+12=3 and 12+3=3. This means that 12 acts like the number 0, an identity
element, and hence, mathematicians find it more convenient to use a clock that

has 0 at the top instead of 12.

Consequently, our previous addition table now looks like the following:



3+1=4
3+2=5
3+3=6
3+4=7
3+5=8
3+6=9
3+7=10
3+8=11
3+9=0
3+10=1
3+11=2
3+0=3

Mathematically, we like to say that we are doing arithmetic with the set of
numbers {0,1,2,3,4,5,6,7,8,9,10,11}, and the addition is just like ordinary addition

except that when we add 1 to 11, we just wrap around back to 0. Also,
mathematicians call this type of clock arithmetic “addition modulo 12.”

Furthermore, the set {0,1,2,3,4,5,6,7,8,9,10,11} with addition modulo 12 gives us

another example of a group, and since this group wraps around in a cycle, we
call it a “cyclic group.” Additionally, since this group contains only a finite number
of elements, it is, in particular, a finite cyclic group, and we can generate the
entire group by repeatedly adding 1 to itself until we get back to 0 and then
adding 1 any further just causes the cycle to repeat. And lastly, there are two
common notations for this group called the integers modulo 12. We can denote it

either as Z,, (Z for integers) or as C,, (C for cyclic).

10



CYTLIC

In our last lesson we discussed clock arithmetic and how when we add the

numbers in the set {0,1,2,3,4,5,6,7,8,9,10,11} using clock arithmetic, then the results

eventually wrap around to the beginning, i.e. 0, and repeat themselves. At this
point, there are now several things that we should point out:
e The above set coupled with the clock arithmetic procedure for combining
elements gives a group that we can call either the integers modulo 12,
denoted by Z,,, or the cyclic group of 12 elements, denoted by C,, .

e We call the number of elements in a group the order of the group, and in

this case, C,, is a cyclic group of order 12.

e The first groups we looked at like the integers under addition, (Z,+), and
the positive real numbers under multiplication, (R*,-), are examples of

infinite groups (groups of infinite order, an infinite number of elements),
but Z,, (or C,) is an example of a finite group (a group of finite order, a
finite number of elements).

e All of the elements of the group Z,, can be generated by adding 1 to itself

over and over as indicated below.
1=1

1+1=2

1+1+1=3

1+1+1+1=4

1+1+1+1+1=5

1+1+1+1+1+1=6
1+1+1+1+1+1+1=7
1+1+1+1+1+1+1+1=8
1+1+1+1+1+1+1+1+1=9
1+1+1+1+1+1+1+1+1+1=10
1+1+1+1+1+1+1+1+1+1+1=11
1+1+1+1+1+1+1+1+1+1+1+1=0

11



We often like to express a group in terms of the products (or sums) of a
minimal set of elements whose products (or sums) will generate the entire
group. And in general, any such set of elements that can be used to
generate the entire group we simply call generators for the group.
Furthermore, even though 1 is the obvious choice for a generator for Z,,,

it's not the only single element that can generate this group. We can also
generate this group by adding 5 to itself over and over. Just remember,
though, that when we do addition modulo 12, the result is whatever the
remainder is when, first, we add the numbers together using regular
arithmetic and then, second, we divide by 12 to see what remainder we
get. This results in the following table that shows that every number in our
set {0,1,2,3,4,5,6,7,8,9,10,11} can be found by adding 5 to itself repeatedly.
5=5

5+5=10

5+5+5=3

5+5+5+5=8

5+5+5+5+5=1

5+5+5+5+5+5=6

5+5+5+5+5+5+5=11

5+5+5+5+5+5+5+5=4

5+54+5+5+5+5+5+5+5=9

5+54+5+5+5+5+5+5+5+5=2

54+54+5+5+5+5+5+5+5+5+5=7
5+5+5+5+5+5+5+5+5+5+5+5=0

For any counting number n we can talk about the group of integers

modulo n, Z,, which is essentially the same thing as the cyclic group of
ordern, C,.

Cycles appear everywhere in our lives, and that means that groups also

appear everywhere in our lives!

12



Symmetry is just a pattern that is repeated in some way, and when a pattern is
repeated, then there is always some movement or operation that can be
performed to transform one instance of the pattern into another instance. For

example, consider the picture below.

ts

vl

In this image you see a lot of mirror symmetry that is created by reflecting a

EEEE
Syomeiry ls overpithers/

picture across either a vertical or horizontal axis. Likewise, the human body itself
has bilateral symmetry in that the right side of our body is just the mirror image of
the left side reflected across a vertical line. However, whether we are looking at

our own bilateral symmetry or the mirror images above, in each case we can see

13



patterns that are repeated. Now let’'s look at another example, the rotational

symmetry of an equilateral triangle (a triangle with three equal sides).

Notice that if we rotate this triangle about its center approximately 45° in the

clockwise direction, then it doesn’t look the same as what we started with.

However, if we rotate it clockwise either 120° or 240°, then it will look exactly the
same as our beginning triangle. This is the type of rotation that reveals a

symmetry within our triangle.

14



To better see what's going on when we do this rotation, we can number the

vertices of the triangle and follow their motion.

1

3 2

If we let r represent a clockwise rotation of 120° about the center, then the

diagram below shows the effect on the vertices of the triangle.

15
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3
3 % 2 1

If we rotate our original triangle 240° clockwise, then that would be like doing r

twice, and so we’ll write that as r?.

2
r2 /\
3 2 1 3

3

16



And finally, if we do a clockwise rotation through 360°, then the end result is just
as if we hadn’t done any rotation at all. Changing nothing, doing no rotation at all,

corresponds to the identity element which we traditionally represent by the letter

e. Hence, regarding our rotations, we basically have e=r2.

v

Thus, what has happened is that the rotational symmetry of the equilateral

triangle has led us to discover a geometric representation of the cyclic group of

order 3. The distinct elements of this group are {e,r,r’}.

We could likewise examine the rotational symmetry of a square to discover a
cyclic group of order 4 or a regular pentagon (a pentagon with 5 sides of equal
length) to discover a cyclic group of order 5. The most important point to be
made, however, is that wherever symmetry is present, there is going to also be
present a mathematical group whose elements consist of those operations that

appear to leave the underlying object unchanged.

17



MULTIPLICATION TARLES

Let’s go back and revisit Z,, the integers modulo 3. The elements of this group
are given by the set {0,1,2}, and the operation is ordinary addition with the

restriction that anything larger than 2 has to wrap around in order to give us a
final result of either 0, 1, or 2. Also, since this group has only three elements, we
can easily construct an addition table for this group. However, note that the
generic term in group theory for any such table is “multiplication table.” Thus,

here is the “multiplication table” for the integers modulo 3.

N = Of +
N = oo
oN =~
-~ o NN

From this table, we can easily see the various results of doing addition modulo 3
such as 1+1=2, 1+2=0, and 2+2=1. Also, below we have highlighted in orange
in our table the diagonal going from upper left to lower right, we’'ve highlighted in

green a lower triangle, and we’ve highlighted in yellow an upper triangle.

N = O] +
N - o]o
onN ==~
-~ o NN

Notice that the lower green triangle looks like the mirror image of the upper
yellow triangle. This is what happens in a multiplication table whenever the
group is commutative (abelian). Hence, it does not matter what order the

elements are added in. Thus, for example, 1+2=0=2+1.

Now let’s look at the multiplication table for the cyclic group we found in the last

chapter that represented the rotational symmetry of an equilateral triangle.

18



Notice how similar this table looks to the one we constructed for Z,. In fact, if we

make the substitutions indicated below, then we can realize that the two tables

are identical except for the symbols used to represent our elements.

Furthermore, whenever two groups can be represented by multiplication (or
addition) tables that are identical except for the symbols used, then we say that
the two groups are isomorphic. That word means “equal shape,” and most of the
time we won’t make any distinction between groups that are isomorphic. In

particular, we will normally treat the integers modulo 3, Z, ={0,1,2}; our rotation
group for the equilateral triangle, R:{e,r,rz}; and the cyclic group of order 3,

C, ={e,a,a2}, as identical since they are all isomorphic to one another. They are

all simply different ways to represent a finite cycle of length 3.

19
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Previously, we explored the symmetry of an equilateral triangle by labeling the
vertices 1, 2, and 3, and we then followed what happened as we rotated our

triangle clockwise through angles that are integer multiples of 120°. The pictures

below illustrate the results.

v

20
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Notice that the end results can also be described in terms of permutations of the
numbers 1, 2, and 3 where by a permutation we mean an arrangement in which
order makes a difference. Thus, starting at the top of our triangle and moving

clockwise, we could say that the first rotation through 120° (r) changes the
arrangement 123 to 312, while a rotation of 240° (r?) from our starting point

changes 123 to 231. Likewise, a rotation of 360° (r®) leaves 123 as 123, and

thus, it is equivalent to e, the identity element.

A common way to indicate a permutation is by drawing arrows to show what

each object or number changes to. For example, in our first rotation through 120°

(r) we often say that 1 goes to 2, 2 goes to 3, and 3 goes to 1, and we can write
1 2 3

the permutation like this, |4 | | |. However, even though we commonly say 1
2 31

goes to 2 and so one, we actually mean something a little different. In particular,

think of the vertex at the top of our triangle as position 1, the vertex at the bottom

right as position 2, and the vertex at the bottom left as position 3. Then what we

21



1 2 3
really mean to say by |+ { {|is that the number currently in position 1 is
2 31

moved to position 2, the number currently in position 2 is moved to position 3,

and the number currently in position 3 is moved to position 1

position 1

1

3 2

position 3 position 2

With that cleared up, we can now express our three rotations as the following
permutations:

1 23 123 123
e=r’=/d L | r=d L I Pl L
1 23 2 31 31 2

However, there is a more compact notation for these permutations that is even
better than what we’ve used above, and this notation is called cycle notation. For

example, in cycle notation we would write the permutation corresponding to

22



1 2 3
r=/4 | {]as(123), and as before we usually read this as “1 goes to 2, 2
2 31

goes to 3, and 3 goes to 1” event though we really mean “the number currently in
position 1 is moved to position 2, the number currently in position 2 is moved to

position 3, and the number currently in position 3 is moved to position 1.”

1 2 3
In a similar way, we can write the permutation corresponding to r?={{ | || as
3 1 2

(13,2) in order to say that 1 goes to 3, 3 goes to 2, and 2 goes back to 1. And

1 2 3
likewise, we could write the permutation corresponding to e=r®={{ | || as
1 2 3

(L,1)(2,2)(3,3) for 1 goes to 1, 2 goes to 2, and 3 goes to 3. However, this looks
unnecessarily complicated, and it is more often abbreviated as (1)(2)(3). But we

normally don't stop there. We abbreviate it even further! In particular, if we have

1 2 3
a permutation like [{ | || where 1 goes to 1, 2 goes to 3, and 3 goes to 2,
1 3 2

then instead of writing that as (1)(2,3), we usually just shorten that to (2,3).

Furthermore, if the permutation is the identity permutation which changes nothing,

then it is quite common these days to write it simply as e=( ), a pair of

parentheses with nothing inside. Thus, (1)(2)(3)=e=( ).

23



MULTIPLYING PERMUTATIONS

Let's suppose that we have just four objects that we’ll label 1, 2, 3, and 4, and
let's also consider some permutations of these objects. In particular, let's start
with (1,2) and (2,3,4). We call the first permutation a cycle of length 2 or a 2-

cycle because it moves just two of the objects. It just moves 1 to 2 and 2 back to
1, and because the positions of only two objects are being switched, we also call

a 2-cycle a transposition. On the other hand, (2,3,4) is a cycle of length 3 or a 3-

cycle since it moves three objects. Equivalently, we could say that it is a 3-cycle
since if we keep repeating this cycle, then by the third time that we move what is
in position 2 to position 3, what's in position 3 to position 4, and what'’s in position
4 to position 2, we’'ll be right back where we started! Thus, repeating the cycle

(2,3,4) three times is equivalent to the identity element, doing no change at all.

At this point you might realize that what we are really talking about is multiplying
one permutation by another by simply following one by the other. For example,

let's now talk more formally about what we mean by (1,2)-(2,3,4), the product of
(L,2) and (2,3,4). The first things you need to know are:

e Some mathematicians do this multiplication from left to right while others
do it from right to left.

e Changing which direction you multiply in will often make a difference in the
result because multiplication of permutations is generally not commutative,
i.e. the order in which you multiply the permutations generally makes a
difference.

e We'll always multiply from left to right because that is the convention that
is followed in some of the useful software tools like GAP (Groups,
Algorithms, and Programming), and it is also the convention that is
generally followed when describing moves for Rubik’s cube.
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Now, to determine the product (1,2)-(2,3,4), let's revert to our earlier notation,

1 2 3 4 1 2 3 4
2=+ L 4 dland (2,34)=1 { 4 {|. If we do our multiplication by first
2 1 3 4 1 3 4 2
1 2 3 4 1 2 3 4
applying the permutation | | | || followed by | | | {|, then we can
2 1 3 4 1 3 4 2

say that the first permutation sends what's in position 1 to position 2 and the
second permutation sends what’s in position 2 to position 3. Therefore, in our
abbreviated form, we say that 1 goes to 3. Now the question is where does 3 go?
Well, the first permutation fixes 3 at 3, but the second permutation sends 3 to 4.
Therefore, the end result is that 3 goes to 4. Next, we need to track what
happens to 4. The first permutation sends 4 to 4, but the second one sends 4 to
2. Therefore, when the first permutation is followed by the second, 4 goes to 2.
And now, we consider the movement of 2. The first permutation sends 2 to 1
while the second sends 1 to 1. Therefore, in the product, 2 goes to 1. Thus, we
can now write the product of these permutations as follows:

1 2 3 4Y(1 2 3 4) (1 2 3 4
N N N N N E IR AR N
2 1 3 4)(1 3 4 2) (31 4 2

In cycle notation, though, this would look like:
@,2)-(2,3,4)=(1,3,4,2)

Also, it's very easy to figure this out as we go when we write this in cycle notation.

For example, consider:
1,2)-(2,3,4) = (1,3,4,2)

Going from left to right, we see 1 goes to 2 and then 2 goes to 3, so in the

product we have 1 goes to 3:
1,2)-(2,3,4)=(137)
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Next, we start with 3, and again doing our permutations from left to right we have
that 3 goes to 3 followed by 3 goes to 4, and hence, in the product 3 goes to 4:
1,2)-(2,3,4)=(1,3,4,?)

Now we begin again with 4, and we can see that 4 goes to 4 followed by 4 goes

to 2, so in the product we have 4 goes to 2:
1,2)-(2,3,4)=(1,3,4,2,7)

And lastly, 2 goes to 1 followed by 1 goes to 1, so in the product we have 2 goes

to 1:
1,2)-(2,3,4)=(1,3,4,2)

And that's it! The product of our 2-cycle with a 3-cycle results, in this case, in the
4-cycle (1,3,4,2). Notice, too, that if we write our multiplication in the opposite

order, then we get a different result:
(2,3,4)(1,2)=(2,3,4,1)

We could express our logic for this result in symbolic form by letting " —" mean
“goes to” and by letting "=" mean “implies.” Thus:

253 and 353 = 2-53

3—4 and 454 = 34
452 and 251 = 41
151 and 152 = 153

There are now several remarks we can make. First, notice that the cycle (2,3,4,1)
can also be written as (3,4,1,2) or (4,1,2,3) or (1,2,3,4). In other words, it doesn’t

matter which number or object we put first.

Second, notice that (2,3,4)(1,2)=(2,3,41)#(1,3,4,2)=(1,2)(2,3,4) . Hence, the
multiplication is not commutative. The order in which we multiply makes a

difference.
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Third, notice that the inverse of (2,3,4,1) is given by just writing this cycle in

reverse order as (1,4,3,2).

Lastly, if we have two cycles such as (1,2) and (3,4) which have no elements in

common, then these cycles will commute with one another. In other words,

L2)3,4)=(3,4)12). And furthermore, when two cycles have no elements in

common, we say that they are disjoint cycles.

And finally, for practice, make sure you now understand how to get each of the
following products:

e (1L,2)1,3)=(L2,3)

e (123)(B2)=M)E)=()

e (12)(3,4,5)=(12)(345)=(345)2)
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PERMUTATION @ROUPS

Let’s suppose that we now have just three objects that we’ll label 1, 2, and 3, and

let's start with the permutations (1,2) and (1,2,3). If, next, we look at all finite

products that can be formed from these permutations, then for now take my word
that the set of all such distinct products will be a group of permutations of order 6,
or, in other words, a group containing 6 elements. We can list those elements as

follows:
()=M@E) =123)°=(12)°
@2,3)
1,3,2) =(1,2,3)
€2)
1,3) = (1,2)(1,2,3)

(2,3)=(1,2)(1,2,3)* =(1,2)(1,3,2)

Notice, too, that (1,2,3> means (1,2,3)-(1,2,3) while (12,3 means
L2,3)-(1,2,3)-(1,2,3). Also, since our group can be created by looking at all the
distinct finite products we can create by multiplying (1,2) and (1,2,3) together, we

call (1,2) and (1,2,3) generators of our group.

Now let’s revisit the multiplication table for the cyclic group that resulted from
rotating an equilateral triangle clockwise through angles that are integer multiples
of 120°.
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3
r=(1,2,3 /\
3 2 2 1

The resulting multiplication table is:

The elements of this group are e, r, and r?, and notice that each row in our table
of products also represents a different permutation of these three elements. We
won'’t do a formal proof at this point, but this should be enough of a clue for you
to believe that given any group, we can associate each element of that group
with a permutation of all the elements of that group. Hence (and this is very

important), every group can be represented as a group of permutations of some

set of objects! We will focus primarily on finite groups, and in that case we can

say that every finite group of n elements can be expressed in terms of a group of

permutations of those n elements.
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SROLP ACTI0NS

Let’s now revisit once again our by now very familiar cyclic group of order 3 that
we get when we examine rotations of an equilateral triangle about its center
through angles that are integer multiples of 120°. When we did this earlier, we

identified the following distinct rotations along with the following multiplication

table.

3
r=(1,2,9 /\
2 2 1
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2
r? =(13,2) /\
3 2 3

1

However, since our rotations also result in permutations of the numbers, 1, 2,
and 3, we can also express our multiplication table in terms of permutations that

are written in cycle notation. In other words,
D@E)=( )

@,2,3)

r? (1.3.2)

e

r

This, in turn, gives us the following multiplication table:

O (123)  (1,32)
() () (123) (1.32)
(1,2,3) (1,2,3) (1,3,2) ()

(1,32) | (1,3,2) () (1,2,3)

Now let’s briefly review what is happening here. First, we could say that we have

a set of objects that we’ll designate as A={1,2,3}, and then, second, we have a
group of permutations that we’ll call G ={( ),(1,2,3),(1,3, 2)} that interacts with the

set A by producing different arrangements of the elements in A. When this
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happens, when we have a group of permutations that produces different

arrangements of the elements of a set, we say that the group acts upon the set

and we call this a group action. For example, think of our set A={1,2,3} as our

labels for the vertices of an equilateral triangle, and let our permutation group G

be the cyclic group generated by r =(1,2,3), the clockwise rotation of our triangle

120° about its center. Then this gives us a very concrete example of a
permutation group physically acting upon the triangle (or the labels for the

vertices of the triangle, if you prefer).

3
r=(1,2,3 /\
3 2 2 1

Now this is not an isolated occurrence in group theory. It is, in fact, the very

norm because recall that given any group, we can associate each element of that

group with a permutation of the group elements. Consequently, every group can

be expressed as a permutation group, and every group element can be thought

of as a permutation that acts upon the very elements of the group that it belongs

to. The bottom line is that a very natural way to think of all groups is in terms of
permutations being applied to some set of objects. Thus, always ask yourself

what the permutations are and what objects are being permuted.
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Rubik’s cube is a fascinating puzzle that was invented in 1974 by a Hungarian
sculptor and professor of architecture named Ernds Rubik, but it wasn’t until
1980 that the puzzle began to be marketed in the United States by Ideal Toy
Corporation and, subsequently, became widely popular. The puzzle itself is
deceptively simple in appearance. You have a cube with six faces, and each
face of the cube is divided into several smaller cubes called cubelets, and then
each colored face of a cubelet is called a facelet. In all, Rubik’'s cube contains 26
cublets and 54 facelets. The faces themselves can be rotated in several
directions in order to create an almost unfathomable number of permutations of
the colored squares on each little cubelet, and many a person has spent many
an hour trying to figure out how to unscramble their cube only to simply take it

apart with a screwdriver and then reassemble it!

When we look at the cube, we quickly realize that there are six basic moves that
we can perform on the cube, and we’ll denote these moves by the letters R, L, U,
D, F, and B. These moves represent making quarter-turns in the clockwise

direction, respectively, of the right face, left face, up face, down face, front face,
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and back face of the cube. Some people, however, like to write these letters in

the order BFUDLR so that it will appropriately be pronounced “befuddler.”

If we now want to rotate, for example, the right face of the cube two quarter-turns
clockwise, then that move is usually denoted either by R? or 2R or R2. Similarly,
we’'ll use R® or 3R or R3 to indicate that one should turn the right face of the

cube clockwise through three quarter-turns. Notice also that R* (or 4R or R4) is
the same as doing nothing at all. Furthermore, if we want to turn the right face a

guarter-turn in the counterclockwise direction, then the usual notations for that

are either R™ or R’ or Ri. Also, when we are specifying a sequence of moves to

be performed on the cube, the custom is to specify those moves in order from left

to right. Thus, R'DR means rotate the right face a quarter-turn counterclockwise,
then rotate the down face a quarter-turn clockwise, and finally, rotate the right
face a quarter-turn clockwise. Also, clockwise and counterclockwise are defined
with respect to what we would see if we were looking at a particular face straight

on.

As you might realize, the mathematics of permutations has an awful lot to do with
helping us understand the structure of Rubik’s cube, and, in fact, if we look at all
the distinct configurations of the cube that are possible by performing the moves
R, L, U, D, F, or B, then it can been proven that 43,252,003,274,489,856,000
permutations are possible. Furthermore, the moves R, L, U, D, F, and B
generate a permutation group of this size. Also, notice that if we let A be the set
consisting of the 54 facelets of Rubik’s cube and if we let G denote the group of
43,252,003,274,489,856,000 permutations that is generated by the moves R, L, U, D,
F, and B, then Rubik’s cube offers us a classic example of a set of objects that is
acted upon by a group. The Rubik’s cube group acts upon the cube by creating

various permutations of its 54 facelets.

Immediately following this brief introduction to Rubik’s cube are instructions for

solving the cube, and it is highly recommended that you master this solution
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because, as we shall see later on, Rubik’s cube illustrates in very concrete ways
many of the important tools and concepts of group theory. Also, any scrambled
Rubik’s cube can, in theory, be restored to its original configuration in 20 moves
or less. This number 20 is known by mathematicians and cube enthusiasts as

God’s number!
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SOLUTION s O

THE ULTIMATE
BRAIN TEASER

Twist it & turn it to line up the same
colors on all sides. Once you solve

it, challenge yourself to beat your
1 ‘ best time!




' How each step works

B -Twist the Back Face a
quarter turn clockwise

Ri - Twist the Right Face a quarter
turn counter-clockwise

-

turns

/ Example

Each step can be used to solve up to FOUR pieces if there
are none solved when you start the step. Please note that
these illustrations display a sample of a situation on your
cube for ONE of the possible FOUR pieces needing to be
solved. In many cases, you will need to rotate the cubeto a
new starting face (with red, orange, yellow or white center
square) and repeat the instructions in order to place/rotate
all of the pieces in that step before moving on. The end result
will only come AFTER all four sides of the cube have been
through that step’s sequence and all the pieces are in their
proper location and oriented properly to match the surround-
ing center square colors. As such, you may have to repeat
the same step a few times with different sides as the starting
face until all the pieces are solved.

Step 1
Solve the Upper Green Cross | |

HINT: To solve the green cross, you have to solve each
green edge piece on your own, one-by-one. The tricky
partis not messing up the ones you've already solved.
First solve the red-green edge, then the white-green
edge, then the orange-green edge, then the blue-green
edge. You have to figure out this part for yourself. Should
you ever have an edge piece in the correct place but
flipped the wrong way, use this step to flip it without
affecting the other three green edges. Just hold the
cube with the piece in the upper-right position as in the
picture below, and do the sequence Ri ® U e Fi e Ui. The
edge piece will now be solved, and you can work on the
next edge piece.

Before




1
Step 2
Solve the Green Corners

HINT: Find a corner piece in the bottom layer that
belongs on top. Turn the bottom layer until that piece is
directly below its home in the top layer. Hold the cube
with the piece at the lower-front-right and its home at
the upper-front-right, as in the picture, and then do the
sequence RieDieReD, 1,3, or 5times until that corner
is solved. If you find a corner piece that's already in the
top layer but it’s in the wrong spot or flipped the wrong
way, just hold the cube with that piece in the upper
front right position, and do Rie Di® R ¢ D once. Now
the piece is in the bottom layer, and you can solve it as
described above.

Before

(RieDieReD)
x1,30rb

Step 3
Solve the Middle Layer Edges

HINT: Now flip the cube over so green is on the bottom. !

Try to find the red-yellow edge piece. If it's in the top
layer, turn it until the edge matches one of the pictures
below. Then do the corresponding sequence to solve it.
If the red-yellow edge piece is somewhere in the middle
layer, but it's in the wrong place or flipped the wrong
way, hold the cube so that the red-yellow edge is in

the front-right position, and do either sequence once.
(This may require you to rotate the cube to a new face).
After the move, the piece is in the top layer, and you can
solve it as described above. Repeat this for the other 3
middle-layer edges.

UeReUisRi UieFieUsF
UieFioUeF U'e R e UieRi

1
Step 4
Solve the Upper Blue Cross

HINT: Turn the top layer until the edges match one of
these pictures. If you do the sequence below once and
you still don't have a blue cross, then repeat this step
until you do. It doesn’t matter which face you start with.
Note: In this step, there will be other blue pieces show-
ing on your cube that do not appear in these diagrams.




| i .. | I L
Step 5 .| | |Step 6 '_ | Step 7

Solve the Top Edges ' Solve the Top Corners Solve the Top Corners

HINT: Hold the cube with red in front. Turn the top HINT: Find a corner piece that's in the right place, - HINT: Hold the cube with red in front. Keep turning the

layer until the red and blue edge piece is solved as in and hold the cube with that piece above your right top layer until the upper-front-right corner needs to be

the picture, and then repeat the sequence below until thumb. In the picture, this piece is the blue, yel- flipped, to have blue on top, like in the picture. Do the

the yellow and blue edge piece is also solved, on the low, and red piece. Don't turn the top layer at all, sequence below either 2 or 4 times to flip the corner so

right side. Now turn the whole cube so that white is the because you will mess up the edges that you just that blue is on top. Note: As you work through this step,

“Front” face. If the top white edge isnt solved, just do solved in step 5. Now do the sequence below once lower layer colors may become scrambled. Don't worry,

the sequence once more, followed by “U” to position all or twice to put the other 3 corners into the right just keep going! With red still in front, keep turning the

the edges properly. places. If you can't find a corner piece in the right top layer and do the sequence again whenever needed
place, just do the sequence below once before you to flip the upper-front-right corner piece. When all the

_ Before After start this step. corners have been flipped, just turn the layer to solve the

cube. Congratulations, you've done it!
= Before

ReUsRisUeReUeUsRi  [] eReUieLisUeRisUisl H (Ri* Di+ReD)
i x2ord
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About your Rubik’s Cube

RUBIK’S Cube is just one of a series of exciting puzzles
designed to challenge your mind and capture your imagi-
nation. With amazing movement of color and pieces,
each puzzle offers an intricate challenge that is hard

to put down. And just in case it has you stumped, this
7-Step Solution Guide will help you master the challenge.

RUBIK Fact: RUBIK'S Cube was invented by Erno Rubik, a
Hungarian Professor of Architecture and Design. Within
one year of its launch in 1980, it became the fastest-
selling puzzle the world has ever known. Rubik’s Cube

is now the best-selling puzzle ever, with over 250 million
cubes sold.

RUBIK Fact: Most cubes can be solved in only 17 moves
with the aid of a computer, and theoretically there is no
cube that requires more than 20 twists to solve. Some
people can solve the cube in under 45 moves from any
scrambled position; and a few can even solve the cube
blindfolded!

.The 7-Step Solution Guid

Each step involves a sequence of twists of the
cube to move a particular square. To solve the cube,
just repeat the steps!

Each face of the cube is assigned a letter (shown
below). Each step is made up of a sequence of twists (a
one quarter-turn of the face of the cube). To complete
the sequence for each step, twist one face of the cube,
then twist the next face, and so on, for the complete
sequence. The letter ‘i means inverse, or counter-
clockwise. Before you start each move, be sure to place
your thumbs on the F side of the cube, as shown in the
illustration. This will ensure that your cube is properly
oriented to execute the move.

Turn clockwise Important!

R - Right Face To turn a face
L - Left Face clockwise,

B - Back Face imagine you
D - Down Face are facing that
F - Front Face side of the

U - Upper Face cube.

?7i - Inverse
(turn Counter-
clockwise)




Billions of Combhinations, |
One Solution!

RUBIK'S® Cube is the incredibly addictive, multi-
dimensional challenge that has fascinated puzzle fans
around the world. Over 250 million cubes have been sold and
atleast one in every five people in the world has twisted,
jumbled and enjoyed this immensely popular puzzle.

RUBIK'S® Cube has been called “the perfect puzzle” and
“the best puzzle ever.” With a few turns, you mix up its small
colored cubes. Now match the cubes back up again to make
every side a solid color. You can solve RUBIK'S® Cube from
any starting point and from any topsy-turvy arrangement of
colors. With the right twists, anybody can do it, and with

43 quintillion (43,252,003,274,489,856,000) combinations, no
challenge is ever the same!

RUBIK's Facts: 22.95 seconds! That's how long a high school
student from Los Angeles took to unscramble the cube and
win the Budapest world championship in 1982.

Dan Knights from the USA won the 2003 Rubik's Games
Championship held in Toronto, Canada. His average time
was just 20 seconds.

The Original Cube is part of an exciting series of puzzles
designed to challenge your mind and capture your
imagination. Twist and turn the colors & pieces and you'll

find an intricate challenge that you won't want to put down.

We will be happy to hear your questions or comments about this game.
Please write to: Hasbro Games, Consumer Affairs Dept., P.0. Box

200, Pawtucket, R1 02862 USA. Tel: 888-836-7025 (toll free). European
consumers please write to: Hasbro UK Ltd., Hasbro Consumer Affairs,
P.0. BOX 43, Caswell Way, Newport, Wales, NP19 4YD, or telephone our
helpline on 00 800 2242 7276.

©RUBIK'S®. All Rights Reserved. RUBIK'S® and RUBIK'S® CUBE are
registered trademarks of Seven Towns Ltd. Used under license. Method:
©Dan Knights 2003. Manufactured for and distributed by Hasbro. The
HASBRO and MB names and logos are trademarks of Hasbro.©2010
Hasbro, Pawtucket, RI 02862. All Rights Reserved. TM & ® denote U.S.
trademarks.

GAMES @

hasbrogames.com k

PROOF OF PURCHASE
MB 16963
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INSTALLING @aP

The acronym “GAP” stands for “Groups, Algorithms, and Programming,” and it's
a free software program that can be used in the study of finite groups as well as
other aspects of abstract algebra. The best thing about it is that it's free and it's
also very useful. The worst thing is that the documentation is not always very
clear. Consequently, in the next chapter, “How to Use GAP (Part 1),” | give
examples of the coding that must be entered in order to do several of basic
things in group theory that we’ve talked about so far such as finding the size and
the elements of a group. In this chapter, though, | just try to show you how to

download and install GAP software on a Windows machine.

You can begin by going to http://www.gap-system.org/, and there you will see
something similar to the image below..

’ =5 Google Mews % V[ e dochentan,com meGAP System for Computation X W | = =[x

€« C' [ www.gap-syster.org ool =

Main Branches
Downloads Installation Owerview Data Libraries Packages Docur ion Contacts FAQ GAP 3

Find us on GitHub

Welcome to
Sitemap
Navigation Tree GAP - Groups, Algorithms, Programming -
. a System for Computational Discrete Algebra
Start *
Downloads
Installation The current version 1s GAP 4 84 released on 04 June 2016
Orwerview
Diata Libraties
Packsges What is GAP?
Documentation
Contacts GAP 15 a system for computational discrete algebra, with particular emphasis on Computational Group Theory. GAF provides a
FAQ programming language, a lbrary of thousands of finctions inplementing algebraic algorthms written i the GAP language as well as large
GAP S

Gal3 data libraries of algebraic objects. See also the owerview and the description of the mathematical capabilities. GAP is used in research and
teaching for studying groups and their representations, rings, vector spaces, algebras, combinatorial structures, and more. The system,
mcluding source, is distributed feely. You can study and easily modify or extend it for your special use.

Tweets @pap_system L X
In July 2008, GAP was awarded the ACMISIGSAM Richard Dimick Jenks Memorial Prize for Excellence in Saftware Engincering

@ gap-system.ory appited to Computer Algebra

Mew @gap_system questionon

@Stzekiath: Gaing Beyond The How to obtain GAP?
Small Groups Librany
[path staekesehanoe

alhsackesshan
s start
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Next, click on the “Downloads” link on the left, find the file that fits your operating

system, and once it's downloaded, double-click on it to install it.

’ =5 Google Mews xY [ v docbenton.com x,‘mGAP +.8.4 x4 ¥ = =[x

<« C [ www gap-system.org/Releases/index html ol =

Main Branches

Downloads Installation Owerview Diata Libraries Packages Documentation Contacts FAQ GAP 3

Find us on GitHub GAP 4.8.4
Sitemap This release replaces GAP 4.8.3 (see the overview of changes between GAP 4.8.4 and GAP 4.2.3 here).
Navigation Tree Linux and OS X
Start Diownload one of the archives below, unpack it and run . fconfigure: walke inthe unpacked directory. Then change to the pky subdirectory

Downloads and call .. /bin/BuildPackages.sh to run the script which will build most of the packages that require compilation (provided sufficiently

GAP 484 (June 2016) many libraries, headers and tools are available). For further details, see here. Expert users can find the description of all installation options in the

GAP 433 (March 2016) DYSTALL file

GAP 483 (February 301

GAP 479 (Hovember 3015) gapdrBpd_2016_08_04-12 41 tar gz 309 MB md3: 0£53315a06293c47610db986eb02559

GAP 478 (June 2015) gapdr8pd_2016_06_04-12_41 tar bzl 256 MB md5: 0£25e4 2{52847033384825549a9743ed

AP AT (Febray 1L gapdripd_2016_06_04-12_41 sip 330ME  md3 a7c6eTeesee0]d366666eb4anza36 8]

GAP 476 (November 2017

GAP 475 May 014 Tou may also consider one of the alternative distributions. Mote, however, that these are updated independently and may not et provide the

AP 47 AF ey 01 latest GAP release

AP 473 (February 201

GAF 473 (December 2013) Windows

GAP 465 (July 2013

GAP 464 (WMay 2017) TWe strengly recommend to use the .exe mstaller which contains binanes for GAP and some packages and provides the standard mstallation

GAF 463 (March 2013) procedure. MNote that the path to the GAP dwectory should not contam spaces. For example, you may mstall it m C:\gapdrs (default),

GAF 463 (February 201 D:\gap4rsp3 of C:\Math\GAP\gap4rs, but wou must not install it in a directory named lke C:\Program files\gap4rg or

GAP 457 (December 2013) C:\UsersialiceiMy Docuwents)gapdrs eto

CAP 456 (September 017

GAP 4,55 (July 201 gapdrBpd 2016 _06_04-12 41 exe 412 1B md5: c6042bE3dbaae7386985b2286c6054f -

After GAP has been installed, it will appear in your list of programs as follows if

you have installed the Windows version.
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it will take a minute or so to load the library and

all the subroutine packages. When done, though, this or something similar is

what you will see.

38



B ' - =[]

! Fle Edt Wew Insert Format Tools Table Window Help Adobe PDF  Acrohat Comments Tvpe a question

- [re] e | = g

i A4 Normal + Cente v TimesMewRoman » 12 « | B 7 U % = 5

: Getting Started - x

D‘-’j Office Online

2

Connect to Microsoft Office
Cnline

ek the latest news about using
wiord

Automatically update this lisk
From the web

Search for:

Example: "Print more than one copy”

Open
directproducts-answers.doc
directproducks-practics doc
DIRECT PRODUCTS, doc

symmetricgroups-answers.dac
| Mare,..

_] Create anew document. ..

éﬁﬂ.zﬁﬂ(
iDraw~ g | Autoshapes~ N\ W [1.O A il <l & (8] (& | &0~ o - A -

The GAP program, as you might expect, is driven by syntax which means that all

the commands must be entered in just the right way. For a program like this, I've
found that the best way to learn it is to have good examples you can copy and
follow, and that's what | present in the chapter “How to Use GAP (Part 1)” that
follows this one. There is also online documentation, but it is not always easy to
find the examples you need or even to follow the ones you find. To get to the

documentation, though, click on the link on the left that says, “Documentation.”
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From this page, the links to “Tutorial” and “Reference Manual” under “Manuals”
are both pretty good. The manual “Abstract Algebra with GAP” is also excellent.
And anything else you need to know, you can probably figure out from perusing
the webpage for GAP and from doing Internet searches. Enjoy!

And in closing, here is a quick example of me using GAP to find the group

generated by a couple of permutations and to also find the size of the group and
the elements of the group.

gap:

F— "
r .
I-.."—'l _I_J

gap} g
Group

gap= 5

gap> Elements(g);

[ 0, o
Japs=
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eAP (PART 1)

In my experience, the best way to learn how to use a program like GAP is by
learning the commands that help you do those things that you'll probably need or
want to do most often. Below is your first set of introductory commands for using
GAP software. After launching GAP, | recommend that you type in each
command exactly as written and see what happens when you hit the return key.
GAP is case-sensitive, and that means that if I've written something below with a
capital letter, then you need to also write it with a capital letter. On the other
hand, sometimes (but not always!) parentheses can be substituted for brackets.

Notice, too, that just about every command ends with a semicolon.
1. How can I redisplay the previous command in order to edit it?
Press down on the control key and then also press p. In other words, “Ctrl p”.
2. If the program gets in a loop and shows you the prompt “brk>" instead of
“gap>", how can | exit the loop?

Press down on the control key and then also press d. In other words, “Ctrl d”.
3. How can | exit the program?

Either click on the “close” box for the window, or type “quit;” and press

“Enter.”
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4. How do I find the inverse of a permutation?

gap> a:=(1,2,3,4);
(1,2,3,4)

gap> a™-1;
(1,4,3,2)

5. How can | multiply permutations and raise permutations to powers?

gap> (1,2)*(1,2,3);
(1,3)

gap> (1,2,3)"2;
(1,3,2)

gap> (1,2,3)"-1;
(1,3,2)

gap> (1,2,3)*-2;
(1,2,3)

gap> a:=(1,2,3);
(1,2,3)

gap> b:=(1,2);
(1.2)

gap> a*b;
(2,3)
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gap> a’2;
(1,3,2)

gap> a-2;
(1,2,3)

gap> a’3;

0
gap> a”-3;

0

gap> (a*b)"2;
0

gap> (a*b)"3;
(2,3)

. How can | create a group from permutations, find the size of the group, and

find the elements in the group?

gap> a:=(1,2);
(1.2)

gap> b:=(1,2,3);
(1,2,3)

gap> gl:=Group(a,b);
Group([ (1,2), (1,2,3)])
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gap> Size(g1);
6

gap> Elements(gl);
[0.(23), (1.2), (1,2,3), (1.3,2), (1,3) ]

gap> g2:=Group([(1,2),(1,2,3)]);
Group([ (1,2), (1,2,3) ]

gap> g3:=Group((1,2),(2,3,4));

Group([ (1,2), (2,3,4) ])

. How can | create a cyclic group of order 3?

gap> a:=(1,2,3);
(1,2,3)

gap> gl:=Group(a);
Group([ (1,2,3) )

gap> Size(g1);
3

gap> Elements(gl);
[0, (1,2,3), (1.3.2) ]

gap> g2:=Group((1,2,3));
Group([ (1,2,3) ])
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gap> g3:=CyclicGroup(IsPermGroup,3);
Group([ (1.2,3) D

8. How can | create a multiplication table for the cyclic group of order 3 that | just
created?

gap> ShowMultiplicationTable(gl);

* 10 (1,2,3) (13,2

________ B

0 10 (1.2,3) (1.3.2)
(1.23)](1.23) (1.32) 0
(13.2)[(1,3,2) ( 1,2,3)

9. How do | determine if a group is abelian?
gap> g1:=Group((1,2,3));
Group([ (1,2,3) ])

gap> IsAbelian(gl);
true

gap> g2:=Group((1,2),(1,2,3));
Group([ (1,2), (1,2,3) ])

gap> IsAbelian(g2);
false

10. What do | type in order to get help for a command like “Elements?”

gap> ?Elements
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SOMHETHING SOMETHING

We've talked a lot about permutations and groups that can be generated by
permutations, but now | want to mention an application that is unlikely to be
brought up in formal courses on group theory. | want to mention something from
something creation. This is not the type of creation that is preceded by a
wonderful “aha” moment. Instead, it is the type of creation where we take what is
currently present and just make a different arrangement (permutation) of what
already exists. Or, as | say, the only difference between a clean room and a
messy room is how things are arranged. One is simply a permutation of the

other.

In real life, we tend to engage in something from something creation on a daily
basis. For example, straightening up your room, washing clothes, or filling a
glass with water are all examples of something from something creation. In each
instance we are taking items that are already present and just creating a different
permutation of them. And, again, this is something we tend to do on a daily basis,

because without this daily cleanup our environment tends to slip into disarray.

Since something from something creation involves permutations, that means that
we are also talking about groups of permutations such as those we encounter in
group theory. In a sense, our daily world is an expanded version of Rubik’s cube,
and we should be trying to find those permutations of reality that make it better
for everyone. Thus, for now, we are making the following points:
e Something from something creation involves just creating a different
arrangement of what'’s already present in your life.
e The collection of all possible permutations of your environment is a
permutation group.

e If you want to change your life, move some things around!
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SUMMARY (PART 1)

On the one hand, we’ve covered a lot of material about group theory that is likely

entirely new to you, but on the other hand, we've barely scratched the surface!

Much more is yet to come. Nonetheless, at this point you want to be familiar with

the following items:

The algebraic definition of a group.

Clock arithmetic and the integers modulo n.

Cyclic groups.

Symmetry and group theory.

Permutations and group theory.

Any group may be expressed as a group of permutations.
A multiplication table for a group.

Groups acting on a set of objects.

Rubik’s cube.

GAP software.

Our lives are full of cycles.

Our lives are full of symmetry.

We can engage in something from something creation and change our

lives for the better by forming better permutations of what already exists!
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PRACTICE (PART 0)

Below are a few things you should do before moving on to Part 2, and they are
important because they will help solidify and give you hands-on experience with

the things we’ve been talking about.

1. Write down from memory the mathematical definition of a group. Construct
your own explanation of what each part of the definition means.

2. Each one of the examples below fails to be a group. For each given example,

identify at least one part of the definition of a group that fails to apply.
The integers under subtraction. (Z,-).

The integers under division, (Z,+).

The real numbers under multiplication, (R,-).

The positive real numbers under division, (R",+).

3. Using addition modulo 4, write down an addition table for Z, .

4. Identify as many patterns as possible in the pictures below. What cyclic
groups would you associate with any of these patterns? What symmetry do
you notice in your own place of residence or work? Answers will vary.
(NOTE: At this point we've focused primarily on cycles and cyclic groups,
and we can rightly say that every group is built up from cycles and their

interactions. However, in Part 2 we will discover other types of groups
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5. What are some of the repetitive cycles that you go through on a daily or

weekly basis?

o

How many different permutations can you make of the letters a,b,c? How

many different permutations can you make of the letters a,b,c,d?

\‘

. Using the instructions included in this document, solve Rubik’s cube.

8. Perform the calculations below first by hand and then check your results

using GAP software.

(1,2)(1,3) = ?
(1,2)(3,4) = ?
(1,2,3,4°% =7

[(1,2)(1,3)]" ="

12*t=2

9. Using GAP software, find the group generated by (1,2) and (1,3), find its size,

list its elements, and generate its multiplication table.
10. Give recent examples of ways in which you have engaged in something from

something creation. In other words, list ways in which you have created

different permutations of your current reality.
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PRACTICE (PART 1) - ANSWERS

Below are a few things you should do before moving on to Part 2, and they are
important because they will help solidify and give you hands-on experience with

the things we’ve been talking about.

1. Write down from memory the mathematical definition of a group. Construct

your own explanation of what each part of the definition means.

A group is a nonempty set G along with a binary operation that satisfies the

following conditions:

(Closure) For any two elements a and b in G, we have that ab is an element
of G.

(Associativity) For any three elements a, b, and c in G, we have that (ab)c =
a(bc).

(Identity) There exists an element e in G such that for any element ain G we

have that ae = a = ea.

(Inverses) For any element a in G, there exists an element a* such that aa™

—e=a'a.

If the following property also holds, then we call G an abelian or commutative
group:

(Commutativity) For any a and b in G, ab = ba.
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2. Each one of the examples below fails to be a group. For each given example,

identify at least one part of the definition of a group that fails to apply.

The integers under subtraction. (Z,-).

The associative law fails since (8-4)-2 = 4-2 = 2 while 8-(4-2) = 8-2 = 6.
Additionally, there is no identity element. For example, if 8-e=8, then we
should have e=0. But since 0-(8) = -8 instead of 8, 0 doesn’t work as an

identity. Also, if there is no identity, then we can’t even talk about inverses.

The integers under division, (Z,+).

The associative law fails since (8/4)/2 = 2/2 = 1 while 8/(4/2) = 8/2 = 4. Also,
closure fails since %2 is not an integer. Similarly, even though 1 functions as
an identity element, an integer like 2 does not have a multiplicative inverse

that is an integer whose product with 2 results in 1.

The real numbers under multiplication, (R,-).

Closure and associativity hold true and the number 1 functions as an identity
element, but the number 0 has no multiplicative inverse that you can multiply
0 by in order to get 1.

The positive real numbers under division, (R*,+).

The associative law fails since (8/4)/2 = 2/2 = 1 while 8/(4/2) = 8/2 = 4.

However, closure, identity, and inverse properties do appear to be satisfied.

3. Using addition modulo 4, write down an addition table for Z, .

WN - O+
wWN - O|O
O WN |-
P O W NN
NP, O Wwlw
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4.

Identify as many patterns as possible in the pictures below. What cyclic
groups would you associate with any of these patterns? What symmetry do
you notice in your own place of residence or work? Answers will vary.
(NOTE: At this point we’ve focused primarily on cycles and cyclic groups,
and we can rightly say that every group is built up from cycles and their
interactions. However, in Part 2 we will discover other types of groups

besides the cyclic groups.)

55



56



There seem to be 5 identical steps on the stairs in the picture. This symmetry

suggests a cyclic group of order 5.

There are 4 identical light switches on the wall at the bottom of the stairs. This

symmetry suggests a cyclic group of order 4.

Each light switch can be switched on or off. If we let our operation be a flip, then
one flip turns it on while two flips takes us back to where we started. This

symmetry suggests a cyclic group of order 2.

The design under the table at the top of the stairs can be reflected across a

vertical axis of symmetry. This symmetry suggests a cyclic group of order 2.

The design in the rectangular part above the table contains a piece that can be
reflected about both vertical and horizontal axes in order to create the entire
design. Each separate reflection by itself suggests a cyclic group of order 2. In
Part 2 of this book, however, we will discover other types of groups that can
incorporate both reflections into a single group. For now, though, we’ll only focus

on cyclic groups.

And within the semicircle at the top we see 4 identical “pizza slices.” This

symmetry suggests a cyclic group of order 4.
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In the tile design above we could take a single square and move it from west to
east or from south to north or along a diagonal from southwest to northeast or
along a diagonal from northwest to southeast. If we take any of these directions
and imagine the tiles extending to infinity, then a single square tile can generate
what we call an infinite cyclic group that is isomorphic to the integers. For
example, no movement corresponds to O while movement by 2 squares in one
direction corresponds to 2 and movement by 2 squares in the opposite direction

corresponds to -2.

Additionally, each square can be rotated about its center through angles that are
multiples of 90° in order to generate a cyclic group of order 4. Or, you could
think of taking a single side of a single square and moving it from, for example,
left side to top side to right side to bottom side and then back to left side. This

symmetry also suggests a cyclic group of order 4.
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Each individual leaf has bilateral symmetry that suggests a cyclic group of order
2. The elements of this group consist of either doing nothing at all (the identity)
or doing a flip about the axis of symmetry. However, in addition to the bilateral
symmetry of a single leaf, one may glide each leaf a bit along a stem and then
reflect it across the stem. This results in what is called a “glide reflection.”

5. What are some of the repetitive cycles that you go through on a daily or

weekly basis?

A cycle that | repeat fairly regularly is to wake up, drink coffee, work, eat lunch,
nap, eat dinner, watch TV with my wife, sleep, and then repeat. This activity

defines a cyclic group of order 8.

6. How many different permutations can you make of the letters a,b,c? How

many different permutations can you make of the letters a,b,c,d?

Six permutations. Also, we can derive this result by realizing that if we are
constructing a particular permutation, then we have 3 choices for the first
letter, 2 for the second, and 1 for the last letter. This means that the total
number of permutations we can construct is (3)(2)(1)=6.

abc bac cab
acb bca cha

Twenty-four permutations. Also, we can derive this result by realizing that if
we are constructing a particular permutation, then we have 4 choices for the
first letter, 3 choices for the second letter, 2 for the third letter, and 1 for the
last letter. This means that the total number of permutations we can construct
is (4)(3)(2)(1)=24.
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abcd bacd cbad dbca

abdc badc cbda dbac
achd bcad cabd dcba
acdb bcda cadb dcab
adbc bdac cdba dabc
adcb bdca cdca dacb

7. Using the instructions included in this document, solve Rubik’s cube.

Done!

8. Perform the calculations below first by hand and then check using GAP
software.

(1,2)(1,3) = (1,2 3)
gap> (1,2)*(1.3
1.2.3)

(1,2)(3,4) = (1 2)(3 4) =(3,4)(1,2)
gap> (1,2)*(3
(1,2)(3,4)

(1,2,3,4)? = (1,2,3,4)(1,2,3,4) = (1,3)(2,4)
gap> (1,2,3,4)°2;
(1,3)(2,4)

[(1,2)(1, 3)] =(1,2 3) =(3,2,1) =(1,3,2)
%ap> (§1 ,2)*(1,3))Hn

(1,2)*=(1,2)=(2,1)
gap> (1,2)"-1;
(1.2)

9. Using GAP software, find the group generated by (1,2) and (1,3), find its size,
list its elements, and generate its multiplication table.

gap> a:=(1,2);
(1,2)
gap> b:=(1,3);
1,3

gap> g:=Group(a,b);
Group([ (1.,2), (1.3) D
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gap> Size(9);
6

gap> Elements(Q);
L O. 2.3), (1,2), (1,2,3), (1,3,2), (1.3 1

gap> ShowMultiplicationTable(g);
* 2,3)

N 10 @®» a2 «a.2.3 d.8.2 ad.9
O 1 O 2.3 (1.2)  (1.2,3) (1.3,2) (1,3)
2.3 &3 O 1,2,3) (1237 (1,337 (1.3.2)
2y 12 (1.3.2) ¢ (113)  (2.3)  (1.2.3)
(1.223) 1 (1.233) (1.3} 2.3) (1.3.2) O (1.2}
(3.2 [ (1.3.2) (112> (113 O 1,2,3) (2.3)
A3y 1 3y 2.3 (1U3.2) (2.3 (.2 O

10. Give recent examples of ways in which you have engaged in something from
something creation. In other words, list ways in which you have created

different permutations of your current reality.

| combined hot water and coffee in a cup and drank it.
| moved the trash from the kitchen to the garbage can.
| put on some clothes.
| cleaned up my office.

| pulled some weeds in the backyard.
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Study Group Theory. Be a God!
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