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Introduction (part 1) 

 

 

Welcome!  This is Part 1 of an introduction to group theory that will ultimately be 

comprised of ten different parts ranging from the absolute beginning to very 

advanced!  Group theory (of course!) is a part of higher, abstract algebra, and 

this first part primarily introduces the concept of a mathematical group and 

illustrates how groups are connected with not only the various cycles in our lives, 

but also symmetry and permutations.  Also, in order to make each chapter as 

brief as possible, often only a single example of a concept is given.  However, 

many more examples are given in subsequent parts.   

 

In subsequent parts of this book, we’ll continue to introduce some of the basic 

concepts, examples, and ideas of group theory, but most of these parts will not 

contain any proofs.  Instead, we’ll try to provide some hands-on practice and 

illustration by introducing you to Rubik’s cube and to a free software program 

called GAP (Groups, Algorithms, and Programming).  Eventually, we will 

introduce you, in Part 9, to theorem proving via some of the easier and shorter 

proofs that one may find in a standard group theory course, and then in Part 10 

we will show you some lengthier and more advanced theorems that are very 

fundamental to group theory.  I hope many of you make it that far! 

 

Group theory is a branch of mathematics that most people have never heard of, 

and yet it is of fundamental importance to of mathematics and physics.  In fact, 

one of its first applications in advanced mathematics was to prove that it is 

impossible to construct a general formula for solving all polynomial equations of 

degree 5 or higher.  In particular, there is no convenient formula for solving 5th 

degree equations that look like 5 4 3 2
5 4 3 2 1 0 0+ + + + + =a x a x a x a x a x a  where we have 

an x to the 5th power term, but no higher.  Likewise, there is no general formula 

for solving all 6th degree polynomial equations, equations that look like 
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6 5 4 3 2
6 5 4 3 2 1 0 0+ + + + + + =a x a x a x a x a x a x a  where there is an x to the 6th power term, 

but no higher.  And more generally, for 5≥n  there is no convenient formula for 

solving all equations of the form 1 2 2
1 2 2 1 0 0− −
− −+ + + + + + =…n n n

n n na x a x a x a x a x a . 

 

Those who have successfully completed a basic algebra course will undoubtedly 

have seen the quadratic formula, 
2 4

2
b b acx

a
− ± −

= , for solving polynomial 

equations of degree 2 such as 2 0ax bx c+ + = , but once we get to powers of 5 or 

larger in our equation, no such general formula exists.  Note, however, that 

formulas do exist for solving cubic polynomial equations and polynomial 

equations of degree 4, but because of their complexity, they are rarely taught in 

basic algebra courses. 

 

Group theory has many important applications besides the one given above, and, 

in particular, it is the mathematical tool of choice whenever symmetry or 

permutations are involved.  That not only makes it the mathematics of modern 

particle physics where often all that physicists have to work with are symmetries 

at the subatomic level, but also the mathematics behind Rubik’s cube.  

Additionally, once we give the algebraic definition of a group, we’ll see that many 

of the things we study in mathematics are examples of groups, and consequently, 

a single theorem about groups can apply to many, many different areas of 

mathematics.  Thus, my ultimate goal is to give you a sense of what a group is 

within the context of mathematics and an understanding that examples of groups 

are all around us.  Any difficulties that arise in this first part will likely be due not 

to the inherent difficulty of the subject, but rather to the fact that new concepts 

and ideas are suddenly being thrust upon you.  Nevertheless, persevere, and 

you will be greatly rewarded.  You will learn to see the world through new eyes, 

and you will see a world filled with cycles and symmetry and endless 

rearrangements of creation! 
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WHAT IS A GROUP? 

 

 

What is a group?  Well, that’s a very good question!  First and foremost, a group 

is a collection of objects that satisfies a small list of algebraic properties.  Also, in 

mathematics we usually call any well-defined collection a set, and this term is 

used for collections even in plain English such as when we talk about a set of 

china.  The word group can also refer in plain English to some kind of a collection, 

but in mathematics we only use this word when our collection satisfies particular 

algebraic properties.  Thus, I guess the next thing to do is to explain what those 

properties are! 

 

The first property is called closure, and this is what it means.  First, there has to 

be something in our set, at least one element, because otherwise things are 

going to be pretty boring if we are just looking at a totally empty set, a collection 

of nothing.  And second, given any two elements from our set (not necessarily 

distinct from one another), there has to be a way of combining them in order to 

get back something that is once again in our set.  That’s why this property is 

called closure, because a set with such an operation defines a closed system.  In 

other words, combining any two elements together doesn’t take us anyplace 

other than to just another element in our set.  Furthermore, when we have a 

closed operation that combines two elements to give us back something in our 

original set, we call this a binary operation since binary means two and two 

elements are being combined.  When we are dealing with numbers from our 

familiar number system, the most commonly encountered binary operations are 

our familiar addition, subtraction, multiplication, and divison ( ), , ,+ − ⋅ ÷ .  However, if 

we are just talking about binary operations more abstractly, then we might use a 

symbol like " "∗  to represent that operation, or we might also just use addition, 

multiplication, or juxtaposition of elements in order to indicate a binary operation.  
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Consequently, if elements a and b are being combined, then it might be written 

as a b∗  or a b+  or a b⋅  or simply as ab . 

The next property a group has to have is associativity, and that means that we 

can group things with parentheses or other grouping symbols in any way we like 

without changing the outcome.  This property is usually stated in the form 

( ) ( )a b c a b c∗ ∗ = ∗ ∗ .  This property holds, for example, for our usual addition or 

multiplication of numbers. 

 

The third property of a group is the existence of an identity element.  What this 

means is that we have an element in our set that acts either like the number 0 

under addition or like the number 1 under multiplication.  For instance, when you 

add 0 to a number, you don’t change that number’s identity, and when you 

multiply a number by 1, again you don’t change that number’s identity.  When 

dealing with a group, some commonly used symbols for the identity element are 

0, 1, e, or even ( ) .  This latter symbol is commonly used in the free computer 

program called GAP (Groups, Algorithms, & Programming) that we’ll talk about 

later.  The identity property is generally expressed by the equation e a a a e∗ = = ∗ . 

 

The fourth and final property of a group is the existence of inverses.  In arithmetic, 

an inverse is something which undoes what you just did.  For example, to undo 

adding 3 to something, you can just add 3− , and to undo multiplying by 2, you 

can follow that with a multiplication by 12 1 2− = .  Notice, too, that in addition 

3 ( 3) 0+ − =  and in multiplication 1 12 2 2 1
2

−⋅ = ⋅ = .  In other words, in a group, 

combining an element with its inverse always gives us back the identity. 

 

Some very important groups have a fifth property called the commutative law that 

is written as a b b a∗ = ∗ .  In plain English, the word commute denotes something 

traveling or moving around, and, thus, the commutative law (or property) says 

that when we combine things, it doesn’t matter what order we write the elements 

down in.  We can move them around, if we want to, without changing the final 
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result.  Additionally, when we know that a group is commutative, it is often 

customary to use additive notation such as a b b a+ = + .  And furthermore, a 

commutative group is also known as an abelian group.  This name is in honor of 

the Norwegian mathematician Niels Henrik Abel (1802-1829) who was one of the 

founders of group theory.  Notice that he didn’t live very long, only 27 years.  

Nonetheless, take a moment to honor his life by reading about him in the 

Wikipedia.  And who knows?  Maybe future generations will honor your life by 

reading about you in the Wikipedia long after you are gone! 

 

Now let’s look at a formal definition of a group that incorporates everything we’ve 

been discussing. 

 

Definition:  A group is a nonempty set of objects G with a binary operation ∗  
defined such that the following algebraic properties are present: 
 
1. (closure)  If a  and b  are elements of G, then a b∗  (read as either “ a  star b ” 

or “ a  times b ”) is an element of G. 
 

2. (associative law)  If a , b , and c  are elements of G, then ( ) ( )a b c a b c∗ ∗ = ∗ ∗ . 
 

3. (existence of an identity element)  There exists an element e  in G such that if 
a  is any element in G, the e a a a e∗ = = ∗ . 
 

4. (existence of inverses)  If a  is any element in G, then there exists an element 
1a−  ( -inversea ) in G such that 1 1a a e a a− −∗ = = ∗ . 

 

If, in addition to the above, the following fifth property is also satisfied, then we 

call our group an abelian or commutative group. 

 

5. (commutative law)  If a  and b  are elements of G, then a b b a∗ = ∗ . 

 

For convenience, mathematicians usually just write ab  or a b⋅  (instead of a b∗ ) if 

we are talking about either groups in general or nonabelian groups in particular, 

and we write a b+  to denote the binary operation in an abelian or commutative 

group.  In our next chapter, we’ll look at some familiar examples of groups! 
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EXAMPLES OF GROUPS 

 

 

The first examples of groups that we’ll give are those that we encounter in basic 

arithmetic.  In particular, the first example we’ll consider is the set of integers 

under addition.  Two things to notice here, though.  First, we have to specify not 

only a set of objects, but also the operation that will be used to combine those 

objects.  Thus, in this case the operation is just the usual addition that we do with 

numbers, and the set of objects, the integers, is the set of those numbers that we 

usually mark off for our scale on the number line.  In other words, 

{ } { }, 2, 1,0,1,2, 0, 1, 2,− − = ± ±… … … .  We usually denote this set by a block letter z 

written as { } { }, 2, 1,0,1,2, 0, 1, 2,= − − = ± ±] … … … .  The origin of this notation is the 

German word zahlen which means numbers. 

 

So, to continue, the claim is that integers under the operation of addition, written 

more formally as ( ),+] , form a group.  In this group, the identity element is 0 

since for any integer a we have that 0 0a a a+ = = + , and the inverse of a  is its 

opposite, a− .  Hence, for example, the inverse of 2 in this group is -2, and the 

inverse of -2 is ( 2) 2− − = , and we can easily see that 2 ( 2) 0+ − =  and 

[ ]2 ( 2) 2 2 0− + − − = − + = .  Also, it’s easy to convince ourselves that the sum of two 

integers is an integer (closure) and that the associative law holds as in the case, 

for example, of 3 (2 1)+ +  and (3 2) 1+ + .  In the first instance we have 

3 (2 1) 3 3 6+ + = + = , and in the second instance we have (3 2) 1 5 1 6+ + = + = , thus 

verifying that 3 (2 1) (3 2) 1+ + = + + .  Hence, since we have a nonempty set along 

with an operation for combining the elements of that set, and since this operation 

exhibits closure, associativity, an identity element, and the existence of inverses, 

it follows that ( ),+]  is a group.  Furthermore, it’s an abelian or commutative 

group since, as we know, it doesn’t matter what order we add these numbers in. 

We always have that for any two integers a  and b , a b b a+ = + . 



 7

To see a set of ordinary numbers that do not form a group, we need look no 

further than ( ),−] , the integers under the operation of subtraction.  To show that 

this is not a group, it suffices to exhibit that the associative property is not always 

valid under this operation.  Thus, for example, consider 3 (2 1)− −  and (3 2) 1− − .  If 

we reduce the expression on the left, we get 3 (2 1) 3 1 2− − = − = , but if we reduce 

the expression on the right, we get (3 2) 1 1 1 0− − = − =  which is different.  Thus, the 

associative law doesn’t hold in ( ),−] , and this is not a group. 

 

Some other examples of groups include ( ),+ ⋅\ , ( ),+_ , { }( )0 ,− ⋅_ , { }( )0 ,− ⋅\ and 

( ),+\ .  Now let me explain some of the notation.  The symbol +\  stands for the 

positive real numbers (the numbers on the number line that are greater than 

zero), _  stands for the rational numbers (numbers that you can write as a ratio 

of two integers), and \  stands for the real numbers (all the numbers on the 

familiar number line and so named because we think of them as the kinds of 

numbers that describe the real world).  Additionally, { }0−_  means all rational 

numbers except for 0, and { }0−\  means real numbers except for 0.  And now 

that we understand the notation, we can describe the groups listed above as: 

• ( ),+ ⋅\  = the set of positive real numbers under multiplication 

• ( ),+_  = the set of rational numbers under addition 

• { }( )0 ,− ⋅_  = the set of nonzero rational numbers under multiplication 

• { }( )0 ,− ⋅\  = the set of nonzero real numbers under multiplication 

 

Just from these few examples, you can probably get the idea that groups exist 

throughout mathematics, and thus, any single theorem that we prove about 

groups will apply to many different situations! 
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CLOCK ARITHMETIC 

 

 

Most of you probably learned about “clock arithmetic” in elementary school.  It’s 

basically like ordinary addition of integers except that when you get to twelve, 

you start over.  For example, let’s consider the image below. 

 

 
 

The time shown on this clock is 3 o’clock.  And if we add 9 hours to that, then we 

get 12 o’clock.  So far it’s just like saying that 3 9 12+ = .  However, if we add 10 

hours to 3 o’clock, then we don’t wind up with 13 o’clock.  Instead, we start over 

after 12 and wind up at 1 again.  Hence, in clock arithmetic we say that 3 10 1+ = , 

and an easy way to compute this result is to first compute 3 10 13+ =  and then 

look at the remainder when we divide this result by 12, 
1, remainder 1

12 13 .  Thus, 

with clock arithmetic we obtain results like the following: 
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3 1 4
3 2 5
3 3 6
3 4 7
3 5 8
3 6 9
3 7 10
3 8 11
3 9 12
3 10 1
3 11 2
3 12 3

+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =

 

 

Again, we can think of it in the sense that once we reach 12, everything just 

wraps around back to the beginning.  Also, observe that in clock arithmetic, 

3 12 3+ =  and 12 3 3+ = .  This means that 12 acts like the number 0, an identity 

element, and hence, mathematicians find it more convenient to use a clock that 

has 0 at the top instead of 12. 

 

 
 

Consequently, our previous addition table now looks like the following: 
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3 1 4
3 2 5
3 3 6
3 4 7
3 5 8
3 6 9
3 7 10
3 8 11
3 9 0
3 10 1
3 11 2
3 0 3

+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =
+ =

 

 

Mathematically, we like to say that we are doing arithmetic with the set of 

numbers { }0,1,2,3,4,5,6,7,8,9,10,11 , and the addition is just like ordinary addition 

except that when we add 1 to 11, we just wrap around back to 0.  Also, 

mathematicians call this type of clock arithmetic “addition modulo 12.”  

Furthermore, the set { }0,1,2,3,4,5,6,7,8,9,10,11  with addition modulo 12 gives us 

another example of a group, and since this group wraps around in a cycle, we 

call it a “cyclic group.”  Additionally, since this group contains only a finite number 

of elements, it is, in particular, a finite cyclic group, and we can generate the 

entire group by repeatedly adding 1 to itself until we get back to 0 and then 

adding 1 any further just causes the cycle to repeat.  And lastly, there are two 

common notations for this group called the integers modulo 12.  We can denote it 

either as 12  (  for integers) or as 12C  (C for cyclic). 



 11

CYCLIC GROUPS 

 

 

In our last lesson we discussed clock arithmetic and how when we add the 

numbers in the set { }0,1,2,3,4,5,6,7,8,9,10,11  using clock arithmetic, then the results 

eventually wrap around to the beginning, i.e. 0, and repeat themselves.  At this 

point, there are now several things that we should point out: 

• The above set coupled with the clock arithmetic procedure for combining 

elements gives a group that we can call either the integers modulo 12, 

denoted by 12 , or the cyclic group of 12 elements, denoted by 12C . 

• We call the number of elements in a group the order of the group, and in 

this case, 12C  is a cyclic group of order 12. 

• The first groups we looked at like the integers under addition, ( ),+ , and 

the positive real numbers under multiplication, ( ),+ ⋅ , are examples of 

infinite groups (groups of infinite order, an infinite number of elements), 

but 12  (or 12C ) is an example of a finite group (a group of finite order, a 

finite number of elements). 

• All of the elements of the group 12  can be generated by adding 1 to itself 

over and over as indicated below. 
1 1
1 1 2
1 1 1 3
1 1 1 1 4
1 1 1 1 1 5
1 1 1 1 1 1 6
1 1 1 1 1 1 1 7
1 1 1 1 1 1 1 1 8
1 1 1 1 1 1 1 1 1 9
1 1 1 1 1 1 1 1 1 1 10
1 1 1 1 1 1 1 1 1 1 1 11
1 1 1 1 1 1 1 1 1 1 1 1 0

=
+ =
+ + =
+ + + =
+ + + + =
+ + + + + =
+ + + + + + =
+ + + + + + + =
+ + + + + + + + =
+ + + + + + + + + =
+ + + + + + + + + + =
+ + + + + + + + + + + =
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• We often like to express a group in terms of the products (or sums) of a 

minimal set of elements whose products (or sums) will generate the entire 

group.  And in general, any such set of elements that can be used to 

generate the entire group we simply call generators for the group.  

Furthermore, even though 1 is the obvious choice for a generator for 12 , 

it’s not the only single element that can generate this group.  We can also 

generate this group by adding 5 to itself over and over.  Just remember, 

though, that when we do addition modulo 12, the result is whatever the 

remainder is when, first, we add the numbers together using regular 

arithmetic and then, second, we divide by 12 to see what remainder we 

get.  This results in the following table that shows that every number in our 

set { }0,1,2,3,4,5,6,7,8,9,10,11  can be found by adding 5 to itself repeatedly. 

5 5
5 5 10
5 5 5 3
5 5 5 5 8
5 5 5 5 5 1
5 5 5 5 5 5 6
5 5 5 5 5 5 5 11
5 5 5 5 5 5 5 5 4
5 5 5 5 5 5 5 5 5 9
5 5 5 5 5 5 5 5 5 5 2
5 5 5 5 5 5 5 5 5 5 5 7
5 5 5 5 5 5 5 5 5 5 5 5 0

=
+ =
+ + =
+ + + =
+ + + + =
+ + + + + =
+ + + + + + =
+ + + + + + + =
+ + + + + + + + =
+ + + + + + + + + =
+ + + + + + + + + + =
+ + + + + + + + + + + =

 

 

• For any counting number n we can talk about the group of integers 

modulo n, n , which is essentially the same thing as the cyclic group of 

order n, nC . 

• Cycles appear everywhere in our lives, and that means that groups also 

appear everywhere in our lives! 
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SYMMETRY 

 

 

Symmetry is just a pattern that is repeated in some way, and when a pattern is 

repeated, then there is always some movement or operation that can be 

performed to transform one instance of the pattern into another instance.  For 

example, consider the picture below. 

 

 
In this image you see a lot of mirror symmetry that is created by reflecting a 

picture across either a vertical or horizontal axis.  Likewise, the human body itself 

has bilateral symmetry in that the right side of our body is just the mirror image of 

the left side reflected across a vertical line.  However, whether we are looking at 

our own bilateral symmetry or the mirror images above, in each case we can see 
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patterns that are repeated.  Now let’s look at another example, the rotational 

symmetry of an equilateral triangle (a triangle with three equal sides). 

 
Notice that if we rotate this triangle about its center approximately 45°  in the 

clockwise direction, then it doesn’t look the same as what we started with. 

 
However, if we rotate it clockwise either 120°  or 240° , then it will look exactly the 

same as our beginning triangle.  This is the type of rotation that reveals a 

symmetry within our triangle. 
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To better see what’s going on when we do this rotation, we can number the 

vertices of the triangle and follow their motion. 

 

 

 

 

 

 

 

 

 

 

If we let r represent a clockwise rotation of 120°  about the center, then the 

diagram below shows the effect on the vertices of the triangle. 

1

23

1

23
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If we rotate our original triangle 240°  clockwise, then that would be like doing r 

twice, and so we’ll write that as 2r . 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

23

3

12

r
1

23

1

23

3

12

3

12

r

1

23

2

31

2r
1

23

1

23

2

31

2

31

2r
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And finally, if we do a clockwise rotation through 360° , then the end result is just 

as if we hadn’t done any rotation at all.  Changing nothing, doing no rotation at all, 

corresponds to the identity element which we traditionally represent by the letter 

e.  Hence, regarding our rotations, we basically have 3e r= . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, what has happened is that the rotational symmetry of the equilateral 

triangle has led us to discover a geometric representation of the cyclic group of 

order 3.  The distinct elements of this group are { }2, ,e r r . 

 

We could likewise examine the rotational symmetry of a square to discover a 

cyclic group of order 4 or a regular pentagon (a pentagon with 5 sides of equal 

length) to discover a cyclic group of order 5.  The most important point to be 

made, however, is that wherever symmetry is present, there is going to also be 

present a mathematical group whose elements consist of those operations that 

appear to leave the underlying object unchanged. 

1

23

1

23

3e r=
1

23

1

23

1

23

1

23

3e r=
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MULTIPLICATION TABLES 

 

 

Let’s go back and revisit 3 , the integers modulo 3.  The elements of this group 

are given by the set { }0,1,2 , and the operation is ordinary addition with the 

restriction that anything larger than 2 has to wrap around in order to give us a 

final result of either 0, 1, or 2.  Also, since this group has only three elements, we 

can easily construct an addition table for this group.  However, note that the 

generic term in group theory for any such table is “multiplication table.”  Thus, 

here is the “multiplication table” for the integers modulo 3. 

 
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1  

 

From this table, we can easily see the various results of doing addition modulo 3 

such as 1 1 2+ = , 1 2 0+ = , and 2 2 1+ = .  Also, below we have highlighted in orange 

in our table the diagonal going from upper left to lower right, we’ve highlighted in 

green a lower triangle, and we’ve highlighted in yellow an upper triangle. 

 
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1  

 

Notice that the lower green triangle looks like the mirror image of the upper 

yellow triangle.  This is what happens in a multiplication table whenever the 

group is commutative (abelian).  Hence, it does not matter what order the 

elements are added in.  Thus, for example, 1 2 0 2 1+ = = + . 

 

Now let’s look at the multiplication table for the cyclic group we found in the last 

chapter that represented the rotational symmetry of an equilateral triangle. 
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٠ e r r 2

e e r r 2

r r r 2 e
r 2 r 2 e r  

 

Notice how similar this table looks to the one we constructed for 3 .  In fact, if we 

make the substitutions indicated below, then we can realize that the two tables 

are identical except for the symbols used to represent our elements. 

 

2

0
1

2

e
r

r

↔
↔

↔

 

 

Furthermore, whenever two groups can be represented by multiplication (or 

addition) tables that are identical except for the symbols used, then we say that 

the two groups are isomorphic.  That word means “equal shape,” and most of the 

time we won’t make any distinction between groups that are isomorphic.  In 

particular, we will normally treat the integers modulo 3, { }3 0,1,2= ; our rotation 

group for the equilateral triangle, { }2, ,R e r r= ; and the cyclic group of order 3, 

{ }2
3 , ,C e a a= , as identical since they are all isomorphic to one another.  They are 

all simply different ways to represent a finite cycle of length 3. 
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PERMUTATIONS 

 

 

Previously, we explored the symmetry of an equilateral triangle by labeling the 

vertices 1, 2, and 3, and we then followed what happened as we rotated our 

triangle clockwise through angles that are integer multiples of 120° .  The pictures 

below illustrate the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

23

1

23

3e r=
1

23

1

23

1

23

1

23

3e r=

 

1

23

3

12

r
1

23

1

23

3

12

3

12

r
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Notice that the end results can also be described in terms of permutations of the 

numbers 1, 2, and 3 where by a permutation we mean an arrangement in which 

order makes a difference.  Thus, starting at the top of our triangle and moving 

clockwise, we could say that the first rotation through 120°  ( r ) changes the 

arrangement 123 to 312, while a rotation of 240°  ( 2r ) from our starting point 

changes 123 to 231.  Likewise, a rotation of 360°  ( 3r ) leaves 123 as 123, and 

thus, it is equivalent to e, the identity element. 

 

A common way to indicate a permutation is by drawing arrows to show what 

each object or number changes to.  For example, in our first rotation through 120°  

( r ) we often say that 1 goes to 2, 2 goes to 3, and 3 goes to 1, and we can write 

the permutation like this, 
1 2 3

2 3 1

⎛ ⎞
⎜ ⎟↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

.   However, even though we commonly say 1 

goes to 2 and so one, we actually mean something a little different.  In particular, 

think of the vertex at the top of our triangle as position 1, the vertex at the bottom 

right as position 2, and the vertex at the bottom left as position 3.  Then what we 

 

1

23

2

31

2r
1

23

1

23

2

31

2

31

2r
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really mean to say by 
1 2 3

2 3 1

⎛ ⎞
⎜ ⎟↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

 is that the number currently in position 1 is 

moved to position 2, the number currently in position 2 is moved to position 3, 

and the number currently in position 3 is moved to position 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With that cleared up, we can now express our three rotations as the following 

permutations: 

 

3

1 2 3

1 2 3
e r

⎛ ⎞
⎜ ⎟= = ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

    
1 2 3

2 3 1
r

⎛ ⎞
⎜ ⎟= ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

    2

1 2 3

3 1 2
r

⎛ ⎞
⎜ ⎟= ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

However, there is a more compact notation for these permutations that is even 

better than what we’ve used above, and this notation is called cycle notation.  For 

example, in cycle notation we would write the permutation corresponding to 

1

23

position 1

position 2position 3

1

23

1

23

position 1

position 2position 3
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1 2 3

2 3 1
r

⎛ ⎞
⎜ ⎟= ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

 as ( )1,2,3 , and as before we usually read this as “1 goes to 2, 2 

goes to 3, and 3 goes to 1” event though we really mean “the number currently in 

position 1 is moved to position 2, the number currently in position 2 is moved to 

position 3, and the number currently in position 3 is moved to position 1.” 

 

In a similar way, we can write the permutation corresponding to 2

1 2 3

3 1 2
r

⎛ ⎞
⎜ ⎟= ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

 as 

( )1,3,2  in order to say that 1 goes to 3, 3 goes to 2, and 2 goes back to 1.  And 

likewise, we could write the permutation corresponding to 3

1 2 3

1 2 3
e r

⎛ ⎞
⎜ ⎟= = ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

 as 

(1,1)(2,2)(3,3)  for 1 goes to 1, 2 goes to 2, and 3 goes to 3.  However, this looks 

unnecessarily complicated, and it is more often abbreviated as (1)(2)(3) .  But we 

normally don’t stop there.  We abbreviate it even further!  In particular, if we have 

a permutation like 
1 2 3

1 3 2

⎛ ⎞
⎜ ⎟↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

 where 1 goes to 1, 2 goes to 3, and 3 goes to 2, 

then instead of writing that as (1)(2,3) , we usually just shorten that to (2,3) .  

Furthermore, if the permutation is the identity permutation which changes nothing, 

then it is quite common these days to write it simply as ( )e = , a pair of 

parentheses with nothing inside.  Thus, ( )(1)(2)(3) e= = . 
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MULTIPLYING PERMUTATIONS 

 

 

Let’s suppose that we have just four objects that we’ll label 1, 2, 3, and 4, and 

let’s also consider some permutations of these objects.  In particular, let’s start 

with (1,2)  and (2,3,4) .  We call the first permutation a cycle of length 2 or a 2-

cycle because it moves just two of the objects.  It just moves 1 to 2 and 2 back to 

1, and because the positions of only two objects are being switched, we also call 

a 2-cycle a transposition.  On the other hand, (2,3,4)  is a cycle of length 3 or a 3-

cycle since it moves three objects.  Equivalently, we could say that it is a 3-cycle 

since if we keep repeating this cycle, then by the third time that we move what is 

in position 2 to position 3, what’s in position 3 to position 4, and what’s in position 

4 to position 2, we’ll be right back where we started!  Thus, repeating the cycle 

(2,3,4)  three times is equivalent to the identity element, doing no change at all. 

 

At this point you might realize that what we are really talking about is multiplying 

one permutation by another by simply following one by the other.  For example, 

let’s now talk more formally about what we mean by (1,2) (2,3,4)⋅ , the product of 

(1,2)  and (2,3,4) .  The first things you need to know are: 

• Some mathematicians do this multiplication from left to right while others 

do it from right to left. 

• Changing which direction you multiply in will often make a difference in the 

result because multiplication of permutations is generally not commutative, 

i.e. the order in which you multiply the permutations generally makes a 

difference. 

• We’ll always multiply from left to right because that is the convention that 

is followed in some of the useful software tools like GAP (Groups, 

Algorithms, and Programming), and it is also the convention that is 

generally followed when describing moves for Rubik’s cube. 
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Now, to determine the product (1,2) (2,3,4)⋅ , let’s revert to our earlier notation, 

1 2 3 4
(1,2)

2 1 3 4

⎛ ⎞
⎜ ⎟= ↓ ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

 and 
1 2 3 4

(2,3,4)
1 3 4 2

⎛ ⎞
⎜ ⎟= ↓ ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

.  If we do our multiplication by first 

applying the permutation 
1 2 3 4

2 1 3 4

⎛ ⎞
⎜ ⎟↓ ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

 followed by 
1 2 3 4

1 3 4 2

⎛ ⎞
⎜ ⎟↓ ↓ ↓ ↓⎜ ⎟
⎜ ⎟
⎝ ⎠

, then we can 

say that the first permutation sends what’s in position 1 to position 2 and the 

second permutation sends what’s in position 2 to position 3.  Therefore, in our 

abbreviated form, we say that 1 goes to 3.  Now the question is where does 3 go?  

Well, the first permutation fixes 3 at 3, but the second permutation sends 3 to 4.  

Therefore, the end result is that 3 goes to 4.  Next, we need to track what 

happens to 4.  The first permutation sends 4 to 4, but the second one sends 4 to 

2.  Therefore, when the first permutation is followed by the second, 4 goes to 2.  

And now, we consider the movement of 2.  The first permutation sends 2 to 1 

while the second sends 1 to 1.  Therefore, in the product, 2 goes to 1.  Thus, we 

can now write the product of these permutations as follows: 

1 2 3 4 1 2 3 4 1 2 3 4

2 1 3 4 1 3 4 2 3 1 4 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟↓ ↓ ↓ ↓ ⋅ ↓ ↓ ↓ ↓ = ↓ ↓ ↓ ↓⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

In cycle notation, though, this would look like: 
(1,2) (2,3,4) (1,3,4,2)⋅ =  

 

Also, it’s very easy to figure this out as we go when we write this in cycle notation.  

For example, consider:  
(1,2) (2,3,4) (1,3,4,2)⋅ =  

 

Going from left to right, we see 1 goes to 2 and then 2 goes to 3, so in the 

product we have 1 goes to 3: 
(1,2) (2,3,4) (1,3,?)⋅ =  
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Next, we start with 3, and again doing our permutations from left to right we have 

that 3 goes to 3 followed by 3 goes to 4, and hence, in the product 3 goes to 4: 
(1,2) (2,3,4) (1,3,4,?)⋅ =  

 

Now we begin again with 4, and we can see that 4 goes to 4 followed by 4 goes 

to 2, so in the product we have 4 goes to 2: 
(1,2) (2,3,4) (1,3,4,2,?)⋅ =  

 

And lastly, 2 goes to 1 followed by 1 goes to 1, so in the product we have 2 goes 

to 1: 
(1,2) (2,3,4) (1,3,4,2)⋅ =  

 

And that’s it!  The product of our 2-cycle with a 3-cycle results, in this case, in the 

4-cycle (1,3,4,2) .  Notice, too, that if we write our multiplication in the opposite 

order, then we get a different result: 
(2,3,4)(1,2) (2,3,4,1)=  

 

We could express our logic for this result in symbolic form by letting " "→  mean 

“goes to” and by letting " "⇒  mean “implies.”  Thus: 

2 3 and 3 3 2 3
3 4 and 4 4 3 4
4 2 and 2 1 4 1
1 1 and 1 2 1 3

→ → ⇒ →
→ → ⇒ →
→ → ⇒ →
→ → ⇒ →

 

 

There are now several remarks we can make.  First, notice that the cycle (2,3,4,1)  

can also be written as (3,4,1,2)  or (4,1,2,3)  or (1,2,3,4) .  In other words, it doesn’t 

matter which number or object we put first. 

 

Second, notice that (2,3,4)(1,2) (2,3,4,1) (1,3,4,2) (1,2)(2,3,4)= ≠ = .  Hence, the 

multiplication is not commutative.  The order in which we multiply makes a 

difference. 
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Third, notice that the inverse of (2,3,4,1)  is given by just writing this cycle in 

reverse order as (1,4,3,2) . 

 

Lastly, if we have two cycles such as (1,2)  and (3,4)  which have no elements in 

common, then these cycles will commute with one another.  In other words, 

(1,2)(3,4) (3,4)(1,2)= .  And furthermore, when two cycles have no elements in 

common, we say that they are disjoint cycles. 

 

And finally, for practice, make sure you now understand how to get each of the 

following products: 

• (1,2)(1,3) (1,2,3)=  

• ( )(1,2,3)(3,2,1) (1)(2)(3)= =  

• (1,2)(3,4,5) (1,2)(3,4,5) (3,4,5)(1,2)= =  



 28

PERMUTATION GROUPS 

 

 

Let’s suppose that we now have just three objects that we’ll label 1, 2, and 3, and 

let’s start with the permutations (1,2)  and (1,2,3) .  If, next, we look at all finite 

products that can be formed from these permutations, then for now take my word 

that the set of all such distinct products will be a group of permutations of order 6, 

or, in other words, a group containing 6 elements.  We can list those elements as 

follows: 

( ) 3 3(1)(2)(3) (1,2,3) (1,2)= = =  

(1,2,3)  
2(1,3,2) (1,2,3)=  

(1,2)  

(1,3) (1,2)(1,2,3)=  
2(2,3) (1,2)(1,2,3) (1,2)(1,3,2)= =  

 

Notice, too, that 2(1,2,3)  means (1,2,3) (1,2,3)⋅  while 3(1,2,3)  means 

(1,2,3) (1,2,3) (1,2,3)⋅ ⋅ .  Also, since our group can be created by looking at all the 

distinct finite products we can create by multiplying (1,2)  and (1,2,3)  together, we 

call (1,2)  and (1,2,3)  generators of our group. 

 

Now let’s revisit the multiplication table for the cyclic group that resulted from 

rotating an equilateral triangle clockwise through angles that are integer multiples 

of 120° . 
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The resulting multiplication table is: 

٠ e r r 2

e e r r 2

r r r 2 e
r 2 r 2 e r  

 

The elements of this group are e, r, and 2r , and notice that each row in our table 

of products also represents a different permutation of these three elements.  We 

won’t do a formal proof at this point, but this should be enough of a clue for you 

to believe that given any group, we can associate each element of that group 

with a permutation of all the elements of that group.  Hence (and this is very 

important), every group can be represented as a group of permutations of some 

set of objects!  We will focus primarily on finite groups, and in that case we can 

say that every finite group of n elements can be expressed in terms of a group of 

permutations of those n elements. 

(1,2,3)r =
1

23

3

12

(1,2,3)r =
1

23

1

23

3

12

3

12



 30

GROUP ACTIONS 

 

 

Let’s now revisit once again our by now very familiar cyclic group of order 3 that 

we get when we examine rotations of an equilateral triangle about its center 

through angles that are integer multiples of 120° .  When we did this earlier, we 

identified the following distinct rotations along with the following multiplication 

table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1,2,3)r =
1

23

3

12

(1,2,3)r =
1

23

1

23

3

12

3

12

( )3e r= =
1

23

1

23

( )3e r= =
1

23

1

23

( )3e r= = ( )3e r= =
1

23

1

23
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٠ e r r 2

e e r r 2

r r r 2 e
r 2 r 2 e r  

 

However, since our rotations also result in permutations of the numbers, 1, 2, 

and 3, we can also express our multiplication table in terms of permutations that 

are written in cycle notation.  In other words, 

( )

2

(1)(2)(3)
(1,2,3)

(1.3.2)

e
r

r

= =
=

=

 

 

This, in turn, gives us the following multiplication table: 
٠ (  ) (1,2,3) (1,3,2)

(  ) (  ) (1,2,3) (1,3,2)
(1,2,3) (1,2,3) (1,3,2) (  )
(1,3,2) (1,3,2) (  ) (1,2,3)  

 

Now let’s briefly review what is happening here.  First, we could say that we have 

a set of objects that we’ll designate as { }1,2,3A = , and then, second, we have a 

group of permutations that we’ll call ( ){ }, (1,2,3),(1,3,2)G =  that interacts with the 

set A by producing different arrangements of the elements in A.  When this 

2

31

1

23

2 (1,3,2)r =
2

31

2

31

1

23

1

23

2 (1,3,2)r =
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happens, when we have a group of permutations that produces different 

arrangements of the elements of a set, we say that the group acts upon the set 

and we call this a group action.  For example, think of our set { }1,2,3A =  as our 

labels for the vertices of an equilateral triangle, and let our permutation group G 

be the cyclic group generated by (1,2,3)r = , the clockwise rotation of our triangle 

120°  about its center.  Then this gives us a very concrete example of a 

permutation group physically acting upon the triangle (or the labels for the 

vertices of the triangle, if you prefer). 

 

 

 

 

 

 

 

 

 

 

 

 

Now this is not an isolated occurrence in group theory.  It is, in fact, the very 

norm because recall that given any group, we can associate each element of that 

group with a permutation of the group elements.  Consequently, every group can 

be expressed as a permutation group, and every group element can be thought 

of as a permutation that acts upon the very elements of the group that it belongs 

to.  The bottom line is that a very natural way to think of all groups is in terms of 

permutations being applied to some set of objects.  Thus, always ask yourself 

what the permutations are and what objects are being permuted. 

(1,2,3)r =
1

23

3

12

(1,2,3)r =
1

23

1

23

3

12

3

12
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Rubik’s cube 

 

 

Rubik’s cube is a fascinating puzzle that was invented in 1974 by a Hungarian 

sculptor and professor of architecture named Ernös Rubik, but it wasn’t until 

1980 that the puzzle began to be marketed in the United States by Ideal Toy 

Corporation and, subsequently, became widely popular.  The puzzle itself is 

deceptively simple in appearance.  You have a cube with six faces, and each 

face of the cube is divided into several smaller cubes called cubelets, and then 

each colored face of a cubelet is called a facelet.  In all, Rubik’s cube contains 26 

cublets and 54 facelets.  The faces themselves can be rotated in several 

directions in order to create an almost unfathomable number of permutations of 

the colored squares on each little cubelet, and many a person has spent many 

an hour trying to figure out how to unscramble their cube only to simply take it 

apart with a screwdriver and then reassemble it! 

 

 
 

When we look at the cube, we quickly realize that there are six basic moves that 

we can perform on the cube, and we’ll denote these moves by the letters R, L, U, 

D, F, and B.  These moves represent making quarter-turns in the clockwise 

direction, respectively, of the right face, left face, up face, down face, front face, 
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and back face of the cube.  Some people, however, like to write these letters in 

the order BFUDLR  so that it will appropriately be pronounced “befuddler.”   

 

If we now want to rotate, for example, the right face of the cube two quarter-turns 

clockwise, then that move is usually denoted either by 2R  or 2R  or 2R .  Similarly, 

we’ll use 3R  or 3R  or 3R  to indicate that one should turn the right face of the 

cube clockwise through three quarter-turns.  Notice also that 4R  (or 4R  or 4R ) is 

the same as doing nothing at all.  Furthermore, if we want to turn the right face a 

quarter-turn in the counterclockwise direction, then the usual notations for that 

are either 1R−  or R′  or Ri.  Also, when we are specifying a sequence of moves to 

be performed on the cube, the custom is to specify those moves in order from left 

to right.  Thus, 1R DR−  means rotate the right face a quarter-turn counterclockwise, 

then rotate the down face a quarter-turn clockwise, and finally, rotate the right 

face a quarter-turn clockwise.  Also, clockwise and counterclockwise are defined 

with respect to what we would see if we were looking at a particular face straight 

on.   

 

As you might realize, the mathematics of permutations has an awful lot to do with 

helping us understand the structure of Rubik’s cube, and, in fact, if we look at all 

the distinct configurations of the cube that are possible by performing the moves 

R, L, U, D, F, or B, then it can been proven that  43,252,003,274,489,856,000  

permutations are possible.  Furthermore, the moves R, L, U, D, F, and B 

generate a permutation group of this size.  Also, notice that if we let A be the set 

consisting of the 54 facelets of Rubik’s cube and if we let G denote the group of 

43,252,003,274,489,856,000  permutations that is generated by the moves R, L, U, D, 

F, and B, then Rubik’s cube offers us a classic example of a set of objects that is 

acted upon by a group.  The Rubik’s cube group acts upon the cube by creating 

various permutations of its 54 facelets. 

 

Immediately following this brief introduction to Rubik’s cube are instructions for 

solving the cube, and it is highly recommended that you master this solution 
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because, as we shall see later on, Rubik’s cube illustrates in very concrete ways 

many of the important tools and concepts of group theory.  Also, any scrambled 

Rubik’s cube can, in theory, be restored to its original configuration in 20 moves 

or less.  This number 20 is known by mathematicians and cube enthusiasts as 

God’s number! 



Step 5
Solve the Top Edges

Step 6
Solve the Top Corners

Step 7
Solve the Top Corners

HINT:  Hold the cube with red in front. Turn the top 
layer until the red and blue edge piece is solved as in 
the picture, and then repeat the sequence below until 
the yellow and blue edge piece is also solved, on the 
right side. Now turn the whole cube so that white is the 
“Front” face.  If the top white edge isn’t solved, just do 
the sequence once more, followed by “U” to position all 
the edges properly.

HINT:   Find a corner piece that’s in the right place, 
and hold the cube with that piece above your right 
thumb. In the picture, this piece is the blue, yel-
low, and red piece.  Don’t turn the top layer at all, 
because you will mess up the edges that you just 
solved in step 5. Now do the sequence below once 
or twice to put the other 3 corners into the right 
places. If you can’t find a corner piece in the right 
place, just do the sequence below once before you 
start this step.

HINT:  Hold the cube with red in front. Keep turning the 
top layer until the upper-front-right corner needs to be 
flipped, to have blue on top, like in the picture. Do the 
sequence below either 2 or 4 times to flip the corner so 
that blue is on top. Note: As you work through this step, 
lower layer colors may become scrambled. Don’t worry, 
just keep going! With red still in front, keep turning the 
top layer and do the sequence again whenever needed 
to flip the upper-front-right corner piece. When all the 
corners have been flipped, just turn the layer to solve the 
cube. Congratulations, you’ve done it!

Before

Before

After

After

R • U • Ri • U • R • U • U • Ri
U • R • Ui • Li • U • Ri • Ui • L (Ri • Di • R • D)

x 2 or 4

Before After

OR

Billions of Combinations,
One Solution!

RUBIK’S® Cube is the incredibly addictive, multi-
dimensional challenge that has fascinated puzzle fans 
around the world. Over 250 million cubes have been sold and 
at least one in every five people in the world has twisted, 
jumbled and enjoyed this immensely popular puzzle.

RUBIK’S® Cube has been called “the perfect puzzle” and 
“the best puzzle ever.” With a few turns, you mix up its small 
colored cubes. Now match the cubes back up again to make 
every side a solid color. You can solve RUBIK’S® Cube from 
any starting point and from any topsy-turvy arrangement of 
colors.  With the right twists, anybody can do it, and with 
43 quintillion (43,252,003,274,489,856,000) combinations, no 
challenge is ever the same!

RUBIK’s Facts: 22.95 seconds! That’s how long a high school 
student from Los Angeles took to unscramble the cube and 
win the Budapest world championship in 1982.

Dan Knights from the USA won the 2003 Rubik’s Games 
Championship held in Toronto, Canada. His average time 
was just 20 seconds. 

The Original Cube is part of an exciting series of puzzles 
designed to challenge your mind and capture your 
imagination. Twist and turn the colors & pieces and you’ll 
find an intricate challenge that you won’t want to put down.

We will be happy to hear your questions or comments about this game. 
Please write to: Hasbro Games, Consumer Affairs Dept., P.O. Box 
200, Pawtucket, RI 02862 USA. Tel: 888-836-7025 (toll free). European 
consumers please write to: Hasbro UK Ltd., Hasbro Consumer Affairs, 
P.O. BOX 43, Caswell Way, Newport, Wales, NP19 4YD, or telephone our 
helpline on 00 800 2242 7276. 

©RUBIK’S®. All Rights Reserved. RUBIK’S® and RUBIK’S® CUBE are 
registered trademarks of Seven Towns Ltd. Used under license. Method: 
©Dan Knights 2003. Manufactured for and distributed by Hasbro. The 
HASBRO and MB names and logos are trademarks of Hasbro.©2010 
Hasbro, Pawtucket, RI 02862. All Rights Reserved. TM & ® denote U.S. 
trademarks.
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About your Rubik’s Cube 
RUBIK’S Cube is just one of a series of exciting puzzles 
designed to challenge your mind and capture your imagi-
nation. With amazing movement of color and pieces, 
each puzzle offers an intricate challenge that is hard 
to put down. And just in case it has you stumped, this 
7-Step Solution Guide will help you master the challenge.

RUBIK Fact: RUBIK’S Cube was invented by Erno Rubik, a 
Hungarian Professor of Architecture and Design. Within 
one year of its launch in 1980, it became the fastest-
selling puzzle the world has ever known. Rubik’s Cube 
is now the best-selling puzzle ever, with over 250 million 
cubes sold.

RUBIK Fact: Most cubes can be solved in only 17 moves 
with the aid of a computer, and theoretically there is no 
cube that requires more than 20 twists to solve. Some 
people can solve the cube in under 45 moves from any 
scrambled position; and a few can even solve the cube 
blindfolded!

The 7-Step Solution Guide 
Each step involves a sequence of twists of the 
cube to move a particular square. To solve the cube, 
just repeat the steps!

Each face of the cube is assigned a letter (shown 
below). Each step is made up of a sequence of twists (a 
one quarter-turn of the face of the cube). To complete 
the sequence for each step, twist one face of the cube, 
then twist the next face, and so on, for the complete 
sequence. The letter ‘i’ means inverse, or counter-
clockwise. Before you start each move, be sure to place 
your thumbs on the F side of the cube, as shown in the 
illustration. This will ensure that your cube is properly 
oriented to execute the move.

How each step works Step 1
Solve the Upper Green Cross

Step 2
Solve the Green Corners

	 Step 3
Solve the Middle Layer Edges

Step 4
Solve the Upper Blue Cross

Turn clockwise
R - Right Face
L - Left Face
B - Back Face
D - Down Face
F - Front Face
U - Upper Face
?i - Inverse 
(turn Counter-
clockwise)

Important!
To turn a face 
clockwise, 
imagine you 
are facing that 
side of the 
cube.

Each step can be used to solve up to FOUR pieces if there 
are none solved when you start the step. Please note that 
these illustrations display a sample of a situation on your 
cube for ONE of the possible FOUR pieces needing to be 
solved. In many cases, you will need to rotate the cube to a 
new starting face (with red, orange, yellow or white center 
square) and repeat the instructions in order to place/rotate 
all of the pieces in that step before moving on. The end result 
will only come AFTER all four sides of the cube have been 
through that step’s sequence and all the pieces are in their 
proper location and oriented properly to match the surround-
ing center square colors. As such, you may have to repeat 
the same step a few times with different sides as the starting 
face until all the pieces are solved.

B -Twist the Back Face a 
quarter turn clockwise

Ri - Twist the Right Face a quarter 
turn counter-clockwise

Example 
turns

HINT:  To solve the green cross, you have to solve each 
green edge piece on your own, one-by-one.  The tricky 
part is not messing up the ones you’ve already solved. 
First solve the red-green edge, then the white-green 
edge, then the orange-green edge, then the blue-green 
edge.  You have to figure out this part for yourself. Should 
you ever have an edge piece in the correct place but 
flipped the wrong way, use this step to flip it without 
affecting the other three green edges.  Just hold the 
cube with the piece in the upper-right position as in the 
picture below, and do the sequence Ri • U • Fi • Ui. The 
edge piece will now be solved, and you can work on the 
next edge piece.

HINT:  Find a corner piece in the bottom layer that 
belongs on top.  Turn the bottom layer until that piece is 
directly below its home in the top layer. Hold the cube 
with the piece at the lower-front-right and its home at 
the upper-front-right, as in the picture, and then do the 
sequence Ri • Di • R • D, 1, 3, or 5 times until that corner 
is solved. If you find a corner piece that’s already in the 
top layer but it’s in the wrong spot or flipped the wrong 
way, just hold the cube with that piece in the upper 
front right position, and do Ri • Di • R • D once.  Now 
the piece is in the bottom layer, and you can solve it as 
described above.

HINT:  Now flip the cube over so green is on the bottom. 
Try to find the red-yellow edge piece. If it’s in the top 
layer, turn it until the edge matches one of the pictures 
below. Then do the corresponding sequence to solve it. 
If the red-yellow edge piece is somewhere in the middle 
layer, but it’s in the wrong place or flipped the wrong 
way, hold the cube so that the red-yellow edge is in 
the front-right position, and do either sequence once. 
(This may require you to rotate the cube to a new face). 
After the move, the piece is in the top layer, and you can 
solve it as described above. Repeat this for the other 3 
middle-layer edges.

HINT:   Turn the top layer until the edges match one of 
these pictures. If you do the sequence below once and 
you still don’t have a blue cross, then repeat this step 
until you do. It doesn’t matter which face you start with. 
Note: In this step, there will be other blue pieces show-
ing on your cube that do not appear in these diagrams.

Ri • U • Fi • Ui (Ri • Di • R • D)
x 1, 3 or 5

F • R • U • Ri • Ui • Fi

U • R • Ui • Ri
Ui • Fi • U • F

Ui • Fi • U • F
U • R • Ui • Ri

Before

Before Before
Before

Before Before

After
After

After

OR OR

After



About your Rubik’s Cube 
RUBIK’S Cube is just one of a series of exciting puzzles 
designed to challenge your mind and capture your imagi-
nation. With amazing movement of color and pieces, 
each puzzle offers an intricate challenge that is hard 
to put down. And just in case it has you stumped, this 
7-Step Solution Guide will help you master the challenge.

RUBIK Fact: RUBIK’S Cube was invented by Erno Rubik, a 
Hungarian Professor of Architecture and Design. Within 
one year of its launch in 1980, it became the fastest-
selling puzzle the world has ever known. Rubik’s Cube 
is now the best-selling puzzle ever, with over 250 million 
cubes sold.

RUBIK Fact: Most cubes can be solved in only 17 moves 
with the aid of a computer, and theoretically there is no 
cube that requires more than 20 twists to solve. Some 
people can solve the cube in under 45 moves from any 
scrambled position; and a few can even solve the cube 
blindfolded!

The 7-Step Solution Guide 
Each step involves a sequence of twists of the 
cube to move a particular square. To solve the cube, 
just repeat the steps!

Each face of the cube is assigned a letter (shown 
below). Each step is made up of a sequence of twists (a 
one quarter-turn of the face of the cube). To complete 
the sequence for each step, twist one face of the cube, 
then twist the next face, and so on, for the complete 
sequence. The letter ‘i’ means inverse, or counter-
clockwise. Before you start each move, be sure to place 
your thumbs on the F side of the cube, as shown in the 
illustration. This will ensure that your cube is properly 
oriented to execute the move.

How each step works Step 1
Solve the Upper Green Cross

Step 2
Solve the Green Corners

	 Step 3
Solve the Middle Layer Edges

Step 4
Solve the Upper Blue Cross

Turn clockwise
R - Right Face
L - Left Face
B - Back Face
D - Down Face
F - Front Face
U - Upper Face
?i - Inverse 
(turn Counter-
clockwise)

Important!
To turn a face 
clockwise, 
imagine you 
are facing that 
side of the 
cube.

Each step can be used to solve up to FOUR pieces if there 
are none solved when you start the step. Please note that 
these illustrations display a sample of a situation on your 
cube for ONE of the possible FOUR pieces needing to be 
solved. In many cases, you will need to rotate the cube to a 
new starting face (with red, orange, yellow or white center 
square) and repeat the instructions in order to place/rotate 
all of the pieces in that step before moving on. The end result 
will only come AFTER all four sides of the cube have been 
through that step’s sequence and all the pieces are in their 
proper location and oriented properly to match the surround-
ing center square colors. As such, you may have to repeat 
the same step a few times with different sides as the starting 
face until all the pieces are solved.

B -Twist the Back Face a 
quarter turn clockwise

Ri - Twist the Right Face a quarter 
turn counter-clockwise

Example 
turns

HINT:  To solve the green cross, you have to solve each 
green edge piece on your own, one-by-one.  The tricky 
part is not messing up the ones you’ve already solved. 
First solve the red-green edge, then the white-green 
edge, then the orange-green edge, then the blue-green 
edge.  You have to figure out this part for yourself. Should 
you ever have an edge piece in the correct place but 
flipped the wrong way, use this step to flip it without 
affecting the other three green edges.  Just hold the 
cube with the piece in the upper-right position as in the 
picture below, and do the sequence Ri • U • Fi • Ui. The 
edge piece will now be solved, and you can work on the 
next edge piece.

HINT:  Find a corner piece in the bottom layer that 
belongs on top.  Turn the bottom layer until that piece is 
directly below its home in the top layer. Hold the cube 
with the piece at the lower-front-right and its home at 
the upper-front-right, as in the picture, and then do the 
sequence Ri • Di • R • D, 1, 3, or 5 times until that corner 
is solved. If you find a corner piece that’s already in the 
top layer but it’s in the wrong spot or flipped the wrong 
way, just hold the cube with that piece in the upper 
front right position, and do Ri • Di • R • D once.  Now 
the piece is in the bottom layer, and you can solve it as 
described above.

HINT:  Now flip the cube over so green is on the bottom. 
Try to find the red-yellow edge piece. If it’s in the top 
layer, turn it until the edge matches one of the pictures 
below. Then do the corresponding sequence to solve it. 
If the red-yellow edge piece is somewhere in the middle 
layer, but it’s in the wrong place or flipped the wrong 
way, hold the cube so that the red-yellow edge is in 
the front-right position, and do either sequence once. 
(This may require you to rotate the cube to a new face). 
After the move, the piece is in the top layer, and you can 
solve it as described above. Repeat this for the other 3 
middle-layer edges.

HINT:   Turn the top layer until the edges match one of 
these pictures. If you do the sequence below once and 
you still don’t have a blue cross, then repeat this step 
until you do. It doesn’t matter which face you start with. 
Note: In this step, there will be other blue pieces show-
ing on your cube that do not appear in these diagrams.

Ri • U • Fi • Ui (Ri • Di • R • D)
x 1, 3 or 5

F • R • U • Ri • Ui • Fi

U • R • Ui • Ri
Ui • Fi • U • F

Ui • Fi • U • F
U • R • Ui • Ri
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Step 5
Solve the Top Edges

Step 6
Solve the Top Corners

Step 7
Solve the Top Corners

HINT:  Hold the cube with red in front. Turn the top 
layer until the red and blue edge piece is solved as in 
the picture, and then repeat the sequence below until 
the yellow and blue edge piece is also solved, on the 
right side. Now turn the whole cube so that white is the 
“Front” face.  If the top white edge isn’t solved, just do 
the sequence once more, followed by “U” to position all 
the edges properly.

HINT:   Find a corner piece that’s in the right place, 
and hold the cube with that piece above your right 
thumb. In the picture, this piece is the blue, yel-
low, and red piece.  Don’t turn the top layer at all, 
because you will mess up the edges that you just 
solved in step 5. Now do the sequence below once 
or twice to put the other 3 corners into the right 
places. If you can’t find a corner piece in the right 
place, just do the sequence below once before you 
start this step.

HINT:  Hold the cube with red in front. Keep turning the 
top layer until the upper-front-right corner needs to be 
flipped, to have blue on top, like in the picture. Do the 
sequence below either 2 or 4 times to flip the corner so 
that blue is on top. Note: As you work through this step, 
lower layer colors may become scrambled. Don’t worry, 
just keep going! With red still in front, keep turning the 
top layer and do the sequence again whenever needed 
to flip the upper-front-right corner piece. When all the 
corners have been flipped, just turn the layer to solve the 
cube. Congratulations, you’ve done it!

Before

Before

After

After

R • U • Ri • U • R • U • U • Ri
U • R • Ui • Li • U • Ri • Ui • L (Ri • Di • R • D)

x 2 or 4

Before After

OR

Billions of Combinations,
One Solution!

RUBIK’S® Cube is the incredibly addictive, multi-
dimensional challenge that has fascinated puzzle fans 
around the world. Over 250 million cubes have been sold and 
at least one in every five people in the world has twisted, 
jumbled and enjoyed this immensely popular puzzle.

RUBIK’S® Cube has been called “the perfect puzzle” and 
“the best puzzle ever.” With a few turns, you mix up its small 
colored cubes. Now match the cubes back up again to make 
every side a solid color. You can solve RUBIK’S® Cube from 
any starting point and from any topsy-turvy arrangement of 
colors.  With the right twists, anybody can do it, and with 
43 quintillion (43,252,003,274,489,856,000) combinations, no 
challenge is ever the same!

RUBIK’s Facts: 22.95 seconds! That’s how long a high school 
student from Los Angeles took to unscramble the cube and 
win the Budapest world championship in 1982.

Dan Knights from the USA won the 2003 Rubik’s Games 
Championship held in Toronto, Canada. His average time 
was just 20 seconds. 

The Original Cube is part of an exciting series of puzzles 
designed to challenge your mind and capture your 
imagination. Twist and turn the colors & pieces and you’ll 
find an intricate challenge that you won’t want to put down.

We will be happy to hear your questions or comments about this game. 
Please write to: Hasbro Games, Consumer Affairs Dept., P.O. Box 
200, Pawtucket, RI 02862 USA. Tel: 888-836-7025 (toll free). European 
consumers please write to: Hasbro UK Ltd., Hasbro Consumer Affairs, 
P.O. BOX 43, Caswell Way, Newport, Wales, NP19 4YD, or telephone our 
helpline on 00 800 2242 7276. 

©RUBIK’S®. All Rights Reserved. RUBIK’S® and RUBIK’S® CUBE are 
registered trademarks of Seven Towns Ltd. Used under license. Method: 
©Dan Knights 2003. Manufactured for and distributed by Hasbro. The 
HASBRO and MB names and logos are trademarks of Hasbro.©2010 
Hasbro, Pawtucket, RI 02862. All Rights Reserved. TM & ® denote U.S. 
trademarks.
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About your Rubik’s Cube 
RUBIK’S Cube is just one of a series of exciting puzzles 
designed to challenge your mind and capture your imagi-
nation. With amazing movement of color and pieces, 
each puzzle offers an intricate challenge that is hard 
to put down. And just in case it has you stumped, this 
7-Step Solution Guide will help you master the challenge.

RUBIK Fact: RUBIK’S Cube was invented by Erno Rubik, a 
Hungarian Professor of Architecture and Design. Within 
one year of its launch in 1980, it became the fastest-
selling puzzle the world has ever known. Rubik’s Cube 
is now the best-selling puzzle ever, with over 250 million 
cubes sold.

RUBIK Fact: Most cubes can be solved in only 17 moves 
with the aid of a computer, and theoretically there is no 
cube that requires more than 20 twists to solve. Some 
people can solve the cube in under 45 moves from any 
scrambled position; and a few can even solve the cube 
blindfolded!

The 7-Step Solution Guide 
Each step involves a sequence of twists of the 
cube to move a particular square. To solve the cube, 
just repeat the steps!

Each face of the cube is assigned a letter (shown 
below). Each step is made up of a sequence of twists (a 
one quarter-turn of the face of the cube). To complete 
the sequence for each step, twist one face of the cube, 
then twist the next face, and so on, for the complete 
sequence. The letter ‘i’ means inverse, or counter-
clockwise. Before you start each move, be sure to place 
your thumbs on the F side of the cube, as shown in the 
illustration. This will ensure that your cube is properly 
oriented to execute the move.

How each step works Step 1
Solve the Upper Green Cross

Step 2
Solve the Green Corners

	 Step 3
Solve the Middle Layer Edges

Step 4
Solve the Upper Blue Cross

Turn clockwise
R - Right Face
L - Left Face
B - Back Face
D - Down Face
F - Front Face
U - Upper Face
?i - Inverse 
(turn Counter-
clockwise)

Important!
To turn a face 
clockwise, 
imagine you 
are facing that 
side of the 
cube.

Each step can be used to solve up to FOUR pieces if there 
are none solved when you start the step. Please note that 
these illustrations display a sample of a situation on your 
cube for ONE of the possible FOUR pieces needing to be 
solved. In many cases, you will need to rotate the cube to a 
new starting face (with red, orange, yellow or white center 
square) and repeat the instructions in order to place/rotate 
all of the pieces in that step before moving on. The end result 
will only come AFTER all four sides of the cube have been 
through that step’s sequence and all the pieces are in their 
proper location and oriented properly to match the surround-
ing center square colors. As such, you may have to repeat 
the same step a few times with different sides as the starting 
face until all the pieces are solved.

B -Twist the Back Face a 
quarter turn clockwise

Ri - Twist the Right Face a quarter 
turn counter-clockwise

Example 
turns

HINT:  To solve the green cross, you have to solve each 
green edge piece on your own, one-by-one.  The tricky 
part is not messing up the ones you’ve already solved. 
First solve the red-green edge, then the white-green 
edge, then the orange-green edge, then the blue-green 
edge.  You have to figure out this part for yourself. Should 
you ever have an edge piece in the correct place but 
flipped the wrong way, use this step to flip it without 
affecting the other three green edges.  Just hold the 
cube with the piece in the upper-right position as in the 
picture below, and do the sequence Ri • U • Fi • Ui. The 
edge piece will now be solved, and you can work on the 
next edge piece.

HINT:  Find a corner piece in the bottom layer that 
belongs on top.  Turn the bottom layer until that piece is 
directly below its home in the top layer. Hold the cube 
with the piece at the lower-front-right and its home at 
the upper-front-right, as in the picture, and then do the 
sequence Ri • Di • R • D, 1, 3, or 5 times until that corner 
is solved. If you find a corner piece that’s already in the 
top layer but it’s in the wrong spot or flipped the wrong 
way, just hold the cube with that piece in the upper 
front right position, and do Ri • Di • R • D once.  Now 
the piece is in the bottom layer, and you can solve it as 
described above.

HINT:  Now flip the cube over so green is on the bottom. 
Try to find the red-yellow edge piece. If it’s in the top 
layer, turn it until the edge matches one of the pictures 
below. Then do the corresponding sequence to solve it. 
If the red-yellow edge piece is somewhere in the middle 
layer, but it’s in the wrong place or flipped the wrong 
way, hold the cube so that the red-yellow edge is in 
the front-right position, and do either sequence once. 
(This may require you to rotate the cube to a new face). 
After the move, the piece is in the top layer, and you can 
solve it as described above. Repeat this for the other 3 
middle-layer edges.

HINT:   Turn the top layer until the edges match one of 
these pictures. If you do the sequence below once and 
you still don’t have a blue cross, then repeat this step 
until you do. It doesn’t matter which face you start with. 
Note: In this step, there will be other blue pieces show-
ing on your cube that do not appear in these diagrams.

Ri • U • Fi • Ui (Ri • Di • R • D)
x 1, 3 or 5

F • R • U • Ri • Ui • Fi

U • R • Ui • Ri
Ui • Fi • U • F

Ui • Fi • U • F
U • R • Ui • Ri
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Step 5
Solve the Top Edges

Step 6
Solve the Top Corners

Step 7
Solve the Top Corners

HINT:  Hold the cube with red in front. Turn the top 
layer until the red and blue edge piece is solved as in 
the picture, and then repeat the sequence below until 
the yellow and blue edge piece is also solved, on the 
right side. Now turn the whole cube so that white is the 
“Front” face.  If the top white edge isn’t solved, just do 
the sequence once more, followed by “U” to position all 
the edges properly.

HINT:   Find a corner piece that’s in the right place, 
and hold the cube with that piece above your right 
thumb. In the picture, this piece is the blue, yel-
low, and red piece.  Don’t turn the top layer at all, 
because you will mess up the edges that you just 
solved in step 5. Now do the sequence below once 
or twice to put the other 3 corners into the right 
places. If you can’t find a corner piece in the right 
place, just do the sequence below once before you 
start this step.

HINT:  Hold the cube with red in front. Keep turning the 
top layer until the upper-front-right corner needs to be 
flipped, to have blue on top, like in the picture. Do the 
sequence below either 2 or 4 times to flip the corner so 
that blue is on top. Note: As you work through this step, 
lower layer colors may become scrambled. Don’t worry, 
just keep going! With red still in front, keep turning the 
top layer and do the sequence again whenever needed 
to flip the upper-front-right corner piece. When all the 
corners have been flipped, just turn the layer to solve the 
cube. Congratulations, you’ve done it!
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R • U • Ri • U • R • U • U • Ri
U • R • Ui • Li • U • Ri • Ui • L (Ri • Di • R • D)

x 2 or 4

Before After
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Billions of Combinations,
One Solution!

RUBIK’S® Cube is the incredibly addictive, multi-
dimensional challenge that has fascinated puzzle fans 
around the world. Over 250 million cubes have been sold and 
at least one in every five people in the world has twisted, 
jumbled and enjoyed this immensely popular puzzle.

RUBIK’S® Cube has been called “the perfect puzzle” and 
“the best puzzle ever.” With a few turns, you mix up its small 
colored cubes. Now match the cubes back up again to make 
every side a solid color. You can solve RUBIK’S® Cube from 
any starting point and from any topsy-turvy arrangement of 
colors.  With the right twists, anybody can do it, and with 
43 quintillion (43,252,003,274,489,856,000) combinations, no 
challenge is ever the same!

RUBIK’s Facts: 22.95 seconds! That’s how long a high school 
student from Los Angeles took to unscramble the cube and 
win the Budapest world championship in 1982.

Dan Knights from the USA won the 2003 Rubik’s Games 
Championship held in Toronto, Canada. His average time 
was just 20 seconds. 

The Original Cube is part of an exciting series of puzzles 
designed to challenge your mind and capture your 
imagination. Twist and turn the colors & pieces and you’ll 
find an intricate challenge that you won’t want to put down.

We will be happy to hear your questions or comments about this game. 
Please write to: Hasbro Games, Consumer Affairs Dept., P.O. Box 
200, Pawtucket, RI 02862 USA. Tel: 888-836-7025 (toll free). European 
consumers please write to: Hasbro UK Ltd., Hasbro Consumer Affairs, 
P.O. BOX 43, Caswell Way, Newport, Wales, NP19 4YD, or telephone our 
helpline on 00 800 2242 7276. 

©RUBIK’S®. All Rights Reserved. RUBIK’S® and RUBIK’S® CUBE are 
registered trademarks of Seven Towns Ltd. Used under license. Method: 
©Dan Knights 2003. Manufactured for and distributed by Hasbro. The 
HASBRO and MB names and logos are trademarks of Hasbro.©2010 
Hasbro, Pawtucket, RI 02862. All Rights Reserved. TM & ® denote U.S. 
trademarks.
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INSTALLING GAP SOFTWARE 
 

 

The acronym “GAP” stands for “Groups, Algorithms, and Programming,” and it’s 

a free software program that can be used in the study of finite groups as well as 

other aspects of abstract algebra.  The best thing about it is that it’s free and it‘s 

also very useful.  The worst thing is that the documentation is not always very 

clear.  Consequently, in the next chapter, “How to Use GAP (Part 1),” I give 

examples of the coding that must be entered in order to do several of basic 

things in group theory that we’ve talked about so far such as finding the size and 

the elements of a group.  In this chapter, though, I just try to show you how to 

download and install GAP software on a Windows machine. 

 

You can begin by going to http://www.gap-system.org/, and there you will see 

something similar to the image below.. 
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Next, click on the “Downloads” link on the left, find the file that fits your operating 

system, and once it’s downloaded, double-click on it to install it. 

 

 
 

 

After GAP has been installed, it will appear in your list of programs as follows if 

you have installed the Windows version. 
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When you launch the program, it will take a minute or so to load the library and 

all the subroutine packages.  When done, though, this or something similar is 

what you will see. 
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The GAP program, as you might expect, is driven by syntax which means that all 

the commands must be entered in just the right way.  For a program like this, I’ve 

found that the best way to learn it is to have good examples you can copy and 

follow, and that’s what I present in the chapter “How to Use GAP (Part 1)” that 

follows this one.  There is also online documentation, but it is not always easy to 

find the examples you need or even to follow the ones you find.  To get to the 

documentation, though, click on the link on the left that says, “Documentation.” 
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From this page, the links to “Tutorial” and “Reference Manual” under “Manuals” 

are both pretty good.  The manual “Abstract Algebra with GAP” is also excellent.  

And anything else you need to know, you can probably figure out from perusing 

the webpage for GAP and from doing Internet searches.  Enjoy! 

 

And in closing, here is a quick example of me using GAP to find the group 

generated by a couple of permutations and to also find the size of the group and 

the elements of the group. 

 

 



 41

How to use gap (part 1) 

 

 

In my experience, the best way to learn how to use a program like GAP is by 

learning the commands that help you do those things that you’ll probably need or 

want to do most often.  Below is your first set of introductory commands for using 

GAP software.  After launching GAP, I recommend that you type in each 

command exactly as written and see what happens when you hit the return key.  

GAP is case-sensitive, and that means that if I’ve written something below with a 

capital letter, then you need to also write it with a capital letter.  On the other 

hand, sometimes (but not always!) parentheses can be substituted for brackets.  

Notice, too, that just about every command ends with a semicolon. 

 

1. How can I redisplay the previous command in order to edit it? 

 

Press down on the control key and then also press p.  In other words, “Ctrl p”. 

 

 

2. If the program gets in a loop and shows you the prompt “brk>” instead of 

“gap>”, how can I exit the loop? 

 

Press down on the control key and then also press d.  In other words, “Ctrl d”. 

 

 

3. How can I exit the program? 

 

Either click on the “close” box for the window, or type “quit;” and press 

“Enter.” 
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4. How do I find the inverse of a permutation? 

 

gap> a:=(1,2,3,4); 

(1,2,3,4) 

gap> a^-1; 

(1,4,3,2) 

 

 

5. How can I multiply permutations and raise permutations to powers? 

 

gap> (1,2)*(1,2,3); 

(1,3) 

 

gap> (1,2,3)^2; 

(1,3,2) 

 

gap> (1,2,3)^-1; 

(1,3,2) 

 

gap> (1,2,3)^-2; 

(1,2,3) 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> b:=(1,2); 

(1,2) 

 

gap> a*b; 

(2,3) 
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gap> a^2; 

(1,3,2) 

 

gap> a^-2; 

(1,2,3) 

 

gap> a^3; 

() 

gap> a^-3; 

() 

 

gap> (a*b)^2; 

() 

 

gap> (a*b)^3; 

(2,3) 

 

 

6. How can I create a group from permutations, find the size of the group, and 

find the elements in the group? 

 

gap> a:=(1,2); 

(1,2) 

 

gap> b:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a,b); 

Group([ (1,2), (1,2,3) ]) 
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gap> Size(g1); 

6 

 

gap> Elements(g1); 

[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 

 

gap> g2:=Group([(1,2),(1,2,3)]); 

Group([ (1,2), (1,2,3) ]) 

 

gap> g3:=Group((1,2),(2,3,4)); 

Group([ (1,2), (2,3,4) ]) 

 

 

7. How can I create a cyclic group of order 3? 

 

gap> a:=(1,2,3); 

(1,2,3) 

 

gap> g1:=Group(a); 

Group([ (1,2,3) ]) 

 

gap> Size(g1); 

3 

 

gap> Elements(g1); 

[ (), (1,2,3), (1,3,2) ] 

 

gap> g2:=Group((1,2,3)); 

Group([ (1,2,3) ]) 
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gap> g3:=CyclicGroup(IsPermGroup,3); 

Group([ (1,2,3) ]) 
 

 

8. How can I create a multiplication table for the cyclic group of order 3 that I just 

created? 

 

gap> ShowMultiplicationTable(g1); 

 

*          | ()          (1,2,3)     (1,3,2) 

--------+--------------------------------- 

()         | ()          (1,2,3)     (1,3,2) 

(1,2,3) | (1,2,3)  (1,3,2)     () 

(1,3,2) | (1,3,2)  ()             1,2,3) 

 

 

9. How do I determine if a group is abelian? 

 

gap> g1:=Group((1,2,3)); 
Group([ (1,2,3) ]) 
 
gap> IsAbelian(g1); 
true 
 
gap> g2:=Group((1,2),(1,2,3)); 
Group([ (1,2), (1,2,3) ]) 
 
gap> IsAbelian(g2); 
false 

 

 

10. What do I type in order to get help for a command like “Elements?” 

 

gap> ?Elements 
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Something from something creation 

 

 

We’ve talked a lot about permutations and groups that can be generated by 

permutations, but now I want to mention an application that is unlikely to be 

brought up in formal courses on group theory.  I want to mention something from 

something creation.  This is not the type of creation that is preceded by a 

wonderful “aha” moment.  Instead, it is the type of creation where we take what is 

currently present and just make a different arrangement (permutation) of what 

already exists.  Or, as I say, the only difference between a clean room and a 

messy room is how things are arranged.  One is simply a permutation of the 

other. 

 

In real life, we tend to engage in something from something creation on a daily 

basis.  For example, straightening up your room, washing clothes, or filling a 

glass with water are all examples of something from something creation.  In each 

instance we are taking items that are already present and just creating a different 

permutation of them.  And, again, this is something we tend to do on a daily basis, 

because without this daily cleanup our environment tends to slip into disarray. 

 

Since something from something creation involves permutations, that means that 

we are also talking about groups of permutations such as those we encounter in 

group theory.  In a sense, our daily world is an expanded version of Rubik’s cube, 

and we should be trying to find those permutations of reality that make it better 

for everyone.  Thus, for now, we are making the following points: 

• Something from something creation involves just creating a different 

arrangement of what’s already present in your life. 

• The collection of all possible permutations of your environment is a 

permutation group. 

• If you want to change your life, move some things around! 
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Summary (part 1) 

 

 

On the one hand, we’ve covered a lot of material about group theory that is likely 

entirely new to you, but on the other hand, we’ve barely scratched the surface!  

Much more is yet to come.  Nonetheless, at this point you want to be familiar with 

the following items: 

• The algebraic definition of a group. 

• Clock arithmetic and the integers modulo n. 

• Cyclic groups. 

• Symmetry and group theory. 

• Permutations and group theory. 

• Any group may be expressed as a group of permutations. 

• A multiplication table for a group. 

• Groups acting on a set of objects. 

• Rubik’s cube. 

• GAP software. 

• Our lives are full of cycles. 

• Our lives are full of symmetry. 

• We can engage in something from something creation and change our 

lives for the better by forming better permutations of what already exists! 
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practice (part 1) 
 

 

Below are a few things you should do before moving on to Part 2, and they are 

important because they will help solidify and give you hands-on experience with 

the things we’ve been talking about. 

 

1. Write down from memory the mathematical definition of a group.  Construct 

your own explanation of what each part of the definition means. 

 

2. Each one of the examples below fails to be a group.  For each given example, 

identify at least one part of the definition of a group that fails to apply. 

 

The integers under subtraction. ( ),− . 

 

The integers under division, ( ),÷ . 

 

The real numbers under multiplication, ( ),⋅ . 

 

The positive real numbers under division, ( ),+ ÷ . 

 

3. Using addition modulo 4, write down an addition table for 4 . 

 

4. Identify as many patterns as possible in the pictures below.  What cyclic 

groups would you associate with any of these patterns?  What symmetry do 

you notice in your own place of residence or work?  Answers will vary.  

(NOTE:  At this point we’ve focused primarily on cycles and cyclic groups, 

and we can rightly say that every group is built up from cycles and their 

interactions.  However, in Part 2 we will discover other types of groups 
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besides the cyclic groups.) 
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5. What are some of the repetitive cycles that you go through on a daily or 

weekly basis? 

 

6. How many different permutations can you make of the letters a,b,c?  How 

many different permutations can you make of the letters a,b,c,d? 

 

7. Using the instructions included in this document, solve Rubik’s cube. 

 

8. Perform the calculations below first by hand and then check your results 

using GAP software. 

 

(1,2)(1,3) = ? 

 

(1,2)(3,4) = ? 

 

(1,2,3,4)2 = ? 

 

[(1,2)(1,3)]-1 = ? 

 

(1,2)-1 = ? 

 

9. Using GAP software, find the group generated by (1,2) and (1,3), find its size, 

list its elements, and generate its multiplication table. 

 

10. Give recent examples of ways in which you have engaged in something from 

something creation.  In other words, list ways in which you have created 

different permutations of your current reality. 
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practice (part 1) – answers 
 

Below are a few things you should do before moving on to Part 2, and they are 

important because they will help solidify and give you hands-on experience with 

the things we’ve been talking about. 

 

1. Write down from memory the mathematical definition of a group.  Construct 

your own explanation of what each part of the definition means. 

 

A group is a nonempty set G along with a binary operation that satisfies the 

following conditions: 

 

(Closure)  For any two elements a and b in G, we have that ab is an element 

of G. 

 

(Associativity)  For any three elements a, b, and c in G, we have that (ab)c = 

a(bc). 

 

(Identity)  There exists an element e in G such that for any element a in G we 

have that ae = a = ea. 

 

(Inverses)  For any element a in G, there exists an element a-1 such that aa-1 

= e = a-1a. 

 

If the following property also holds, then we call G an abelian or commutative 

group: 

 

(Commutativity)  For any a and b in G, ab = ba. 
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2. Each one of the examples below fails to be a group.  For each given example, 

identify at least one part of the definition of a group that fails to apply. 

 

The integers under subtraction. ( ),− . 

The associative law fails since (8-4)-2 = 4-2 = 2 while 8-(4-2) = 8-2 = 6.  

Additionally, there is no identity element.  For example, if 8-e=8, then we 

should have e=0.  But since 0-(8) = -8 instead of 8, 0 doesn’t work as an 

identity.  Also, if there is no identity, then we can’t even talk about inverses. 

 

The integers under division, ( ),÷ . 

The associative law fails since (8/4)/2 = 2/2 = 1 while 8/(4/2) = 8/2 = 4.  Also, 

closure fails since ½ is not an integer.  Similarly, even though 1 functions as 

an identity element, an integer like 2 does not have a multiplicative inverse 

that is an integer whose product with 2 results in 1. 

 

The real numbers under multiplication, ( ),⋅ . 

Closure and associativity hold true and the number 1 functions as an identity 

element, but the number 0 has no multiplicative inverse that you can multiply 

0 by in order to get 1. 

 

The positive real numbers under division, ( ),+ ÷ . 

The associative law fails since (8/4)/2 = 2/2 = 1 while 8/(4/2) = 8/2 = 4.  

However, closure, identity, and inverse properties do appear to be satisfied. 

 

 

3. Using addition modulo 4, write down an addition table for 4 . 

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2  
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4. Identify as many patterns as possible in the pictures below.  What cyclic 

groups would you associate with any of these patterns?  What symmetry do 

you notice in your own place of residence or work?  Answers will vary.  

(NOTE:  At this point we’ve focused primarily on cycles and cyclic groups, 

and we can rightly say that every group is built up from cycles and their 

interactions.  However, in Part 2 we will discover other types of groups 

besides the cyclic groups.) 
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There seem to be 5 identical steps on the stairs in the picture.  This symmetry 

suggests a cyclic group of order 5. 

 

There are 4 identical light switches on the wall at the bottom of the stairs.  This 

symmetry suggests a cyclic group of order 4. 

 

Each light switch can be switched on or off.  If we let our operation be a flip, then 

one flip turns it on while two flips takes us back to where we started.  This 

symmetry suggests a cyclic group of order 2. 

 

The design under the table at the top of the stairs can be reflected across a 

vertical axis of symmetry.  This symmetry suggests a cyclic group of order 2. 

 

The design in the rectangular part above the table contains a piece that can be 

reflected about both vertical and horizontal axes in order to create the entire 

design.  Each separate reflection by itself suggests a cyclic group of order 2.  In 

Part 2 of this book, however, we will discover other types of groups that can 

incorporate both reflections into a single group.  For now, though, we’ll only focus 

on cyclic groups. 

 

And within the semicircle at the top we see 4 identical “pizza slices.”  This 

symmetry suggests a cyclic group of order 4. 
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In the tile design above we could take a single square and move it from west to 

east or from south to north or along a diagonal from southwest to northeast or 

along a diagonal from northwest to southeast.  If we take any of these directions 

and imagine the tiles extending to infinity, then a single square tile can generate 

what we call an infinite cyclic group that is isomorphic to the integers.  For 

example, no movement corresponds to 0 while movement by 2 squares in one 

direction corresponds to 2 and movement by 2 squares in the opposite direction 

corresponds to -2. 

 

Additionally, each square can be rotated about its center through angles that are 

multiples of 90°  in order to generate a cyclic group of order 4.  Or, you could 

think of taking a single side of a single square and moving it from, for example, 

left side to top side to right side to bottom side and then back to left side.  This 

symmetry also suggests a cyclic group of order 4. 
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Each individual leaf has bilateral symmetry that suggests a cyclic group of order 

2.  The elements of this group consist of either doing nothing at all (the identity) 

or doing a flip about the axis of symmetry.  However, in addition to the bilateral 

symmetry of a single leaf, one may glide each leaf a bit along a stem and then 

reflect it across the stem.  This results in what is called a “glide reflection.” 

 

 

5. What are some of the repetitive cycles that you go through on a daily or 

weekly basis? 

 

A cycle that I repeat fairly regularly is to wake up, drink coffee, work, eat lunch, 

nap, eat dinner, watch TV with my wife, sleep, and then repeat.  This activity 

defines a cyclic group of order 8. 

 

 

6. How many different permutations can you make of the letters a,b,c?  How 

many different permutations can you make of the letters a,b,c,d? 

 

Six permutations.  Also, we can derive this result by realizing that if we are 

constructing a particular permutation, then we have 3 choices for the first 

letter, 2 for the second, and 1 for the last letter.  This means that the total 

number of permutations we can construct is (3)(2)(1)=6. 
abc bac cab
acb bca cba  

 

Twenty-four permutations.  Also, we can derive this result by realizing that if 

we are constructing a particular permutation, then we have 4 choices for the 

first letter, 3 choices for the second letter, 2 for the third letter, and 1 for the 

last letter.  This means that the total number of permutations we can construct 

is (4)(3)(2)(1)=24. 
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abcd bacd cbad dbca
abdc badc cbda dbac
acbd bcad cabd dcba
acdb bcda cadb dcab
adbc bdac cdba dabc
adcb bdca cdca dacb  

 

 

7. Using the instructions included in this document, solve Rubik’s cube. 

 

Done! 

 

 

8. Perform the calculations below first by hand and then check using GAP 
software. 
 
(1,2)(1,3) = (1,2,3) 
gap> (1,2)*(1,3); 
(1,2,3) 
 
(1,2)(3,4) = (1,2)(3,4) = (3,4)(1,2) 
gap> (1,2)*(3,4); 
(1,2)(3,4) 

 
(1,2,3,4)2 = (1,2,3,4)(1,2,3,4) = (1,3)(2,4) 
gap> (1,2,3,4)^2; 
(1,3)(2,4) 
 
[(1,2)(1,3)]-1 = (1,2,3)-1 = (3,2,1) = (1,3,2) 
gap> ((1,2)*(1,3))^-1; 
(1,3,2) 
 
(1,2)-1 = (1,2) = (2,1) 
gap> (1,2)^-1; 
(1,2) 

 
 
 

9. Using GAP software, find the group generated by (1,2) and (1,3), find its size, 
list its elements, and generate its multiplication table. 
 
gap> a:=(1,2); 
(1,2) 
 
gap> b:=(1,3); 
(1,3) 
 
gap> g:=Group(a,b); 
Group([ (1,2), (1,3) ]) 
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gap> Size(g); 
6 
 
gap> Elements(g); 
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ] 
 
gap> ShowMultiplicationTable(g); 
*       | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
--------+------------------------------------------------ 
()      | ()      (2,3)   (1,2)   (1,2,3) (1,3,2) (1,3) 
(2,3)   | (2,3)   ()      (1,2,3) (1,2)   (1,3)   (1,3,2) 
(1,2)   | (1,2)   (1,3,2) ()      (1,3)   (2,3)   (1,2,3) 
(1,2,3) | (1,2,3) (1,3)   (2,3)   (1,3,2) ()      (1,2) 
(1,3,2) | (1,3,2) (1,2)   (1,3)   ()      (1,2,3) (2,3) 
(1,3)   | (1,3)   (1,2,3) (1,3,2) (2,3)   (1,2)   () 
 
 
 
 

10. Give recent examples of ways in which you have engaged in something from 

something creation.  In other words, list ways in which you have created 

different permutations of your current reality. 

 

I combined hot water and coffee in a cup and drank it.   

I moved the trash from the kitchen to the garbage can.   

I put on some clothes.   

I cleaned up my office.   

I pulled some weeds in the backyard. 



 
 

Study Group Theory.  Be a God! 
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