
ABSTRACT ALGEBRA WITH GAP

Julianne G. Rainbolt
and

Joseph A. Gallian

ABSTRACT ALGEBRA WITH GAP

TABLE OF CONTENTS

Preface .2
Note to Instructor . 3
Chapter -1: An Introduction to GAP . 5
Chapter 0: Preliminaries . 8
Chapter 1: Introduction to Groups . 12

Chapter 1 Figures . 14
Chapter 2: Groups . 15
Chapter 3: Finite Groups; Subgroups . 17
Chapter 4: Cyclic Groups .23
Chapter 5: Permutation Groups . 26

Chapter 5 Figures . 32
Chapter 6: Isomorphisms . 33
Chapter 7: Cosets and Lagrange’s Theorem . 35
Chapter 8: External Direct Products .37
Chapter 9: Normal Subgroups and Factor Groups . 40
Chapter 10: Group Homomorphisms . 43
Chapter 11: Fundamental Theorem of Finite Abelian Groups . 48
Chapter 12: Introduction to Rings . 51
Chapter 13: Integral Domains . 54
Chapter 14: Ideals and Factor Rings . 56
Chapter 15: Ring Homomorphisms . 57
Chapter 16: Polynomial Rings . 60
Chapter 17: Factorization of Polynomials . 63
Chapter 18: Divisibility in Integral Domains . 64
Chapter 19: Vector Spaces .65
Chapter 20: Extension Fields . 67
Chapter 21: Algebraic Extensions . 68
Chapter 22: Finite Fields . 70
Chapter 23: Geometric Constructions .72
Chapter 24: Sylow Theorems . 73
Chapter 25: Finite Simple Groups . 74
Chapter 26: Generators and Relations . 75
Chapter 27: Symmetry Groups . 78

Chapter 27 Figures . 80
Chapter 28: Frieze Groups and Crystallographic Groups . 81
Chapter 29: Symmetry and Counting . 82
Chapter 30: Cayley Digraphs of Groups . 84
Chapter 31: Introduction to Algebraic Coding Theory . 87
Chapter 32: An Introduction to Galois Theory .92
Chapter 33: Cyclotomic Extensions . 95

1

ABSTRACT ALGEBRA WITH GAP
Julianne G. Rainbolt and Joseph A. Gallian

PREFACE

There is a growing interest in the use of discovery based instruction in undergraduate mathematics
courses. Although abstract algebra is primarily a course that emphasizes theory and proofs, stu-
dents can benefit from the many computational aspects of the core concepts of groups and rings. In
this volume and accompanying website we provide exercises that are to be done using the software
GAP. These exercises are designed to provide students with a convenient way to generate data with
the intent of increasing understanding and enabling them to make and test conjectures. Most of
the exercises do not require programming on the part of the students. We have included some
exercises where students are asked to write their own programs modeled after ones that are given
in the manual.

This manual grew out of lab exercises created by one of the authors, Julianne Rainbolt, to supple-
ment the textbook “Contemporary Abstract Algebra” by Joseph A. Gallian. The chapters of this
manual correspond to the eighth edition of this text. However, this manual has been revised in such
a way that it does not have to be used with this text. It can instead be used to supplement most
introductory courses in abstract algebra. There are a few exceptions to this. Chapters 28, 30 and
31 assume the students are familiar with the notation and content of the corresponding chapters
in Gallian’s book. Also Exercises 6 - 9 in Chapter 0 of the manual use material from Chapter 0 of
Gallian’s book. These four exercises and three chapters of the manual can be skipped if Gallian’s
book is not the textbook being used. For the situation where Gallian’s text is being used we have
included references to this text. These references are provided within square brackets at the end
of certain exercises, theorems and examples. We believe that “Abstract Algebra with GAP” o↵ers
students a convenient way to explore the basic concepts of groups and rings. No experience with
GAP is assumed.

The authors would like to thank those who have provided us with ideas and suggestions for this
manual. In particular, major parts of Chapters -1, 2, 3 and 5 come from Loren Larson at Saint Olaf
College (retired) and Russell Blyth at Saint Louis University. The content of Chapter 25, is based
on course material written by Christine Stevens at Saint Louis University. We would particularly
like to thank Alexander Hulpke for his technical knowledge and helpful responses on questions we
had about GAP. He also provided many suggestions which we have incorporated into this manual.
In addition, comments made by Russell Blyth, Peter Brooksbank, Allen Hibbard, David Jackson,
and Charles Wright have led to many improvements in this manual.

2

ABSTRACT ALGEBRA WITH GAP
Julianne G. Rainbolt and Joseph A. Gallian

NOTE TO INSTRUCTOR

This note to instructors is intended to provide an overview of how the authors view the possible
uses of this manual. Using software in an upper division mathematics course can have its place if
it somehow provides a way for the student to better understand the material. There are at least
five ways GAP can be a useful pedagogical tool:
1) as a fancy calculator,
2) as a way to provide large or complicated examples,
3) as a way for students to write simple computer algorithms,
4) as a way for producing large amounts of data so that the student can formulate a conjecture and
5) as a means for students to work in collaboration.

GAP can be used as a fancy calculator and thus eliminate some repetitive hand calculations that
the student may have otherwise had to do. For example, once a student knows how to find all the
conjugacy classes of a group of small order, GAP can be used to provide all the conjugacy classes
of a group of order 80.

GAP has many built in functions, operations, and algebraic structures. Thus GAP can be used
to quickly provide numerous examples, many more and of more complexity than could be done by
hand. For example, all fourteen groups (and their properties) of order 16 could be easily examined
during a small portion of a single class period, using GAP.

The students can begin writing simple computer algorithms using GAP commands. Writing an
algorithm causes the student to solidify a new concept. For example, in order to write an algorithm
that finds all the nilpotent elements in a group, the student has to be able to very precisely write
code for checking nilpotency.

GAP also provides a means for producing large amounts of data quickly. A student can then
look for patterns and formulate conjectures. When a student “discovers” a theorem before it is
proved he may be more likely to remember and understand it. Also theorems that may be beyond
the scope of the course could be introduced in this way. In some cases the patterns that develop
help students understand the proof of the theorem or provide them with a possible approach to try
to prove the theorem. In other cases the patterns that develop can be explained geometrically, and
thus provide students with another way to understand the concept. Also in some cases, deceptive
patterns can lead to incorrect conjectures and thus initiate an informative discussion on how to
reformulate and test a new conjecture.

Doing projects on a computer lends itself to group work. For example, if a large amount of data is
being produced in order to formulate a conjecture about a group of prime power order, students in

3

a group could each pick a certain number of primes to test and then compare their results as a group.

All five of the above pedagogical approaches are used in the exercises in this manual. The third,
however, is not emphasized as much as the other four. The intent of this manual is to provide a
supplement to a more traditional way of teaching abstract algebra. A course where the the main
focus is to use abstract algebra concepts, learn how to prove abstract algebra theorems and under-
stand abstract algebra structures, is assumed. We want to keep to a minimum the amount of time
a student spends learning software code. Only an extremely small portion of the power of GAP is
introduced to the students. In fact, some of the built in functions are purposely not introduced,
as we do not want GAP to do too much of the work for the student. In addition, only the GAP
commands that are going to be specifically used in a particular chapter are introduced.

The exercises in the later chapters of this lab manual do not assume that the student has worked
all previous lab manual exercises. Thus exercises can be picked or skipped as the instructor views
appropriate. On the other hand, the GAP material in Chapters -1 to Chapter 22 assumes that
the GAP commands introduced in the text of the previous chapters has been covered. Thus we
recommend that the student read each chapter of the lab manual as the corresponding material
from the text is covered, even if no computer exercises are assigned. After Chapter 22, the GAP
content no longer builds from chapter to chapter, and so the lab manual chapters can be done in
any order from Chapters 23 - 33. We suggest instructors use the Instructor Solution Manual that
accompanies this lab manual. It contains additional GAP commands and context which instructors
will find useful when teaching with this software.

4

-1 Chapter: An Introduction to GAP

This chapter provides the instructions needed to use this manual as well as the very basics on using
GAP. Much of the material in this chapter is based on material written by Russell Blyth at Saint
Louis University. GAP is a free software program. This manual assumes you have installed one of
the 4.6 versions of GAP. If you do not have this version already, you can download a copy from:

http://www.gap-system.org/

A reference manual and extensive tutorial for the software GAP are also available at this website.

Some Commands That You Will Use Often

1) To exit from GAP type quit;
2) Type <ctl>-p to redisplay the previous command
3) If an error causes GAP to enter a loop (and gives you the prompt brk>) you can exit the loop
by typing <ctl>-D or quit;.
4) Type ? followed by a subject name to get help about that subject.

The ? command, listed above, is particularly useful. This can be used whenever you forget
the exact command for something or when you wonder if GAP has a command for a particular
operation. For example, suppose you want to know how to denote multiplication in GAP. Type

gap> ?multiplication

and GAP returns a list of subtopics on multiplying di↵erent algebraic structures.

Careful: GAP distinguishes between upper and lower case letters.
Careful: Always put a semicolon at the end of a command. Two semicolons at the end of a com-
mand will cause GAP to execute the command but not list the output of the command.

Getting Use to GAP

We will now do some exercises to get you comfortable with GAP.

At the gap prompt type (5 + 3) ⇤ 9; then hit the enter key. Your screen should look like this:

gap > (5 + 3) ⇤ 9;
72

At the prompt type (5 + 3) ⇤ 9 (without the semicolon) and then hit enter.

gap> (5 + 3) ⇤ 9

>

5

Notice nothing happens. GAP does not know you have finished the command because there is no
semicolon. Now type ; and then hit return. You should now get the 72.

gap> (5 + 3) ⇤ 9
>;
72

gap>

Now type (5 + 3 ⇤ 9; and hit enter. Your screen should look like

gap> (5 + 3 ⇤ 9;
Syntax error:) expected

An error message occurred because the number of left parentheses and right parentheses does not
match. Type <ctl>-p to redisplay the previous command. Then use your arrow keys to insert
the needed parenthesis.

gap> (5 + 3 ⇤ 9;
Syntax error:) expected

gap> (5 + 3) ⇤ 9;
72

gap>

GAP can be used to test the equality of two values. At the GAP prompt type 6=9; and then hit enter.

gap> 6=9;

false

GAP returned the value of false since 6 is not equal to 9. Now use GAP to complete the following
exercises. Don’t forget to put a semicolon at the end of a command.

-1.1 Compute 3121.
-1.2 Determine if 225 + (45 ⇤ 51, 777) is greater than 34 million.

You can assign values to variables in GAP by using :=. This allows you to refer to an object with
a name. The name of the variable is called an identifier. In the following example a is an identifier.

gap> a := (10 + 7) ⇤ (9� 6);
51

gap> a;

51

gap> a ⇤ (a-1);

2550

gap> a:=14;;

gap> a ⇤ (a-1);

6

182

Notice when an identifier is assigned a value that value is echoed on the next line. Because two
semicolons occurred in the line a:= 14;; the value of a was not echoed. Almost any sequence of
letters and digits containing at least one letter can be used as an identifier. Use GAP to complete
the following exercises.

-1.3 Assign the value 4 to the identifier b.
-1.4 Assign the value 522456 to the identifier bignumber.
-1.5 Compute b + bignumber.

This completes the computer exercises for Chapter -1. Exit GAP by typing quit; at the gap
prompt.

7

0 Chapter: Preliminaries

Properties of Integers

The software GAP contains many predefined functions. Functions in GAP begin with a capital
letter. The function Gcd gives the greatest common divisor of two nonzero integers. The function
Lcm gives the least common multiple of two nonzero integers. Examples:

gap> Gcd(123, 456);

3

gap> Lcm(123,456);

18696

Theorem: For any nonzero integers a and b, there exist integers s and t such that the greatest
common divisor of a and b equals as+ bt. [Gallian, Chapter 0, Theorem 0.2]

The function Gcdex provides the numbers s and t in this theorem. An example:

gap> Gcdex(4,15);

rec(coeff1 := 4, coeff2 := -1, coeff3 := -15, coeff4 := 4, gcd := 1)

gap>

The above output tells us that the gcd of 4 and 15 is 1 and that gcd(4, 15) = 4 ⇤ 4 + (�1) ⇤ 15.
[Gallian, Chapter 0, Example 2] That is, coeff1 and coeff2 are integers s and t such that
gcd(a, b) = as+ bt. (The output coeff3 and coeff4 are integers m and n such that 0 = am+ bn.)

Exercises
Don’t forget functions begin with capital letters.

0.1 Compute the gcd of 8701 and 10057.
0.2 Compute the lcm of 25 and 80.
0.3 Use Gcdex to find integers s and t so that gcd(8701, 10057) = 8701s+ 10057t.

Modular Arithmetic

GAP can perform modular arithmetic. For example

gap> 23 mod 6;

5

gap> 5 mod 6 + 11 mod 6;

10

gap> 10 mod 6;

4

gap> (5 mod 6 + 11 mod 6) mod 6;

8

4

Careful: Blank spaces are needed around mod. (23mod6 will be viewed as an identifier by GAP.)

Functions (Mappings)

You can create your own functions within GAP. One way to do this is to use the maps-to operator
�>. This is a minus sign and a greater than sign with no blank space between. The following is
an example of creating a function called square which takes a number and squares it.

gap> square:=x -> x^2;

function(x) ... end

Now we can use this function:

gap> square(2);

4

gap> square(5);

25

Exercises
Use GAP to do the following exercise.

0.4 Define a function SumFirstnInt which takes as input a positive integer n and outputs the sum
1 + 2 + 3 + . . . + n. Then use this function to find this sum for n = 100 and n = 987. (Hint: Use
the fact that the sum of the first n positive integers equals n(n+ 1)/2.)

On the website for this manual, there is a file of subroutines that will be used in some of the
exercises. For example, suppose we wanted to use the function f(t) = t3 + 3 � 2t while in GAP.
This function is called newfunction in the subroutine folder. Place this subroutine in the folder
where you have GAP installed. If you open the subroutine you will see it contains the following.

newfunction:= function(t)

local x;

x:= t^3 + 3 - 2*t;

return x;

end;

Now whenever we run GAP we can use this function by first reading it in or by copying the above
text and pasting it into GAP:

gap> Read("newfunction");

gap> newfunction(6);

207

We can also easily edit this function by just opening and editing the file “newfunction”. If for

9

example we want another function, called newfunction2, to be f(t) = t3 + 3 � 5t. Open up
“newfunction.” Change newfunction to newfunction2 and the 2 to a 5:

newfunction2:= function(t)

local x;

x:= t^3 + 3 - 5*t;

return x;

end;

Then save the file as “newfunction2”. In GAP we can now use this function:

gap> Read("newfunction2");

gap> newfunction2(3);

15

The remainder of this chapter assumes you are using the text “Contemporary Abstract Algebra”
by Joseph Gallian. The remainder of the material in this chapter is not needed to understand the
remaining chapters in this manual.

Read through [Gallian, Chapter 0, Example 4]. Type in

gap> 3953988164 mod 9;

2

This verifies that 39539881642 could be a valid postal service money order number. In contrast, if
we enter

gap> 3955988164 mod 9;

4

we see that 39559881642 is not a valid money order number. Here is another way to do this using
GAP:

gap> 3953988164 mod 9 = 2;

true

gap> 3955988164 mod 9 = 2;

false

Exercises
Use GAP to do the following exercises.

0.5 Define a function that calculates the United States Postal Service check digit of a 10 digit
number. [Gallian, Chapter 0, Example 4]

0.6 Use your function from Exercise 0.5 to verify that 3953981642 is a valid United States Postal
Service money order number. Now make one digit incorrect. Does your function detect the error?

10

Enter the number with the 9 in position 2 replaced with a 0. Was the error detected? Explain why
or why not. Enter the number with two digits transposed. Was the error detected? Explain why
or why not. [Gallian, Chapter 0, Computer Exercise 1]

0.7 Write a GAP function that will test the validity of a UPC number. (See [Gallian, Chapter
0, Example 5].) Save this function as a file that you can use again later. Use it to verify that
090146003386 is valid. Now enter the same number with one digit incorrect. Was the error de-
tected? Enter the number with two consecutive digits transposed. Was the error detected? Enter
the number with the 3 and the 8 transposed. Was the error detected? Explain why or why not.
Enter the number with the 9 and the 1 transposed. Was the error detected? Explain why it was
or was not. [Gallian, Chapter 0, Computer Exercise 2]

0.8 Write a GAP function that will test the validity of a UPS number. Use it to verify that
8733456723 is valid. Now enter the same number with one digit incorrect. Was the error detected?
Enter the number with two consecutive digits transposed. Was the error detected? Enter the num-
ber with the 8 replaced by 1. Was the error detected? Explain why or why not. [Gallian, Chapter
0, Computer Exercise 3]

0.9 Write a GAP function that will test the validity of an ISBN_10 number. (See [Gallian, Chapter
0, Exercise 49].) Use it to verify that the 0395872456 is valid. Now enter the same number with
one digit incorrect. Enter the number with two digits transposed (they need not be consecutive).
Was the error detected? [Gallian, Chapter 0, Computer Exercise 5]

11

1 Chapter: Introduction to Groups

The symmetries of a regular n-gon is called the dihedral group of order 2n. We will denote this
group by Dn. Consider the square with vertices labeled as in Figure 1.1 of this manual. (See the
last page of this chapter for figures.) The way GAP denotes the element in D4 that is a rotation by
90 degrees is (1, 2, 3, 4). This notation means vertex 1 goes to vertex 2, vertex 2 to 3, vertex 3 to 4
and 4 to 1. (Chapter 5 will give more details on this notation). Similarly, the horizontal reflection
is denoted by (1, 2)(3, 4). (See Figure 1.2.)

The command in GAP for the dihedral group Dn is DihedralGroup(IsPermGroup,2n). For exam-
ple to get D4 we type:

gap> d4:= DihedralGroup(IsPermGroup,8);

Group([(1,2,3,4), (2,4)])

gap> Elements(d4);

[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3)]

The command Elements listed the elements in the group. The identity is denoted by (). The
command Size gives the number of elements in the group (that is, the order of the group).

gap> Size(d4);

8

The command Size is also useful to find the number of elements in a set. Elements can be multi-
plied (the operation is functional composition):

gap> (1,4)(2,3)*(2,4);

(1,2,3,4)

Careful: GAP multiplies these elements from left to right whereas many textbooks (including Gal-
lian’s) multiply these elements from right to left.

Exercises

1.1 Explain geometrically why a reflection followed by a reflection is a rotation. [Gallian, Chapter
1, Exercise 6] Using GAP take a reflection in D4 and multiply it by a reflection in D4. What
rotation do you get?

1.2 Make a conjecture about what a rotation followed by a reflection is for any dihedral group.
What about a reflection followed by a rotation? Test your conjecture by using GAP to compute
the product of a reflection followed by a rotation for several pairs of reflections and rotations. You
may want to draw a picture of the n-gon to help you determine which rotation or reflection you
are getting.

1.3 Let r1, r2, r3 represent rotations in Dn and let f1, f2, and f3 represent reflections in Dn.
Determine whether r1r2f1r3f2f3r3 is a rotation or a reflection. [Gallian, Chapter 1, Exercise 10]

12

1.4 Using GAP, find elements A,B and C in D5 such that AB = BC but A 6= C. [Gallian,
Chapter 1, Exercise 11]

13

14

14

Rotation by

270 degrees

Rotation by

180 degrees

Rotation by

90 degrees

Identity

 Horizontal

 Reflection

 Vertical

 Reflection

 Diagonal

 Reflection

2

4

3

1

3

1 4

2 3

4 3

Diagonal

Reflection

Figure 1.2

Figure 1.1

() (1,2,3,4) (1,3)(2,4) (1,4,3,2)

(1,4)(2,3) (2,4) (1,3)(1,2)(3,4)

3 2

4 1

2 1

3 4

1 4

2 3

4

1

3

2

4 1

3 2

2 3

1 4

3 4

2 1

1 2

4 3

4 1

23

2 Chapter: Groups

Let U(n) be the set of all positive integers less than n and relatively prime to n. The set U(n) is
a group under multiplication modulo n.

For this chapter you will need the file named “ulist”. (Thanks goes to Alexander Hulpke for
pointing out this revised version of “ulist”.) Fetch the file “ulist” from the website for this manual
and place it in the folder in which you have GAP stored. The appendix at the end of this chapter
contains a print out of the file “ulist.” To use the file “ulist” while in GAP type:

gap> Read("ulist");

This command reads in a copy of the file “ulist”. (Alternatively, you can just copy and paste
the contents of this file into GAP.)

Careful: If you exit GAP and then reenter GAP you will need to read in the file “ulist” again,
if you want to continue to use it. For any n the file “ulist” contains a function, also called ulist,
which will list the elements of U(n). For example:

gap> ulist(100);

[ZmodnZObj(1, 100), ZmodnZObj(3, 100), ZmodnZObj(7, 100),

ZmodnZObj(9, 100), ZmodnZObj(11, 100), ZmodnZObj(13, 100),

ZmodnZObj(17, 100), ZmodnZObj(19, 100), ZmodnZObj(21, 100),

ZmodnZObj(23, 100), ZmodnZObj(27, 100), ZmodnZObj(29, 100),

ZmodnZObj(31, 100), ZmodnZObj(33, 100), ZmodnZObj(37, 100),

ZmodnZObj(39, 100), ZmodnZObj(41, 100), ZmodnZObj(43, 100),

ZmodnZObj(47, 100), ZmodnZObj(49, 100), ZmodnZObj(51, 100),

ZmodnZObj(53, 100), ZmodnZObj(57, 100), ZmodnZObj(59, 100),

ZmodnZObj(61, 100), ZmodnZObj(63, 100), ZmodnZObj(67, 100),

ZmodnZObj(69, 100), ZmodnZObj(71, 100), ZmodnZObj(73, 100),

ZmodnZObj(77, 100), ZmodnZObj(79, 100), ZmodnZObj(81, 100),

ZmodnZObj(83, 100), ZmodnZObj(87, 100), ZmodnZObj(89, 100),

ZmodnZObj(91, 100), ZmodnZObj(93, 100), ZmodnZObj(97, 100),

ZmodnZObj(99, 100)]

The output ZmodnZObj(3, 100), for example, means the element 3 mod 100.

Exercises

2.1 Using GAP determine the size of U(n) for n = 9, 27, 81, 243, 5, 25, 125. Make a conjecture about
the size of U(pk) where p is a prime not equal to 2 and k is a positive integer. Do not count the
elements in U(n), instead use Size to make GAP count the elements for you! [Gallian, Chapter 2,
Computer Exercise 2]

15

2.2 Using GAP determine the size of U(n) for n = 18, 54, 162, 486, 50, 250, 98, 242. Make a con-
jecture about the relationship between the size of U(2pk) and the size of U(pk) where p is a prime
not equal to 2. [Gallian, Chapter 2, Computer Exercise 2]

2.3 Let r and s be relatively prime integers. Use GAP to help you make a conjecture about
the size of U(rs) in terms of the sizes of U(r) and U(s).

2.4 Recall from Chapter 0 how to do modular arithmetic in GAP. Use the function Gcdex to
find the inverses of the elements in U(100). For example, to find the inverse of 3 in U(100) use
Gcdex(3,100).

The command GL(n,p) creates the general linear group of n⇥n invertible matrices with entries in
Zp and SL(n,p) creates the special linear group of n⇥n invertible matrices with entries in Zp and
determinate equal to one. For example the following creates GL(3,Z5) and SL(3,Z5):

gap> g:= GL(3,5);

GL(3,5)

gap> s:= SL(3,5);

SL(3,5)

We can use our Size command to find the number of elements (the order) in these groups:

gap> Size(g);

1488000

gap> Size(s);

372000

Exercises

2.5 Find the number of elements in GL(2,Zp) and SL(2,Zp) for p = 3, 5, 7 and 11. What relation-
ship do you see between the orders of GL(2,Zp) and SL(2,Zp) and p�1? Does this relationship hold
for p = 2? Based on these examples does it appear that p always divides the order of SL(2,Zp)?
What about p�1? What about p+1? Guess a formula for the order of SL(2,Zp). Guess a formula
for the order of GL(2,Zp). [Gallian, Chapter 2, Computer Exercise 4].

Appendix for Chapter 2
The following is the file “ulist” which is used in this chapter:

ulist:= function(n)

local s,i,o;

o:= One(Integers mod n);

s:= n-> Filtered([1..n-1], i -> Gcd(i,n) = 1);

return s(n)*o;

end;

16

3 Chapter: Finite Groups; Subgroups

In order to do the exercises in this section you will need to read into GAP the files “ulist” and
“cyclic.” (Or you can copy and paste the contents of these files into GAP.) The file “cyclic” was
written by Loren Larson at St. Olaf College and then revised per comments from Alexander Hulpke.
The file “ulist” should already be in your GAP folder. Fetch the file “cyclic” from the website for
this manual and place the file in your GAP folder. The appendix at the end of this chapter contains
a print out of the file “cyclic.”

GAP has many useful features that allow you to examine subgroups:

gap> G:= DihedralGroup(IsPermGroup, 16);

Group([(1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6)])

gap> Elements(G);

[(), (2,8)(3,7)(4,6), (1,2)(3,8)(4,7)(5,6), (1,2,3,4,5,6,7,8), (1,3)(4,8)(5,7),

(1,3,5,7)(2,4,6,8), (1,4)(2,3)(5,8)(6,7), (1,4,7,2,5,8,3,6), (1,5)(2,4)(6,8),

(1,5)(2,6)(3,7)(4,8), (1,6)(2,5)(3,4)(7,8), (1,6,3,8,5,2,7,4), (1,7)(2,6)(3,5),

(1,7,5,3)(2,8,6,4), (1,8,7,6,5,4,3,2), (1,8)(2,7)(3,6)(4,5)]

gap> a:= G.1;

(1,2,3,4,5,6,7,8)

gap> b:= G.2;

(2,8)(3,7)(4,6)

gap> H:= Subgroup(G, [a]);

Group([(1,2,3,4,5,6,7,8)])

gap> Elements(H);

[(), (1,2,3,4,5,6,7,8), (1,3,5,7)(2,4,6,8), (1,4,7,2,5,8,3,6),

(1,5)(2,6)(3,7)(4,8), (1,6,3,8,5,2,7,4), (1,7,5,3)(2,8,6,4),

(1,8,7,6,5,4,3,2)]

The first command above assigns the name G to the dihedral group of order 16 (the group of
symmetries of a regular 8-gon). From the next command listing the elements in G, we can see that
both (1, 2, 3, 4, 5, 6, 7, 8) and (1, 8)(2, 7)(3, 6)(4, 5) are elements of G. More generally, (1, 2, 3, . . . , n)
represents a rotation of 360/n degrees; for n even, (1, n)(2, n�1)(3, n�2)...(n2 ,

n
2 +1) is a reflection;

and for n odd, (1, n)(2, n � 1)...(n�1
2 , n�1

2 + 2) is a reflection. The next two commands assign the
names a and b to two generators of G. The next command assigns the name H to the cyclic subgroup
of G generated by a. Notice that H is a subgroup of G of order 8.

gap> K:= Subgroup(G, [a,b]);

Group([(1,2,3,4,5,6,7,8), (2,8)(3,7)(4,6)])

gap> Size(K);

16

This first command above assigns the name K to the subgroup of G generated by a and b. That is,
K is the subgroup of G obtained by taking all possible finite strings of a’s and b’s. Notice that after
this command GAP echoes the generators of the subgroup. By typing in Elements(K) or Size(K)

17

we can see that K = G.

In the line gap> K:= Subgroup(G, [a,b]); the use of [a,b] is a list in GAP. In general, square
brackets enclose lists. In this case, we are listing the generators of K.

gap> c:= (1,5)(2,6)(3,7)(4,8);;

gap> L:= Subgroup(G, [a,c]);

Group([(1,2,3,4,5,6,7,8), (1,5)(2,6)(3,7)(4,8)])

gap> Size(L);

8

Notice that the subgroup L is a proper subgroup of G. In fact, c is a power of a, as we can see
from the list of elements of H. Thus L is a subgroup of H. But L and H have the same order, so
L = H. Also notice the use of a double semicolon at the end of the line defining c. This causes
GAP not to echo the definition of c on the next line. (Compare the lines defining a and b with the
line defining c.)

gap> M:= Subgroup(G, [a^ 2,b]);

Group([(1,3,5,7)(2,4,6,8), (2,8)(3,7)(4,6)])

gap> Elements(M);

[(), (2,8)(3,7)(4,6), (1,3)(4,8)(5,7), (1,3,5,7)(2,4,6,8), (1,5)(2,4)(6,8),

(1,5)(2,6)(3,7)(4,8), (1,7)(2,6)(3,5), (1,7,5,3)(2,8,6,4)]

Notice M is another subgroup of G of order 8, not equal to H:

gap> M=H;

false

The function cyclic(n,a) which is in the file “cyclic” produces the list of elements in the cyclic
subgroup of U(n) generated by the element a in U(n). For example,

gap> cyclic(15,7);

[ZmodnZObj(7, 15), ZmodnZObj(4, 15), ZmodnZObj(13, 15),

ZmodnZObj(1, 15)]

gives the subgroup of U(15) generated by 7. (The output ZmodnZObj(7, 15), for example,
means the element 7 mod 15 in U(15).) If you use this function incorrectly and try to generated a
subgroup generated by a when a is not in U(n), this function will return empty brackets:

gap> cyclic(15,3);

[]

The following is a list of some other commands that you might find useful.

1) The command to find the center of the group G is Center(G).

18

2) The command to find the centralizer of an element a in a group G is Centralizer(G,a).

3) The command to find the order of an element a in a group G is Order(a).

4) The command IsAbelian(G) tells you whether or not the group G is Abelian.

5) The command IsCyclic(G) tells you whether or not the group G is cyclic.

There is no need for you to memorize a large collection of GAP commands. Just type in ? followed
by a key word describing what you want GAP to do, and the software will provide helpful comments
and examples on using commands. For example, say we want to find the order of an element in a
group and wonder exactly how to type this in GAP. Type:

gap> ?order

GAP then provides many possible help topics:

Help: several entries match this topic - type ?2 to get match [2]

[1] Reference: Order

[2] AutomGrp (not loaded): Order

[3] kbmag (not loaded): Order

[4] Reference: Ordering of Booleans

[5] Reference: Orderings

[6] Reference: Orderings on families of associative words

[7] Reference: order of the prime residue group

[8] Reference: OrderMod

[9] Reference: OrderedPartitions

[10] Reference: ordering booleans

[11] Reference: ordering of records

[12] Reference: order of a list, collection or domain

[13] Reference: OrderingsFamily

[14] Reference: OrderingByLessThanFunctionNC

[15] Reference: OrderingByLessThanOrEqualFunctionNC

[16] Reference: OrderingOnGenerators

[17] Reference: OrderOfRewritingSystem

[18] Reference: OrderingOfRewritingSystem

[19] Reference: order of a group

[20] Reference: OrdersTom

[21] Reference: OrdersClassRepresentatives

[22] Reference: Order (for a class function)

[23] Reference: ordered partitions internal representation

[24] AutomGrp (not loaded): OrderUsingSections

[25] Citrus (not loaded): OrderEndomorphisms (monoid of order preserving transformations)

[26] CTblLib: Ordering of Characters and Classes

19

[27] FR (not loaded): Order of FR elements

[28] FR (not loaded): Order of groups

[29] GRAPE (not loaded): OrderGraph

[30] GRAPE (not loaded): OrderGraph

[31] GUAVA (not loaded): order of polynomial

[32] hecke (not loaded): OrderOfQ

[33] kbmag (not loaded): OrderingOfKBMAGRewritingSystem

[34] kbmag (not loaded): OrderingOfRewritingSystem

[35] RCWA (not loaded): Orders of commutators

[36] RCWA (not loaded): Order of an rcwa permutation

[37] RCWA (not loaded): Order of an rcwa mapping of Z x Z

[38] RDS (not loaded): Ordered signatures by quotient images

It looks like the nineteenth one is the one we want so type:

gap> ?19

GAP then provides a description of the Order command and examples.

Exercises
Use GAP to help you work the following exercises.

3.1 Determine whether the group U(n) is cyclic for n = 3, 9, 27, 5, 25, 125, 7, 49, 343. (Use the
function cyclic discussed above but not the command IsCyclic.) Make a conjecture. Test your
conjecture for other values of n.

3.2 Determine whether the group U(n) is cyclic for n = 6, 18, 54, 10, 50, 250, 14, 98, 686. Make
a conjecture.

3.3 Determine whether the group U(n) is cyclic for n = 8, 16, 32. Modify your conjectures above if
necessary. Test your conjecture for other values of n.

3.4 Determine whether the group U(n) is cyclic for n = 12, 20, 28, 44, 52, 15, 21, 33, 39, 51,
57, 69, 35, 55, 55, 65, 85. Modify your conjectures above if necessary.

3.5 Must the centralizer of an element of a group be Abelian? If not, give an example in Dn

for some n.

3.6 Must the center of a group be Abelian? If not, give an example in Dn for some n.

Recall the file “ulist” contains a function that lists all the elements in the group U(n). Read
this file into GAP. In the following we are going to investigate the relationship between the order
of an element and the order of the inverse of that element. Consider U(15), which is a subset of Z15.

gap> e := Elements(ulist(15));

20

[ZmodnZObj(1, 15), ZmodnZObj(2, 15), ZmodnZObj(4, 15), ZmodnZObj(7, 15),

ZmodnZObj(8, 15), ZmodnZObj(11, 15), ZmodnZObj(13, 15), ZmodnZObj(14, 15)]

gap> e[3];

ZmodnZObj(4, 15)

From the above output we see that U(15) contains the numbers 1, 2, 4, 7, 8, 11, 13, and 14
(mod 15). The first command above assigns the name e to the list of elements in U(15). Since 4
(mod 15) is the 3rd element in this list we can then refer to 4 as e[3], as is done in last above GAP
command. We can now determine the order of 4 in U(15).

gap> Order(e[3]);

2

gap> Order(Inverse(e[3]));

2

Exercises

3.7 Compute the orders of the elements 3, 7, 53, and 61 in U(100). Compute the orders of the
inverses of these elements.

3.8 Compute the orders of the elements 3, 13, 153, and 317 in U(430). Compute the orders of
the inverses of these elements.

3.9 Pick a symmetric group Sn for some particular n and call it G in GAP. (The command to create
the symmetric group S5, for example, in GAP is SymmetricGroup(5).) The command Random(G)

will give you a random element in G. Find the order of a random element in G and the order of its
inverse. Repeat this exercise for at least two other random elements of G and at least two other
symmetric groups.

3.10 Make a conjecture about the relationship between the order of an element and the order
of the inverse of that element.

3.11 Pick a symmetric group Sn for some particular n. Find the orders of two random elements
in your group and the order of their product. Repeat this exercise for at least four other pairs of
random elements of Sn and at least two other symmetric groups. Based on your results, what do
you think we can say about the order of ab in terms of the orders of a, b 2 Sn.

3.12 Repeat Exercise 3.11 for the groups GL(2,Zn) where n is some particular prime. (The com-
mand GL(2,p) in GAP sets up the group GL(2,Zp).)

The remainder of this chapter is not needed in the sequel. It is intended for students who would
like to learn more about GAP.

If you would like to see how a predefined function GAP is being computed you can do the fol-
lowing. For example, suppose we want to see how GAP is executing the IsCyclic function. Type:

21

gap> G:= DihedralGroup(IsPermGroup, 16);;

gap> obj:=[G];;

gap> code:= ApplicableMethod(IsCyclic,obj,1);

#I Searching Method for IsCyclic with 1 arguments:

#I Total: 7 entries

#I Method 5: ‘‘IsCyclic’’, value: 22

function(G) ... end

You can then have the code for IsCyclic printed on the screen:

gap> Print(code);

function (G)

if Length(GeneratorsOfGroup(G)) = 1 then

return true;

else

return TRY_NEXT_METHOD;

fi;

return;

end

gap>

Some predefined functions require more than one argument. All arguments need to be included in
the third entered line above (the line starting with gap> code:=).

Appendix for Chapter 3

The following is the file “cyclic” which is used in this chapter.

cyclic:= function(n,a)

local x, b, o ;

x:= [];

b:= 1;

o:= One(Integers mod n);

if Gcd(n,a) = 1 then

repeat

b:= b*a mod (n);

Add(x,b);

until b=1;

fi;

return x*o;

end;

22

4 Chapter: Cyclic Groups

We can describe a cyclic group of order n, as the group of all powers of the n-cycle (1, 2, . . . , n).
The following sets up the cyclic group of order 6 as the group of all powers of a 6-cycle.

gap> c6:= CyclicGroup(IsPermGroup, 6);

Group([(1,2,3,4,5,6)])

gap> Elements(c6);

[(), (1,2,3,4,5,6), (1,3,5)(2,4,6), (1,4)(2,5)(3,6), (1,5,3)(2,6,4), (1,6,5,4,3,2)]

gap> a:= c6.1;

(1,2,3,4,5,6)

gap> Elements(Subgroup(c6,[a^2]));

[(), (1,3,5)(2,4,6), (1,5,3)(2,6,4)]

The third command above assigns the name a to the generator of the group c6. The fourth
command is asking GAP for the elements in the subgroup of c6 generated by the element a2 (that
is, the subgroup consisting of all powers of a2). The output from this command says that this
subgroup contains only the identity, a2 and a4. As was done in Chapter 3, we can also use GAP
to determine a subgroup generated by two or more elements. For example the following shows the
subgroup of c6 generated by both a2 and a3:

gap> Elements(Subgroup(c6,[a^2, a^3]));

[(), (1,2,3,4,5,6), (1,3,5)(2,4,6), (1,4)(2,5)(3,6), (1,5,3)(2,6,4), (1,6,5,4,3,2)]

This is of course all of c6.

Exercises

4.1 Use GAP to list the subgroups of the following groups. Hint: The above explanation shows how
to generate subgroups of a group. Find which subgroups are generated by one element, which by
two elements, etc.
a) D4

b) the cyclic subgroup of D8 generated by (1, 2, 3, 4, 5, 6, 7, 8).
Draw the subgroup lattice for each of the above groups.

4.2 Let G be the cyclic group generated by an element a of order n. By the Fundamental Theorem
of Cyclic Groups there is exactly one subgroup of G of order k for each k that divides n. In addition,
by the Fundamental Theorem of Cyclic Groups, every subgroup of a cyclic group is cyclic. So this
subgroup of order k must be cyclic. Use GAP to find the smallest subgroup of G containing
a. a4 and a6 when n = 30
b. a10 and a2 when n = 30
c. a15 and a2 when n = 30
d. a9 and a12 when n = 30
e. a8 and a12 when n = 30
In each part a-e find an integer t such that this smallest subgroup is hati.

4.3 Repeat Exercise 4.2 for n = 60.

23

4.4 Formulate a conjecture that describes the smallest subgroup of a cyclic group G of order n
that contains ai and aj for any positive integers i, j and n, where a is a generator of G and i and
j are less than n. (You may have to do many more examples before you arrive at a conjecture.)

4.5 Again let G be the cyclic group generated by an element a of order n. Use GAP to find
the smallest positive integer t such that hati is the subgroup:
a. ha4i \ ha6i when n = 30
b. ha10i \ ha2i when n = 30
c. ha15i \ ha2i when n = 30
Hint: Type ?Intersection at the GAP prompt to see how to find intersections in GAP.

4.6 Repeat Exercise 4.5 for n = 60.

4.7 Formulate a conjecture that describes the smallest subgroup of a cyclic group G of order n
that contains haii \ haji for any integers i, j and n, where a is a generator of G and i and j are
less than n. (You may have to do many more examples before you arrive at a conjecture.)

In the remainder of this chapter you will need the file “orderFrequency”. Fetch this file o↵ the
website. This file contains the function orderFrequency which will tell you the number of ele-
ments of each order in a given group. For example:

gap> Read("orderFrequency");

gap> orderFrequency(c6);

[Order of element, Number of that order]=[[1, 1], [2, 1], [3, 2],

[6, 2]]

The output tells us that the cyclic group of order 6 has one element of order 1, one of order 2, two
of order 3 and two of order 6.

Exercises

4.8 Find the number of elements of each order in the cyclic groups of order 75 and 90.

4.9 Find the number of elements of each order in the dihedral groups D17, D25, D33 and D49.
Make a conjecture about the number of elements of order 2 in Dn.

4.10 Find the number of elements of order 2 in the dihedral groups D18 D26, D34 and D50. Make
a conjecture about the number of elements of order 2 in Dn. (Be careful that your conjectures for
Exercises 4.9 and 4.10 are not contradictory.)

4.11 Do you see any relationship between the orders of elements in a group and the order of
the group?

Let Cm denote the cyclic group of order m generated by an m-cycle. For any pair of positive

24

integers m and n, let Cm�Cn = {(a, b) | a 2 Cm, b 2 Cn}. For any pair of elements (a, b) and (c, d)
in Cm�Cn, define (a, b) ⇤ (c, d) = (a ⇤ c, b ⇤ d). This binary operation makes Cm�Cn into a group.
We can set up groups of this form in GAP. For example the following creates the group G = C4�C6:

gap> c4:= CyclicGroup(IsPermGroup, 4);

Group([(1,2,3,4)])

gap> c6:= CyclicGroup(IsPermGroup, 6);

Group([(1,2,3,4,5,6)])

gap> G:= DirectProduct(c4, c6);;

gap> IsCyclic(G);

false

Note that even though C4 and C6 are cyclic groups, the group C4 � C6 is not cyclic.

Exercises

4.12 Determine whether or not Cm�Cn is cyclic for (m,n) = (2, 2), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5),
(3, 6), (3, 7), (3, 8), (3, 9), and (4, 8). On the basis of this output, guess how m and n must be related
for Cm � Cn to be cyclic. [Gallian, Chapter 4, Computer Exercise 2]

Appendix for Chapter 4

The following is the file “orderFrequency” which is used in this chapter. (Thanks to Alexander
Hulpke for providing a revised version.)

orderFrequency:= function(g)

local h,w;

w:= [];

w:= h -> Collected(List(Elements(h), Order));

Print("[Order of element, Number of that order]=");

return w(g);

end;

25

5 Chapter: Permutation Groups

Consider the puzzle in Figure 5.1 at the end of this chapter. Think of the space in the middle
(without a number) as empty. You can slide the other numbers along any of the lines into an
empty spot but you can not lift or jump over other numbers. One rearrangement we can do is
move the disk in position 1 into the middle then move the disk in position 6 to position 1, then the
disk in position 5 to position 6, then the disk in position 4 to position 5, then the disk in position
3 to position 4, and then the disk in the middle to position 3. Denote this rearrangement by r. We
could also move the disk in position 1 to the middle, then move the disk in position 2 to position 1,
then move the disk in position 3 to position 2 and then move the disk in the middle to the position
3. Convince yourself that all possible rearrangements of Figure 5.1 can be obtained from taking a
finite combination of these two rearrangements. These rearrangements form a group. Enter this
group into GAP.

gap> G:= SymmetricGroup(6);

Sym([1 .. 6])

gap> r:=(1,3,4,5,6);

(1,3,4,5,6)

gap> s:=(1,3,2);

(1,3,2)

gap> K:= Subgroup(G, [r,s]);

Group([(1,3,4,5,6), (1,3,2)]);

gap> Elements(K);

The elements in the subgroup K describe all the possible arrangements of this puzzle. If you
want to know how to get the original arrangement of the puzzle into a particular arrangement, use
the Factorization command in GAP. For example, to see how to change the original arrangement
to the arrangement in Figure 5.2 type

gap> Factorization(K,(2,3,4));

x1^-1*x2*x1

The x1 denotes the first generator of K and x2 denotes the second generator of K. Thus the above
output from GAP tells us (2, 3, 4) = (1, 3, 4, 5, 6)�1 ⇤ (1, 3, 2) ⇤ (1, 3, 4, 5, 6). (Remember that GAP
multiplies permutations from left to right!) The element (1, 3, 4, 5, 6)�1 denotes the inverse of
(1, 3, 4, 5, 6). In terms of the puzzle, (1, 3, 4, 5, 6)�1 means reversing the loop (1, 3, 4, 5, 6), which is
the rearrangement (1, 6, 5, 4, 3). Note that (1, 3, 4, 5, 6)�1 = (1, 3, 4, 5, 6)4 and (1, 3, 2)�1 = (1, 3, 2)2.

Exercises

5.1 Indicate what arrangement of the puzzle in Figure 5.1 corresponds to the following permu-
tations. Use GAP to determine how (if possible) to get the following arrangements from the ar-
rangement in Figure 5.1.
a) (4,5,6)
b) (2,3)
c) (1,2)(3,4)

26

d) (1,2)(3,4)(5,6)
Check the answers to parts a and c by hand. The function Factorization(K,a) in GAP will re-
turn fail if a cannot be expressed in terms of the generators of K. [Gallian, Chapter 5, Example 9]

5.2 Repeat Exercise 5.1 for the puzzle in Figure 5.3. Hint: there are two permutations that
generate all possible permutations of this puzzle. Check the answer to part d by hand.

5.3 Let G be S12. The cycle structure of a permutation is the number of 2-cycles, 3-cycles, etc.
it contains when it is written as the product of disjoint cycles. For example (1,2,3)(4,5) and
(1,3,6)(2,7) have the same cycle structure. Let a = (1, 5, 10) and b = (1, 3, 5, 7, 9, 11). (Note a and
b are elements of G.)
a) What do you think will be the cycle structure of b2, b3 and b6? Check your answer using GAP.
b) Compute ab. What do you think will be the cycle structure of (ab)3 and (ab)4?

Make a cube out of paper or cardboard. Label the 8 vertices of the cube 1-8 as in Figure 5.4.
What do you think is the order of the group of rotations of the cube? Call this group G. It is a
subgroup of S8 because each rotation can be described by noting the movement of the 8 vertices.
Notice the element a = (1, 2, 3, 4)(5, 6, 7, 8) is in G since it represents a 90 degree rotation about
the axis passing through the centers of the front and back faces. Thus ak is in G for every power k.

gap> S:=SymmetricGroup(8);

Sym([1 .. 8])

gap> a:=(1,2,3,4)(5,6,7,8);

(1,2,3,4)(5,6,7,8)

gap> H:= Subgroup(S,[a]);

Group([(1,2,3,4)(5,6,7,8)])

gap> Elements(H);

[(), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8), (1,4,3,2)(5,8,7,6)]

Note that H 6= G since, for example, b = (1, 5, 8, 4)(2, 6, 7, 3) is in G.

gap> b:=(1,5,8,4)(2,6,7,3);

(1,5,8,4)(2,6,7,3)

gap> M:=Subgroup(S,[a,b]);;

gap> Elements(M);

[(), (2,4,5)(3,8,6), (2,5,4)(3,6,8), (1,2)(3,5)(4,6)(7,8),

(1,2,3,4)(5,6,7,8), (1,2,6,5)(3,7,8,4), (1,3,6)(4,7,5),

(1,3)(2,4)(5,7)(6,8), (1,3,8)(2,7,5), (1,4,3,2)(5,8,7,6),

(1,4,8,5)(2,3,7,6), (1,4)(2,8)(3,5)(6,7), (1,5,6,2)(3,4,8,7),

(1,5,8,4)(2,6,7,3), (1,5)(2,8)(3,7)(4,6), (1,6,3)(4,5,7),

(1,6)(2,5)(3,8)(4,7), (1,6,8)(2,7,4), (1,7)(2,3)(4,6)(5,8),

(1,7)(2,6)(3,5)(4,8), (1,7)(2,8)(3,4)(5,6), (1,8,6)(2,4,7),

(1,8,3)(2,5,7), (1,8)(2,7)(3,6)(4,5)]

gap> Size(M);

27

24

Convince yourself that every rotation of the cube is in M so G = M . Thus the rotational symme-
tries of a cube is a subgroup of S8 of order 24.

Exercises

5.4 Use GAP to describe the symmetry (1, 8, 3)(2, 5, 7) of the cube in terms of the generators a
and b.

The function CycleStructurePerm(a) in GAP gives the cycle structure of the permutation a.
The cycle structure of (1,2,3)(4,5)(6,7) for example, is denoted by [2,1]. (The first spot in the
bracket notation denotes the number of 2-cycles, the second spot the number of 3-cycles, etc.) The
cycle structure of (1,2,3)(4,5,6,7,8) is denoted by [,1,,1]. This means there are no 2-cycles, one
3-cycle, no 4-cycles and one 5-cycle. The absence of a number after a comma indicates there are
no cycles of that length.

gap> CycleStructurePerm((1,2,3)(4,5)(6,7));

[2, 1]

gap> CycleStructurePerm((1,2,3)(4,5,6,7,8));

[, 1, , 1]

The following function lists all the elements in a permutation group G that have the cycle structure
s:

gap> cstruc:= function(G,s)

> return Filtered(Elements(G), x -> CycleStructurePerm(x) = s);

> end;

function(G, s) ... end

(Thanks to Alexander Hulpke for providing this function.) Type this function into GAP or fetch it
from the website. We can now use this function to, for example, find all the elements in S6 that
have one 2-cycle and one 4-cycle:

gap> cstruc(SymmetricGroup(6),[1,,1]);

[(1,2)(3,4,5,6), (1,2)(3,4,6,5), (1,2)(3,5,6,4), (1,2)(3,5,4,6),

(1,2)(3,6,5,4), (1,2)(3,6,4,5), (1,2,3,4)(5,6), (1,2,3,5)(4,6),

(1,2,3,6)(4,5), (1,2,4,3)(5,6), (1,2,4,6)(3,5), (1,2,4,5)(3,6),

(1,2,5,3)(4,6), (1,2,5,6)(3,4), (1,2,5,4)(3,6), (1,2,6,3)(4,5),

(1,2,6,5)(3,4), (1,2,6,4)(3,5), (1,3,4,2)(5,6), (1,3,5,2)(4,6),

(1,3,6,2)(4,5), (1,3)(2,4,5,6), (1,3)(2,4,6,5), (1,3,2,4)(5,6),

(1,3,5,6)(2,4), (1,3,6,5)(2,4), (1,3)(2,5,6,4), (1,3)(2,5,4,6),

(1,3,2,5)(4,6), (1,3,4,6)(2,5), (1,3,6,4)(2,5), (1,3)(2,6,5,4),

(1,3)(2,6,4,5), (1,3,2,6)(4,5), (1,3,4,5)(2,6), (1,3,5,4)(2,6),

(1,4,3,2)(5,6), (1,4,6,2)(3,5), (1,4,5,2)(3,6), (1,4,2,3)(5,6),

(1,4,5,6)(2,3), (1,4,6,5)(2,3), (1,4)(2,3,5,6), (1,4)(2,3,6,5),

(1,4,6,3)(2,5), (1,4)(2,5,6,3), (1,4)(2,5,3,6), (1,4,2,5)(3,6),

28

(1,4,3,6)(2,5), (1,4,5,3)(2,6), (1,4)(2,6,5,3), (1,4)(2,6,3,5),

(1,4,2,6)(3,5), (1,4,3,5)(2,6), (1,5,3,2)(4,6), (1,5,6,2)(3,4),

(1,5,4,2)(3,6), (1,5,2,3)(4,6), (1,5,6,4)(2,3), (1,5,4,6)(2,3),

(1,5)(2,3,4,6), (1,5)(2,3,6,4), (1,5,6,3)(2,4), (1,5)(2,4,6,3),

(1,5,2,4)(3,6), (1,5,3,6)(2,4), (1,5)(2,4,3,6), (1,5,4,3)(2,6),

(1,5)(2,6,4,3), (1,5,3,4)(2,6), (1,5)(2,6,3,4), (1,5,2,6)(3,4),

(1,6,3,2)(4,5), (1,6,5,2)(3,4), (1,6,4,2)(3,5), (1,6,2,3)(4,5),

(1,6,5,4)(2,3), (1,6,4,5)(2,3), (1,6)(2,3,4,5), (1,6)(2,3,5,4),

(1,6,5,3)(2,4), (1,6)(2,4,5,3), (1,6,2,4)(3,5), (1,6,3,5)(2,4),

(1,6)(2,4,3,5), (1,6,4,3)(2,5), (1,6)(2,5,4,3), (1,6,3,4)(2,5),

(1,6)(2,5,3,4), (1,6,2,5)(3,4)]

Exercises

5.5 Use GAP to find the number of permutations in S9 of the following forms:
a) A product of a 4-cycle, and two 2-cycles (for example (1, 2, 3, 4)(5, 6)(7, 8))
b) A product of a 5-cycle and a 4-cycle
c) A product of three 3-cycles
d) A product of four 2-cycles.

5.6 Recall the command Centralizer(G,a) finds the centralizer of an element a in a group G.
Find the size of centralizer of each of the following elements in S9:
a) (1, 2, 3, 4)(5, 6)(7, 8) and (5, 1, 3, 4)(2, 6)(7, 8)
b) (1, 2, 3, 4, 5)(6, 7, 8, 9) and (1, 4, 9, 6, 7)(2, 3, 5, 8)
c) (1, 2, 3)(4, 5, 6)(7, 8, 9) and (1, 5, 8)(2, 4, 9)(3, 6, 7)
d) (1, 2)(3, 4)(5, 6)(7, 8) and (1, 9)(2, 8)(3, 7)(4, 6).
Based on these answers, for any element a 2 Sn, make a conjecture about the number of elements
in the centralizer of a and the number of element in the centralizer of any permutation in Sn with
the same cycle structure as a. Test your conjecture out for some elements of S7.

5.7 Find a relationship between the answers you obtained in each part of Exercises 5.5 and 5.6
and the order of S9.

5.8 Pick an element in S9 and call it a. Compare its cycle structure to the cycle structure of
the permutation bab�1 for
a) b = (1, 2, 3, 4, 5, 6, 7, 8, 9)
b) b = (1, 2)(3, 4)(5, 6)(7, 8)
c) b = (1, 2, 3, 4)(5, 6, 7, 8).

5.9 Repeat Exercise 5.8 for a di↵erent element a in S9.

5.10 Make a conjecture about, given two elements a and b in a group of permutations G, how
the cycle structure of a and bab�1 are related. Test your conjecture for a pair of elements in the
dihedral group D50.

29

5.11 Based on your conjecture in Exercise 5.10, make a conjecture about a relationship between
the order of an element a and the order of bab�1.

5.12 Recall the command for finding the order of an element a in GAP is Order(a). Let a = (1, 2).
For the elements b in Exercise 5.8 compute the orders of ab and ba. In these three cases is it true
that |ab| = |ba|?

The elements r = (1, 3, 4, 5, 6) and s = (1, 3, 2) above generated A6:

gap> Size(Group([(1,3,4,5,6), (1,3,2)]));

360

gap> Factorial(6)/2;

360

Using the fact that An is the only subgroup of Sn of order |Sn|/2, we know that r and s generate A6.

In the following exercises we investigate subgroups of Sn generated by two elements.

Exercises

5.13 Use GAP to help you conjecture what subgroup of Sn is generated by a = (1, 2) and b =
(1, 2, . . . , n).

5.14 For a fixed n, calculate the order of the subgroup of Sn generated by (1, x) and (1, 2, 3, . . . , n)
for various choices of x and n. What conditions on x and n are both necessary and su�cient for
(1, x) and (1, 2, 3, . . . , n) to generate Sn? (Thanks to Daniel Heath at Pacific Lutherian University
for providing this exercise.) [Gallian, Chapter 5, Computer Exercise 1]

5.15 Using GAP for at least eight values of n determine the subgroup of Sn generated by the
(n� 1)-cycle (1, 3, 4, 5, . . . , n) and the 3-cycle (1, 3, 2).

5.16 Using GAP for at least eight values of n determine the subgroup of Sn generated by the
(n� 1)-cycle (1, 3, 4, 5, . . . , n) and the 4-cycle (1, 4, 3, 2).

5.17 Explain why you get di↵erent subgroups of Sn in Exercises 5.15 and 5.16 depending on
whether n is even or odd and on whether the second generator is a 3 or 4-cycle.

5.18 For a fixed n, calculate the order of the subgroup of Sn generated by (1, x, y) and (1, 2, 3, . . . , n)
for various choices of x and y. Conjecture a necessary and su�cient condition involving x, y, and
n so that (1, x, y) and (1, 2, 3, . . . , n) generate Sn. (Thanks to Daniel Heath at Pacific Lutherian
University for providing this exercise.)

At this point, you may find it interesting to note how GAP updates the information about a
group (or other constructed object) as it determines characteristics of the group. For example,
create the subgroup of S5 generated by the permutations (1,3) and (1,4,5):

30

gap> g:= Group([(1,3), (1,4,5)]);

Group([(1,3), (1,4,5)])

The command KnownAttributesOfObject returns the current information GAP contains on your
group:

gap> KnownAttributesOfObject(g);

["LargestMovedPoint", "GeneratorsOfMagmaWithInverses",

"MultiplicativeNeutralElement"]

(You can use the the command line help, ? followed by the command, to see what any of
these three characteristics mean.) If we now compute with g and then reuse the command
KnownAttributesOfObject, we see that GAP now has more information about our group g:

gap> Size(g);

24

gap> KnownAttributesOfObject(g);

["Size", "OneImmutable", "LargestMovedPoint", "NrMovedPoints",

"MovedPoints", "GeneratorsOfMagmaWithInverses",

"MultiplicativeNeutralElement", "HomePcgs", "Pcgs", "GeneralizedPcgs",

"StabChainMutable", "StabChainOptions"]

In determining the order of our group, GAP went through constructions that determined these
9 new attributes.

31

32

2

3

4

6

5

1

Figure 5.1

1

46

5 2

3

Figure 5.2

Figure 5.4

1

3

4

6

8

7

2

5

1

26

5 3

4

Figure 5.3

6 Chapter: Isomorphisms

An automorphism is a map f : G ! G from a group G to itself that is operation preserving and both
one-to-one and onto. We are going to examine the possible automorphisms of a finite cyclic group.
Suppose we have a finite cyclic group G of order n generated by x. So G = {e, x, x2, x3, . . . , xn�1}.
Define the map fk : G ! G by fk(xi) = xik for i = 1, 2, 3, . . . , n�1. (Thus for example f2(x3) = x6.)
Then fk is a homomorphism. (Show this!) The question we are going to consider is when is fk an
automorphism? Since a finite cyclic group is finite and fk is a map from G back to G, if we can
show fk is onto, it will have to be one-to-one. Consider the specific example where G is the cyclic
group of order 8. As in Chapter 4 we will construct this group as all powers of an 8-cycle.

gap> G:= CyclicGroup(IsPermGroup, 8);

Group([(1,2,3,4,5,6,7,8)])

gap> Elements(G);

[(), (1,2,3,4,5,6,7,8), (1,3,5,7)(2,4,6,8), (1,4,7,2,5,8,3,6),

(1,5)(2,6)(3,7)(4,8), (1,6,3,8,5,2,7,4), (1,7,5,3)(2,8,6,4), (1,8,7,6,5,4,3,2)]

gap> a:= G.1;

(1,2,3,4,5,6,7,8)

gap> f:= x -> x^ 2;

function(x) ... end

gap> H:= Subgroup(G,[f(a)]);

Group([(1,3,5,7)(2,4,6,8)])

gap> Elements(H);

[(), (1,3,5,7)(2,4,6,8), (1,5)(2,6)(3,7)(4,8), (1,7,5,3)(2,8,6,4)]

gap> Size(H);

4

The third command above assigns a to the generator of the cyclic group of order 8. The fourth
command defines a function f that takes an element x to x2. H is the image of the map f . Note
that H is a proper subgroup of G, so f is not an automorphism.

gap> f:= x -> x^ 3;

function(x) ... end

gap> H:= Subgroup(G,[f(a)]);

Group([(1,4,7,2,5,8,3,6)])

gap> Size(H);

8

In this case f is an automorphism, since H = G.

Exercises

6.1 In the cyclic group of order 10, use GAP to determine which fk for k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
are automorphisms. Based on your results, formulate a conjecture that describes when fk is an
automorphism of the cyclic group of order n.

33

6.2 Let G and Ḡ be groups and let � : G ! Ḡ be an isomorphism. Then for all a 2 G the
order of a equals the order of �(a) [Gallian, Theorem 6.2, Part 5]. Is there a connection between
your conjecture and this fact? Explain.

34

7 Chapter: Cosets and Lagrange’s Theorem

Let G be a group of permutations of a set S. For each s 2 S the stabilizer of s in G is the subgroup
of G equal to {g 2 G | g(s) = s}. The orbit of s under G is the subset of S equal to {g(s) | g 2 G}.

The command Orbit(G,s) in GAP will give you the orbit of s underG. The command Stabilizer(G,s)
creates the subgroup of G that is the stabilizer of s. For example:

gap> G:=SymmetricGroup(8);

Sym([1 .. 8])

gap> a:= (1,2,3)(4,5,6);;

gap> b:= (7,8);;

gap> H:=Subgroup(G,[a,b]);

Group([(1,2,3)(4,5,6), (7,8)])

gap> Elements(H);

[(), (7,8), (1,2,3)(4,5,6), (1,2,3)(4,5,6)(7,8), (1,3,2)(4,6,5),

(1,3,2)(4,6,5)(7,8)]

gap> Orbit(H,1);

[1, 3, 2]

gap> Orbit(H,7);

[7, 8]

gap> Stabilizer(H,1);

Group([(7,8)])

gap> Stabilizer(H,7);

Group([(1,2,3)(4,5,6)])

gap> Elements(Stabilizer(H,7));

[(), (1,2,3)(4,5,6), (1,3,2)(4,6,5)]

Careful: Notice that the command Stabilizer(G,s) returns a statement describing the stabi-
lizer of s in G in terms of the generators of this stabilizer. To see all the elements in this group you
need to use the commands Elements(Stabilizer(G,s)).

Exercises

7.1 Find the number of elements in Orbit(G, s) for G = D10 and s = 1, 2, 3 and 4.

7.2 Find the number of elements in Stabilizer(G, s) for G = D10 and s = 1, 2, 3 and 4.

7.3 Repeat Exercises 7.1 and 7.2 for D49 and D50.

7.4 Make a conjecture about the number elements in Stabilizer(G, s) and in Orbit(G, s) for any
s 2 {1, 2, 3, . . . , n}.

7.5 Explain, geometrically, why your conjecture in Exercise 7.4 is true.

35

7.6 Generalize the conjecture made in Exercise 7.4 to other finite permutation groups. Use GAP to
help you formulate this conjecture.

36

8 Chapter: External Direct Products

In this chapter you will again need the file “orderFrequency”. You will need to read this file into
GAP in order to do the exercises in this section. The command to form external direct products is
DirectProduct. For example:

gap> C4:= CyclicGroup(IsPermGroup,4);

Group([(1,2,3,4)])

gap> S3:=SymmetricGroup(3);

Sym([1 .. 3])

gap> D:= DirectProduct(S3,C4);

Group([(1,2,3), (1,2), (4,5,6,7)])

gap> Size(D);

24

gap> Read("orderFrequency");

gap> orderFrequency(D);

[Order of element, Number of that order]=[[1, 1], [2, 7], [3, 2],

[4, 8], [6, 2], [12, 4]]

The first command above assigns the name C4 to the cyclic group of order 4 (generated by (1,2,3,4)).
The third command forms the direct product S3�C4. The next two lines tell us that S3�C4 has
24 elements. (The order of the external direct product of two finite groups G1 and G2 is |G1||G2|.)
From the last output above we see that S3�C4 has one element of order 1, seven elements of order
2, two elements of order 3, eight elements of order 4, two elements of order 6, and four elements of
order 12.

Exercises

8.1 Find the number of elements of order 5 in Z25 � Z5. [Gallian, Chapter 8, Example 4]

8.2 Find the number of cyclic subgroups of order 10 in Z100�Z25. (Hint: First find the number of
elements of order 10. How many elements of order 10 are in a cyclic subgroup of order 10? Do any
of these cyclic subgroups have an element of order 10 in common?) [Gallian, Chapter 8, Example 5]

8.3 By hand find the number of elements of each order in D10 � Z2.

8.4 Check your answer to Exercise 8.3 using orderFrequency.

8.5 Use orderFrequency to find the number of elements of each order in D5 � Z4.

8.6 Are D10 � Z2 and D5 � Z4 isomorphic? Why or why not?

8.7 By hand find the number of elements of each order in D20.

8.8 Check your answer to Exercise 8.7 using orderFrequency. Is D20 isomorphic to either D10�Z2

37

or D5 � Z4?

8.9 Find 4 nonisomorphic groups of order 40. How many nonisomorphic groups of order 40 can you
find?

The command AllSmallGroups(n) gives a list of all groups of order n. (Type ?AllSmallGroups

while in GAP to see the limitations on the integers n that can be used in this command.) For
example the following is a list of all groups of order 20:

gap> Gorder20:= AllSmallGroups(20);

[<pc group of size 20 with 3 generators>,

<pc group of size 20 with 3 generators>,

<pc group of size 20 with 3 generators>,

<pc group of size 20 with 3 generators>,

<pc group of size 20 with 3 generators>]

The output does not appear to be useful. But we see there are five groups of order 20. We can
refer to each of these groups in the list. For example, Gorder20[1] refers to the first group of order
20 listed above. We can know explore properties of each of these five groups:

gap> Read("orderFrequency");

gap> orderFrequency(Gorder20[1]);

[Order of element, Number of that order]=[[1, 1], [2, 1], [4, 10],

[5, 4], [10, 4]]

gap> IsAbelian(Gorder20[1]);

false

gap> d10:= DihedralGroup(IsPermGroup,20);

Group([(1,2,3,4,5,6,7,8,9,10), (2,10)(3,9)(4,8)(5,7)])

gap> IsomorphismGroups(d10, Gorder20[1]);

fail

gap> IsomorphismGroups(d10, Gorder20[4]);

[(1,2,3,4,5,6,7,8,9,10), (2,10)(3,9)(4,8)(5,7)] -> [f2*f3, f1*f2*f3^2]

From the output of the last and next to last above commands we see that the first group listed is
not isomorphic to D10 but the fourth group listed is isomorphic to D10.

By looping through a list we can actually get the “orderFrequency”, for example, of each of these
groups of order 20:

gap> List(AllSmallGroups(20) , x -> orderFrequency(x));

[[[1, 1], [2, 1], [4, 10], [5, 4], [10, 4]],

[[1, 1], [2, 1], [4, 2], [5, 4], [10, 4], [20, 8]],

[[1, 1], [2, 5], [4, 10], [5, 4]],

[[1, 1], [2, 11], [5, 4], [10, 4]],

[[1, 1], [2, 3], [5, 4], [10, 12]]]

38

In GAP a matrix can be entered as a list of row vectors. For example, the matrix

M =

2

64
1 2 3
4 5 6
7 8 9

3

75

is entered by typing

gap> M:= [[1,2,3], [4,5,6], [7,8,9]];

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

If you prefer to exhibit the matrix M as a 3 by 3 array use the command PrintArray:

gap> PrintArray(M);

[[1, 2, 3],

[4, 5, 6],

[7, 8, 9]]

8.10 Let G = Z3 � Z3 � Z3 and let H be the subgroup of SL(3,Z3) consisting of

H = {

2

64
1 a b
0 1 c
0 0 1

3

75 | a, b, c 2 Z3}.

Determine the number of elements of each order in G and H. Are G and H isomorphic? (This
exercise shows that two groups with the same number of elements of each order need not be
isomorphic.) [Gallian, Supplementary Exercises for Chapter 5-8, Exercise 5] Hint: Since H is
generated by 2

64
1 1 0
0 1 0
0 0 1

3

75 ,

2

64
1 0 1
0 1 0
0 0 1

3

75 , and

2

64
1 0 0
0 1 1
0 0 1

3

75

the following sets up this group H:

gap> z:= Z(3);;

gap> a:= [[z^0, z^0, 0*z], [0*z, z^0, 0*z], [0*z, 0*z, z^0]];;

gap> b:= [[z^0, 0*z, z^0], [0*z, z^0, 0*z], [0*z, 0*z, z^0]];;

gap> c:= [[z^0, 0*z, 0*z], [0*z, z^0, z^0], [0*z, 0*z, z^0]];;

gap> H:= Subgroup(SL(3,3),[a,b,c]);

<matrix group with 3 generators>

39

9 Chapter: Normal Subgroups and Factor Groups

GAP can be used to compute right cosets and factor groups.

gap> S6:= SymmetricGroup(6);

Sym([1..6])

gap> A6:= AlternatingGroup(6);

Alt([1..6])

gap>D6:= DihedralGroup(IsPermGroup, 12);

Group([(1,2,3,4,5,6), (2,6)(3,5)])

gap> Z6:= Center(D6);

Group([(1,4)(2,5)(3,6)])

The above assigns the name S6 to the symmetric group S6, A6 to the subgroup of even permuta-
tions, D6 to the dihedral group D6, and Z6 to the center of D6. To form factor groups we need
normal subgroups. Test which subgroups are normal:

gap> IsNormal(S6,A6);

true

gap> IsNormal(S6,D6);

false

gap> IsNormal(D6,Z6);

true

Thus A6 is normal in S6 and Z(D6) is normal in D6.

gap> RightCosets(S6,A6);

[RightCoset(AlternatingGroup[1..6]), ()),

RightCoset(AlternatingGroup[1..6]), (5,6))]

The above output tells us the right cosets of A6 in S6 are A6 and A6(5, 6). (Remember: GAP
multiplies permutations from left to right. If your textbook multiplies permutations from right to
left then a right coset in GAP will be a left coset using the notation of your textbook, when we are
dealing with groups of permutations.) Thus the factor group S6/A6 has two elements.

gap> Size(FactorGroup(S6,A6));

2

Now consider the factor group D6/Z(D6).

gap> RightCosets(D6,Z6);

[RightCoset(Group([(1,4)(2,5)(3,6)]), ()),

RightCoset(Group([(1,4)(2,5)(3,6)]), (2,6)(3,5)),

RightCoset(Group([(1,4)(2,5)(3,6)]), (1,5,3)(2,6,4)),

RightCoset(Group([(1,4)(2,5)(3,6)]), (1,5)(2,4)),

40

RightCoset(Group([(1,4)(2,5)(3,6)]), (1,3,5)(2,4,6)),

RightCoset(Group([(1,4)(2,5)(3,6)]), (1,3)(4,6))]

Thus there are 6 right cosets: N , N(2, 6)(3, 5), N(1, 3)(4, 6), N(1, 3, 5)(2, 4, 6), N(1, 5)(2, 4) and
N(1, 5, 3)(2, 6, 4) where N = Z(D6). So the factor group has 6 elements. Which group of order 6
is D6/Z(D6)? We will now use GAP to help us answer this question.

gap> F:= FactorGroup(D6,Z6);

Group([f1, f2])

gap> IsAbelian(F);

false

Since D6/Z(D6) is non-Abelian, it can not be isomorphic to Z6.

gap> Read("orderFrequency");

gap> orderFrequency(F);

[Order of element, Number of that order]=[[1, 1], [2, 3], [3, 2]]

gap> orderFrequency(SymmetricGroup(3));

[Order of element, Number of that order]=[[1, 1], [2, 3], [3, 2]]

So D6/Z(D6) and S3 are non-Abelian groups of order 6 with the same number of elements of each
order. Two groups that are isomorphic must have the same number of elements of each order. (The
converse of this statement is false.) But in this case, this is enough to guarantee that D6/Z(D6)
and S3 are isomorphic. [See for example Gallian, Theorem 7.3.])

GAP will also tell you which elements are in a particular coset. For example:

gap> Elements(RightCoset(Z6, (2,6)(3,5)));

[(2,6)(3,5), (1,4)(2,3)(5,6)]

Thus the right coset Z(D6)(2, 6)(3, 5) = {(2, 6)(3, 5), (1, 4)(2, 3)(5, 6)}.

Exercises

9.1 Use GAP to find the right cosets of Z(D8) in D8.

9.2 By hand, write out the Cayley table of the factor group D8/Z(D8).

You can check your work to Exercise 9.2 by using the GAP command MultiplicationTable.
For example, to find the Cayley table for S3 type:

gap> e:= Elements(SymmetricGroup(3));

[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

gap> PrintArray(MultiplicationTable(e));

[[1, 2, 3, 4, 5, 6],

41

[2, 1, 4, 3, 6, 5],

[3, 5, 1, 6, 2, 4],

[4, 6, 2, 5, 1, 3],

[5, 3, 6, 1, 4, 2],

[6, 4, 5, 2, 3, 1]]

The GAP output of PrintArray(MultiplicationTable(e)); is an n by n array (where n is the
order of the group) such that the integer in row i column j equal k if and only if the ith element
in the list times the jth element equals the kth element.

9.3 The factor group D8/Z(D8) is isomorphic to a group we have used often. Use GAP to help you
determine which one.

9.4 Repeat Exercise 9.3 for the factor groups D10/Z(D10) and D12/Z(D12).

9.5 Based on your results in Exercises 9.3 and 9.4, make a conjecture about the factor group
Dn/Z(Dn) when n is even and greater than or equal to 8.

42

10 Chapter: Group Homomorphisms

The command GroupHomomorphismByImages(G,H,[list of generators of G], [list of images

of these generators]) in GAP will create the specified homomorphism. For example:

gap> S3:= SymmetricGroup(3);

Sym([1..3])

gap> f1:= GroupHomomorphismByImages(S3,S3, [(1,2,3),(1,3)], [(1,3,2),(1,2)]);

[(1,2,3), (1,3)] ! [(1,3,2), (1,2)]

f1 is the homomorphism f1 : S3 ! S3 that maps (1,2,3) to (1,3,2) and (1,3) to (1,2).

gap> Image(f1, (2,3));

(2,3)

gap> Image(f1,(1,2));

(1,3)

The above tells us that f1(2, 3) = (2, 3) and f1(1, 2) = (1, 3) (as you can easily check).

gap> Size(Image(f1));

6

gap> Kernel(f1);

Group(())

Thus f1 is an automorphism. (Again this is easy to check by hand.) For another example consider
the following. Read through the GAP commands and be sure you understand the output.

gap> f2:= GroupHomomorphismByImages(S3,S3, [(1,2,3),(1,3)], [(),(1,2)]);

[(1,2,3), (1,3)] ! [(), (1,2)]

gap> Size(Image(f2));

2

gap> H:=Image(f2);

Group([(), (1,2)])

gap> Image(f2, (2,3));

(1,2)

gap> Kernel(f2);

Group([(1,2,3)]);

If you define a map that is not a homomorphism, GAP will return fail

gap> f3:= GroupHomomorphismByImages(S3,S3, [(1,2,3),(1,3)], [(1,3),(1,2)]);

fail

f3 maps (1,2,3) (an element of order 3) to (1,3) (an element of order 2) so f3 is not a homomor-
phism [Gallian, Theorem 10.1, Part 3].

43

Recall the group Dn is a subgroup of Sn which is generated by a rotation of order n and a re-
flection. Thus (1, 2, 3, . . . , n) and (1, n)(2, n � 1) . . . (n2 ,

n
2 + 1) generate Dn when n is even and

(1, 2, 3, . . . , n) and (1, n)(2, n � 1) . . . (n�1
2 , n�1

2 + 2) generate Dn when n is odd. So, for example,
every element in D6 can be written as products of powers of (1, 2, 3, 4, 5, 6) and (1, 6)(2, 5)(3, 4) and
every element in D7 can be written as products of powers of (1, 2, 3, 4, 5, 6, 7) and (1, 7)(2, 6)(3, 5).

One way to determine if a homomorphism from the finite group G to itself is an automorphism
is to determine if it is onto. Thus, for example the homomorphism f1 on the previous page is an
automorphism because the image of f1 is all of S3. In the following exercises you will need to
use the GroupHomomorphismByImages command in GAP to find homomorphisms from Dn to Dn.
You will then need to check if they are automorphisms by checking to see if the kernel contains
only the identity or by checking that the image is all of Dn. Since a homomorphism is completely
determined by the image of the generators of a group, you only need to specify where you want to
map the two generators of Dn. You may want to use the fact that the order of the homomorphic
image of an element must divide the order of the original element [Gallian, Theorem 10.1, Part 3].
This will help you narrow the possibilities, before using GAP to test for automorphisms.

The files “autoDn” and “homoDn” contain functions that will list all the automorphisms and
homomorphisms of a given dihedral group into itself. (Thanks to Alexander Hulpke for providing
these functions.) Both files are on the website as well as in the appendix to this chapter. The
following GAP output is all the automorphisms and then all the homomorphisms of D6 into itself:

gap> Read("autoDn");

gap> Read("homoDn");

gap> d6:= DihedralGroup(IsPermGroup,12);

Group([(1,2,3,4,5,6), (2,6)(3,5)])

gap> autoDn(d6);

[[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (2,6)(3,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,3)(4,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,6)(2,5)(3,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (2,6)(3,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,3)(4,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,6)(2,5)(3,4)]]

gap> homoDn(d6);

[[(1,2,3,4,5,6), (2,6)(3,5)] -> [(), ()], [(1,2,3,4,5,6), (2,6)(3,5)] ->

[(), (2,6)(3,5)], [(1,2,3,4,5,6), (2,6)(3,5)] -> [(), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(), (1,3)(4,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(), (1,4)(2,5)(3,6)],

44

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(), (1,6)(2,5)(3,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(2,6)(3,5), ()],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(2,6)(3,5), (2,6)(3,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(2,6)(3,5), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(2,6)(3,5), (1,4)(2,5)(3,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2)(3,6)(4,5), ()],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2)(3,6)(4,5), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2)(3,6)(4,5), (1,4)(2,5)(3,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2)(3,6)(4,5), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (2,6)(3,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,3)(4,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,2,3,4,5,6), (1,6)(2,5)(3,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3)(4,6), ()],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3)(4,6), (1,3)(4,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3)(4,6), (1,4)(2,5)(3,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3)(4,6), (1,6)(2,5)(3,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3,5)(2,4,6), (2,6)(3,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3,5)(2,4,6), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3,5)(2,4,6), (1,3)(4,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3,5)(2,4,6), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3,5)(2,4,6), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,3,5)(2,4,6), (1,6)(2,5)(3,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,3)(5,6), ()],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,3)(5,6), (2,6)(3,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,3)(5,6), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,3)(5,6), (1,4)(2,5)(3,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,5)(3,6), ()],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,5)(3,6), (2,6)(3,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,5)(3,6), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,5)(3,6), (1,3)(4,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,5)(3,6), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,5)(3,6), (1,4)(2,5)(3,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,5)(3,6), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,4)(2,5)(3,6), (1,6)(2,5)(3,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5)(2,4), ()],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5)(2,4), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5)(2,4), (1,4)(2,5)(3,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5)(2,4), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5,3)(2,6,4), (2,6)(3,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5,3)(2,6,4), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5,3)(2,6,4), (1,3)(4,6)],

45

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5,3)(2,6,4), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5,3)(2,6,4), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,5,3)(2,6,4), (1,6)(2,5)(3,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (2,6)(3,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,2)(3,6)(4,5)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,3)(4,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,4)(2,3)(5,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,5)(2,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6,5,4,3,2), (1,6)(2,5)(3,4)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6)(2,5)(3,4), ()],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6)(2,5)(3,4), (1,3)(4,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6)(2,5)(3,4), (1,4)(2,5)(3,6)],

[(1,2,3,4,5,6), (2,6)(3,5)] -> [(1,6)(2,5)(3,4), (1,6)(2,5)(3,4)]]

gap> Size(autoDn(d6));

12

gap> Size(homoDn(d6));

64

As a homomorphism is completely determined by its image on a set of generators of the group,
GAP only specifies the image of a set of generators of D6. (Be patient when using these functions;
they take awhile.)

Exercises

10.1 By hand find three automorphism of D4. Using GAP determine the number of automorphisms
of D4.

10.2 By hand find three homomorphisms from D4 to D4 that are not automorphisms. Using
GAP determine the number of homomorphisms from D4 to D4.

10.3 Repeat Exercises 10.1 and 10.2 for D5.

10.4 Using GAP repeat Exercises 10.1 and 10.2 for D19, D21, D45 and D49.

10.5 Make a conjecture about the number of homomorphisms and the number of automorphisms
of Dn when n is odd.

10.6 Using GAP repeat Exercises 10.1 and 10.2 for D20, D24, D48 and D50.

10.7 Make a conjecture about the number of homomorphisms and the number of automorphisms
of Dn when n is even.

Appendix

The file autoDn:

46

autoDn:= function(G)

local a,b,aims,bims,maps,autos,abims;

a:=G.1; b:=G.2;

aims:=Filtered(Elements(G), i -> Order(a) = Order(i));

bims:=Filtered(Elements(G), i -> Order(b) = Order(i));

abims:= Cartesian(aims,bims);

maps:= List(abims, i -> GroupHomomorphismByImages(G,G,[a,b],i));

maps:= Filtered(maps, i -> i <> fail);

autos:= Filtered(maps, IsInjective);

return autos;

end;

The file homoDn:

homoDn:= function(G)

local a,b,aims,bims,maps,homos,abims;

a:=G.1; b:=G.2;

aims:=Filtered(Elements(G), i -> IsInt(Order(a) / Order(i)));

bims:=Filtered(Elements(G), i -> IsInt(Order(b) / Order(i)));

abims:= Cartesian(aims,bims);

maps:= List(abims, i -> GroupHomomorphismByImages(G,G,[a,b],i));

homos:= Filtered(maps, i -> i <> fail);

return homos;

end;

47

11 Chapter: Fundamental Theorem of Finite Abelian Groups

Recall from Chapter 8 of this manual, the command to form the direct product of two or more
groups in GAP is DirectProduct. For example the below output creates a group G isomorphic to
Z6 � Z6:

gap> Z6:= CyclicGroup(IsPermGroup,6);

Group([(1,2,3,4,5,6)])

gap> G:=DirectProduct(Z6,Z6);

Group([(1,2,3,4,5,6), (7,8,9,10,11,12)])

The group Z6 is a cyclic group of order 6. The group Z6 in the above GAP commands is also a
cyclic group of order 6 (namely, the subgroup of S6 generated by the permutation (1, 2, 3, 4, 5, 6)).
Thus Z6 is isomorphic to Z6.

Notice in the above output the elements in Z6 that are in the second component are described
as powers of the 6-cycle (7, 8, 9, 10, 11, 12) instead of the 6-cycle (1, 2, 3, 4, 5, 6). (The powers of
(7, 8, 9, 10, 11, 12) also form a cyclic group of order 6, so h(7, 8, 9, 10, 11, 12)i is isomorphic to Z6 as
well.) GAP automatically changed the description of the elements in the second component of the
direct summand from powers of (1, 2, 3, 4, 5, 6) to powers of (7, 8, 9, 10, 11, 12) since we are trying
to represent an external direct product H �K as an internal direct product H ⇥K and we need
H \K = {e}.

By the Fundamental Theorem of Finite Abelian Groups every finite Abelian group is isomorphic to
the direct product of cyclic groups of prime power order. We also know that a factor group G/H,
where G is finite and Abelian, is also a finite Abelian group. Suppose G = Z6 � Z5 � Z8 and H is
the subgroup of G generated by (2, 1, 2). What finite Abelian group is G/H? The following steps
in GAP resolve this question.

gap> Z5:= CyclicGroup(IsPermGroup,5);

Group([(1,2,3,4,5)])

gap> Z8:= CyclicGroup(IsPermGroup,8);

Group([(1,2,3,4,5,6,7,8)])

gap> G:= DirectProduct(Z6,Z5,Z8);

Group([(1,2,3,4,5,6), (7,8,9,10,11), (12,13,14,15,16,17,18,19)])

gap> H:= Subgroup(G, [(1,2,3,4,5,6)^2, (7,8,9,10,11),

>(12,13,14,15,16,17,18,19)^2]);

Group([(1,3,5)(2,4,6), (7,8,9,10,11), (12,14,16,18)(13,15,17,19)])

gap> F:= FactorGroup(G,H);

Group([f1, f2])

gap> Size(F);

4

Note that Z5 is isomorphic to Z5 and Z8 is isomorphic to Z8. Thus the G defined in the above
GAP commands is isomorphic to Z6 � Z5 � Z8. Notice, in the above output, in the direct prod-

48

uct of Z6, Z5 and Z8, the elements of Z5 in the second component are written as powers of the
permutation (7, 8, 9, 10, 11). Similarly, the elements of Z8 in the third component are written as
powers of the permutation (12, 13, 14, 15, 16, 17, 18, 19). The element (1, 2, 3, 4, 5, 6)2 generates a
subgroup of order 3 in Z6. Similarly (12, 13, 14, 15, 16, 17, 18, 19)2 generates a subgroup of Z8 or
order 4. Thus H is isomorphic to the subgroup of Z6 �Z5 �Z8 generated by the element (2, 1, 2).
The factor group is a finite Abelian group of order 4 so it must be isomorphic to either Z4 or Z2�Z2.

gap> Read("orderFrequency");

gap> orderFrequency(F);

[Order of element, Number of that order]=[[1, 1], [2, 3]]

Since the factor group has three elements of order 2 it must be isomorphic to Z2 � Z2.

Let Zn denote a cyclic group of order n. If m divides n, then Zn contains a cyclic subgroup,
Zm, of order m.

Exercises

11.1 By hand, describe the cosets of (Z48/Z6)/(Z12/Z6). Since this group is a finite Abelian
group it is a direct product of cyclic groups of prime power order. Describe which one.

Attempting to work Exercise 11.1 in GAP is a little tricky. We would like to thank Andy Miller of
Belmont University for providing the following explanation on how to use GAP to work Exercise
11.1. First enter the cyclic groups Z48, Z6 and Z12 into GAP:

gap> Z48:= CyclicGroup(IsPermGroup,48);;

gap> Z48.1;

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,

30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)

gap> Z12:= Subgroup(Z48,[Z48.1^4]);;

gap> Z6:=Subgroup(Z48,[Z48.1^8]);;

Then construct the factor groups Z48/Z6 and Z12/Z6:

gap> g1:= FactorGroup(Z48,Z6);

Group([f1, f2, f3])

gap> g2:= FactorGroup(Z12,Z6);

Group([f1])

But when we then try to construct the factor group (Z48/Z6)/(Z12/Z6) we get an error:

gap> FactorGroup(g1,g2);

Error, <N> must be a normal subgroup of <G> called from ...

The problem is the command FactorGroup(G,H) creates a group isomorphic (not equal) to G/H.

49

Thus FactorGroup(Z12,Z6) is not a subgroup of FactorGroup(Z48,Z6). (FactorGroup(Z12,Z6)
is only isomorphic to a subgroup of FactorGroup(Z48,Z6)). To express Z12/Z6 as a subgroup of
Z48/Z6 we will use the fact that if N is a normal subgroup of a group G then the group G/N is
the image of the homomorphism � : G ! G/N defined by �(g) = gN . Thus, if H is a subgroup of
G that contains N , the subgroup H/N of G/N is the image of H under �. (That is, H/N = �(H).)
In the following GAP work we again have g1 = Z48/Z6 and g2 = Z12/Z6 but now g1 and g2 are
constructed in such a way that g2 is a subgroup of g1.

gap> phi:= NaturalHomomorphismByNormalSubgroup(Z48,Z6);;

gap> g1:= Image(phi,Z48);

Group([f1, f2, f3])

gap> g2:= Image(phi,Z12);

Group([f3])

gap> IsSubgroup(g1,g2);

true

Since g2 is now a subgroup of g1 we can use the FactorGroup command and determine the iso-
morphism class of g1/g2.

gap> h:= FactorGroup(g1,g2);

Group([f1, f2, <identity> of ...])

gap> Size(h);

4

gap> Read("orderFrequency");

gap> orderFrequency(h);

[Order of element, Number of that order]=[[1, 1], [2, 1], [4, 2]]

Since g1/g2 is an Abelian group of order 4 with an element of order 4, g1/g2 is isomorphic to
Z4.

Exercises

11.2 Let G = (Zr/Zs)/(Zt/Zs), where t divides r and s divides t. Make a conjecture about
the isomorphism class of G. Prove your conjecture.

11.3 Let G1 = (Z24�Z8�Z12)/(Z2�Z2�Z2). Let G2 = (Z8�Z8�Z6)/(Z2�Z2�Z2). Use
GAP to help you write G1/G2 as a direct product of cyclic groups of prime power order.

11.4 Repeat Exercise 11.3 for G1 = (Z40� Z10� Z24)/(Z2� Z5� Z2) and G2 = (Z20� Z10�
Z6)/(Z2� Z5� Z2).

11.5 Generalize your conjecture given in Exercise 11.2. That is, make a conjecture about the
factor group (G/H)/(K/H) when G,H and K are finite Abelian groups, H is a subgroup of K
and H is a subgroup of G.

50

12 Chapter: Introduction to Rings

The set of integers mod n, Zn, is a ring with binary operations addition and multiplication mod
n. When n is a prime p, Zp is a field. That is, Zp is a commutative ring with 1 and every nonzero
element is a unit.

Fact: The nonzero elements of Zp form a cyclic group under multiplication mod p of order p� 1.

The function Z in GAP creates a generator for this cyclic group. For example:

gap> z:= Z(7);

gap> R:=Ring([z]);

GF(7)

gap> Elements(R);

[0*Z(7), Z(7)^0, Z(7), Z(7)^2, Z(7)^3, Z(7)^4, Z(7)^5]

The nonzero elements of Z7 form a cyclic group (under multiplication) of order 6. The element Z(7)
of R denotes a generator of this cyclic group. Note that mod 7, 31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5
and 36 = 1, so 3 is a generator of this cyclic group. Also note that mod 7, 51 = 5, 52 = 4, 53 =
6, 54 = 2, 55 = 3 and 56 = 1, so 5 is also generator of this cyclic group. Thus Z(7) can be taken to
mean either the 3 or 5 in Z7. (Mod 7, 23 = 1, 43 = 1 and 62 = 1 so Z(7) cannot be equal to 2, 4 or 6.)
Recall cyclic groups of the same order n are isomorphic and are of the form {e, a, a2, a3, ..., an�1},
where a denotes a generator (using multiplicative notation). If you would like to have GAP show
you which of 3 or 5 in Z7 is being used to generate the nonzero elements type:

gap> Int(Z(7));

3

The Int function translate elements of Zp into integers. The function One is also useful. It gives
the multiplicative identity in a ring and can be used to translate integers to elements in Zp. For
example to see how 5 is denoted in R = Z7 type:

gap> 5*One(R);

Z(7)^5

So 35 mod 7 must be equal to 5 mod 7:

gap> 3^5 mod 7;

5

Exercises

12.1 Use GAP to help you find for which of the primes p = 3, 5, 7, 11, 13, and 17 the equation
a2 + b2 = 0 has a nontrivial solution in Zp. Make a conjecture about the the existence of a non-
trivial solution of this equation in Zp for p a prime. [Gallian, Chapter 12, Computer Exercise 1] (If
this exercise seems repetitive try writing a subroutine in GAP.)

The group of units in the ring of 2⇥2 matrices over Zn is denoted in GAP by GL(2, Integers mod

51

n). The subgroup of matrices with determinant equal to 1 is denoted by SL(2, Integers mod n).

12.2 Find the orders of GL(2,Zn) and SL(2,Zn) for n = 2, 3, 5, 7, 11, and 13. What relation-
ship do you see between the orders of GL(2,Zn) and SL(2,Zn) when n is a prime? Find the orders
of GL(2,Zn) and SL(2,Zn) for n = 16, 27, 25, and 49. Make a conjecture about the relationship
between the orders of GL(2,Zn) and SL(2,Zn) when n is a power of a prime. [Gallian, Chapter
12, Computer Exercise 4]

12.3 Find the orders of GL(2,Zn) and SL(2,Zn) for n = 2, 4, 8, 16, and 32. How do the orders
of the two groups change each time you increase the power of 2 by 1? Find the orders of GL(2,Zn)
and SL(2,Zn) for n = 3, 9, 27, and 81. How do the orders of the two groups change each time you
increase the power of 3 by 1? Find the orders of GL(2,Zn) and SL(2,Zn) for n = 5, 25, 125, and
625. How do the orders of the two groups change each time you increase the power of 5 by 1?
Make a conjecture about the relationship between the orders of GL(2,Zpi) and GL(2,Zpi+1). Make
a conjecture about the relationship between the orders of SL(2,Zpi) and SL(2,Zpi+1). [Gallian,
Chapter 12, Computer Exercise 4]

12.4 Find the order of GL(2,Zn) for n = 12, 15, 20, 21, and 30. Make a conjecture about the
order of GL(2,Zn) in terms of the orders of GL(2,Zs) and GL(2,Zt) where n = st and s and t are
relatively prime. [Gallian, Chapter 12, Computer Exercise 4]

12.5 Fetch the subroutine intror2 from the manual website and read it into GAP. This func-
tion takes as input an integer n and returns a list of all the solutions to the equation x2 = �1
in the ring Zn. For example intror2(5) will list all the solutions in Z5. In the ring Zn find the
number of solutions to the equation x2 = �1 for n equal to each of the primes between 3 and 29.
Make a conjecture about the number of solutions when n is an odd prime. In the ring Zn find the
number of solutions to the equation x2 = �1 for n the square of each of the primes between 3 and
29. In the ring Zn find the number of solutions to the equation x2 = �1 for n the cube of each of
the primes between 3 and 29. Make a conjecture about the number of solutions when n is a power
of an odd prime. [Gallian, Chapter 12, Computer Exercise 5]

12.6 Using the subroutine mentioned in Exercise 12.5, find the number of solutions to the equation
x2 = �1 in Zn for n = 2k, k = 1, 2, 3, 4, 5, 6. Make a conjecture about the number of solutions when
n is a power of two. [Gallian, Chapter 12, Computer Exercise 5]

12.7 Using the subroutine mentioned in Exercise 12.5, find the number of solutions to the equation
x2 = �1 for n = 12, 20, 24, 28, and 36. Make a conjecture about the number of solutions when n is
a multiple of 4. [Gallian, Chapter 12, Computer Exercise 5]

12.8 Make a conjecture about the number of solutions to the equation x2 = �1 in Zn for n = pq and
n = 2pq where p and q are odd primes. You should use the subroutine provided in Exercise 12.5
for many values of p and q to help you formulate your conjecture. [Gallian, Chapter 12, Computer
Exercise 5]

12.9 Make a conjecture about the number of solutions to the equation x2 = �1 in Zn for n = pqr

52

and n = 2pqr where p, q and r are odd primes. You should use the subroutine provided in Exercise
12.5 for many values of p, q and r to help you formulate your conjecture. What relationship do
you see between the number of solutions when n = p, n = q and n = r and the case that n = pqr?
[Gallian, Chapter 12, Computer Exercise 5]

12.10 Based on your answers to Exercises 12.5 - 12.9 formulate a conjecture on the number of
solutions to x2 = �1 in Zn.

Appendix for Chapter 12

The following is the file “intror2” which is used in this chapter.

intror2:= function(n)

local r, x, i;

x:= [];

i:= 1;

Print("The solutions to x^2 = -1 in Z_", n, " are ");

r:= Elements(Integers mod n);

repeat

if Int(r[i]^2) = n-1 then

Add(x,r[i]);

fi;

i:= i+1;

until i=n+1;

return x;

end;

53

13 Chapter: Integral Domains

In this chapter we will determine the number of idempotents and the number of nilpotent elements
in the rings Zn. Recall that an idempotent in a ring R is an element r such that r2 = r. A nilpotent
element r 2 R is an element such that rm = 0 for some positive integer m.

Fetch the file “nilpotentCount” o↵ the website. This file contains a function that counts the number
of nilpotent elements in a given ring. The appendix at the end of this chapter contains a print out
of this file. (Thanks to Alexander Hulpke for providing a revised version of this function.) GAP has
a built in function called Idempotents that lists the idempotents in a ring. For an example follow
along with the following GAP output. (Recall GAP denotes a mod n in Zn by ZmodnZObj(a,n).)

gap> M:= Integers mod 6;

(Integers mod 6)

gap> Idempotents(M);

[ZmodnZObj(0, 6), ZmodnZObj(1, 6), ZmodnZObj(3, 6), ZmodnZObj(4, 6)]

gap> Size(Idempotents(M));

4

gap> N:= Integers mod 9;

(Integers mod 9)

gap> Size(Idempotents(N));

2

The above tells us that Z6 has 4 idempotents and Z9 has 2 idempotents.

gap> Read("nilpotentCount");

gap> nilpotentCount(M);

1

gap> nilpotentCount(N);

3

The above tells us that Z6 has 1 nilpotent element and Z9 has 3 nilpotents.

Exercises

13.1 Find the number of idempotents in Zn for many values of n. Based on your results an-
swer the following:
a) How many idempotents are in Zn when n is a prime-power?
b) How many idempotents are in Zn when n is equal to the product of two distinct primes?
c) In general, make a conjecture about the number of idempotents in Zn as a function of n.
d) In the case where n is of the form pq where p and q are distinct primes can you see a relation-
ship between the two idempotents that are not 0 and 1? [Gallian, Chapter 13, Computer Exercise 1]

13.2 Find the number of nilpotents in Zn for many values of n. Based on your results answer
the following:
a) How many nilpotents are in Zn when n is a prime-power?

54

b) How many nilpotents are in Zn when n is equal to the product of two distinct primes?
c) In general, make a conjecture about the number of nilpotents in Zn as a function of n. [Gallian,
Chapter 13, Computer Exercise 2]

13.3 Using GAP, find the number of units in Zn for many values of n. Make a conjecture about
the number of units in Zn as a function of n. (The command Elements(Units(R)) will list all the
units in a given ring R.)

Appendix for Chapter 13

nilpotentCount:= function(R)

local n;

n:= Size(R);

return Length(Filtered(Elements(R), i -> IsZero(i^n)));

end;

55

14 Chapter: Ideals and Factor Rings

The command in GAP that creates an ideal in the ring R is Ideal(R,[list of generators]). For
example to create the ideal I in the ring Z20 generated by 3 and 5 type the following:

gap> R:= Integers mod 20;

(Integers mod 20)

gap> e:= Elements(R);

[ZmodnZObj(0, 20), ZmodnZObj(1, 20), ZmodnZObj(2, 20), ZmodnZObj(3, 20),

ZmodnZObj(4, 20), ZmodnZObj(5, 20), ZmodnZObj(6, 20), ZmodnZObj(7, 20),

ZmodnZObj(8, 20), ZmodnZObj(9, 20), ZmodnZObj(10, 20), ZmodnZObj(11, 20),

ZmodnZObj(12, 20), ZmodnZObj(13, 20), ZmodnZObj(14, 20), ZmodnZObj(15, 20),

ZmodnZObj(16, 20), ZmodnZObj(17, 20), ZmodnZObj(18, 20), ZmodnZObj(19, 20)

gap> I:= Ideal(R, [e[4], e[6]]);

<two-sided ideal in (Integers mod 20), (2 generators)>

gap> Elements(I);

[ZmodnZObj(0, 20), ZmodnZObj(1, 20), ZmodnZObj(2, 20), ZmodnZObj(3, 20),

ZmodnZObj(4, 20), ZmodnZObj(5, 20), ZmodnZObj(6, 20), ZmodnZObj(7, 20),

ZmodnZObj(8, 20), ZmodnZObj(9, 20), ZmodnZObj(10, 20), ZmodnZObj(11, 20),

ZmodnZObj(12, 20), ZmodnZObj(13, 20), ZmodnZObj(14, 20), ZmodnZObj(15, 20),

ZmodnZObj(16, 20), ZmodnZObj(17, 20), ZmodnZObj(18, 20), ZmodnZObj(19, 20)]

In the third command line above e[4] denotes the element 3 in Z20 since 3 is the 4th element in the
list of elements of Z20. Similarly, e[6] denotes the element 5 in Z20 since 5 is listed 6th. Note I = R.

Let I be an ideal in a commutative ring R. The nilradical of I is defined to be the set N =
{r 2 R | rn 2 I for some positive integer n}.

Exercises

14.1 By hand, find all the ideals in Z24. Which ones are prime?

14.2 For two of the ideals in Exercise 14.1, call them I1 and I2, find the intersection of all prime
ideals that contain I1 and find the intersection of all prime ideals that contain I2.

14.3 Write a short program in GAP that will determine the nilradical of an ideal.

14.4 Using your program from Exercise 14.3, find the nilradicals of I1 and I2.

14.5 Repeat Exercises 14.1, 14.2 and 14.4 for the ring Z900.

14.6 Based on your answers to 14.2, 14.4 and 14.5, make a conjecture about the nilradical of a
ideal.

14.7 Use your program to find the nilradical of hki in Zn for n = 8, 15, 24 and for those k that
divide n.

56

15 Chapter: Ring Homomorphisms

The map, f from Z10 to Z10 given by f(x) = 2x is not a ring homomorphism. But the map g from
Z10 to Z10 given by g(x) = 5x is a ring homomorphism. (Convince yourself that these statements
are true!) In this chapter we will investigate the question: Given a fixed n, for which m is the map
f : Zn ! Zn given by f(x) = mx a ring homomorphism? Similarly, when is the map f : Zn ! Zn

given by f(x) = xm a ring homomorphism? Recall that any group homomorphism from Zn to Zn

is completely determined by the image of 1 mod n. Since a ring homomorphism is also a group
homomorphism, the image of any ring homomorphism from Zn to Zn is also completed determined
by the image of 1 mod n.

Consider the following example in GAP:

gap> R:= Integers mod 10;

(Integers mod 10)

gap> e:= Elements(R);

[ZmodnZObj(0,10), ZmodnZObj(1,10), ZmodnZObj(2,10),

ZmodnZObj(3,10), ZmodnZObj(4,10), ZmodnZObj(5,10),

ZmodnZObj(6,10), ZmodnZObj(7,10), ZmodnZObj(8,10),

ZmodnZObj(9,10)]

gap> h:= x -> e[6]*x;

function(x) ... end

gap> f:= MappingByFunction(R,R,h);

GeneralMappingByFunction((Integers mod 10), (Integers mod

10), function(x)...end)

gap> IsRingHomomorphism(f);

true

The above output tells us the map f from Z10 to Z10 given by f(x) = 5x is a ring homomor-
phism. The above command h:= x -> e[6]*x; creates a function that takes an element and
multiplies it by 5 mod 10. (5 mod 10 is the sixth element in the list of elements of R.) The
above command f:= MappingByFunction(R,R,h); creates this map. In general, the command is
MappingByFunction(<domain>, <range>, <function>). Now we can use <ctl>-p to redefine
h and f and test for other homomorphisms:

gap> h:= x -> e[1]*x;

function(x) ... end

gap> f:= MappingByFunction(R,R,h);

GeneralMappingByFunction((Integers mod 10), (Integers mod

10), function(x)...end)

gap> IsRingHomomorphism(f);

true

gap> h:= x -> e[2]*x;

function(x) ... end

gap> f:= MappingByFunction(R,R,h);

57

GeneralMappingByFunction((Integers mod 10), (Integers mod

10), function(x)...end)

gap> IsRingHomomorphism(f);

true

gap> h:= x -> e[3]*x;

function(x) ... end

gap> f:= MappingByFunction(R,R,h);

GeneralMappingByFunction((Integers mod 10), (Integers mod

10), function(x)...end)

gap> IsRingHomomorphism(f);

false

We could continue testing all 10 possible cases for homomorphisms. Since the above steps are
repetitive, it may be better to write a short program that will make GAP test all the cases. The
subroutine “ringHoms” contains a function that takes as input a positive integer n. Fetch this
subroutine from the manual website. The output is a list of m such that f : Zn ! Zn given by
f(x) = mx mod n is a ring homomorphism. (Thanks to Russell Blyth for providing this function.)
See the end of this chapter for a print out of this function.

gap> Read("ringHoms");

gap> ringHoms(10);

The map f: Z_10 -> Z_10 given by f(x)=mx is a homomorphism for m=[0, 1, 5, 6]

Thus f : Zn ! Zn given by f(x) = mx mod n is a ring homomorphism if and only ifm = 0, 1, 5 or 6.

Exercises

15.1 Using GAP determine for which m  15 the map f : Z15 ! Z15 given by f(x) = mx mod 15
is a ring homomorphism.

15.2 Repeat Exercise 15.1 for the rings Z25,Z20,Z30 and Z40.

15.3 Make a conjecture that describes for whichm the map f : Zn ! Zn given by f(x) = mx mod n
is a ring homomorphism.

15.4 Prove your conjecture in Exercise 15.3.

15.5 Make a conjecture that describes for which k the map f : Zm ! Zn given by f(x) = kx mod n
is a ring homomorphism. (The GAP commands that you used in Exercises 15.1 and 15.2 will not
work here. Instead of using GAP, think about what conditions on k will be necessary to make f a
ring homomorphism.)

15.6 Using GAP determine for which m  15 the map f : Z15 ! Z15 given by f(x) = xm mod 15
is a ring homomorphism. You may want to write a program in GAP by modifying the program
“ringHoms”.

58

15.7 Using your program from Exercise 15.6, repeat Exercise 15.6 for the rings Z25,Z20,Z30 and Z40.

15.8 Make a conjecture that describes for which m the map f : Zn ! Zn given by f(x) = xm mod n
is a ring homomorphism.

Appendix for Chapter 15

The following is the file “ringHoms” which is used in this chapter. (Thanks to Russell Blyth
for providing this function.)

ringHoms := function(n)

local R,e,h,f,l,j;

R := Integers mod n;

e := Elements(R);

l := [];

Print("The map f: Z_", n, " -> Z_", n, " given by f(x)=mx is a homomorphism for m=");

for j in [1..Size(e)] do

h := x -> e[j]*x;

f := MappingByFunction(R,R,h);

if IsRingHomomorphism(f) then

Append(l,[Int(e[j])]);

fi;

od;

return l;

end;

59

16 Chapter: Polynomial Rings

GAP will allow you to set up polynomials rings. For example the following GAP commands create
the polynomial ring P1= Z7[x]:

gap> R1:= Integers mod 7;

GF(7)

gap> P1:= PolynomialRing(R1);

GF(7)[x_1]

Suppose we want to factor the polynomial x2 � 2 2 Z7[x]. Recall from Chapter 12 of this manual
that the nonzero elements in Z7 are denoted in GAP by powers of Z(7) where Z(7) denotes a
generator of the cyclic group of nonzero elements:

gap> Elements(R1);

[0*Z(7), Z(7)^0, Z(7), Z(7)^2, Z(7)^3, Z(7)^4, Z(7)^5]

To see what integer Z(7) represents (mod 7) type:

gap> Int(Z(7));

3

The command:

gap> x:= X(R1, "x");

x

creates the indeterminate x over the ring R1. We can now set up a polynomial in the ring P1 and
factor it:

gap> g:= x^2-2;

x^2+Z(7)^5

gap> Factors(g);

[x+Z(7), x+Z(7)^4]

Note that even though we entered the polynomial as x2�2, GAP echoed the polynomial x2+Z(7)5.
But Z(7)5 = 35 = 5 = �2. So x2 + Z(7)5 = x2 � 2. Notice the above GAP output tells us the
factors of x2 � 2 over Z7 are x+ Z(7) = x+ 3 and x+ Z(7)4 = x+ 4.

As a second example, the following are the GAP commands and output used to find the factors of
x2 � 2 over Z11.

gap> R2:= Integers mod 11;

GF(11)

gap> y:= X(R2, "y");

y

gap> h:= y^2-2;

60

y^2+Z(11)^6

gap> Factors(h);

[y^2+Z(11)^6]

Note that Z(11) = 2 mod 7 and Z(11)6 = -2:

gap> Int(Z(11));

2

gap> Int(-Z(11)^6);

2

Thus GAP echoes y2 � 2 with y2 + Z(11)6. As expected, x2 � 2 factors into linear factors in Z7

because 2 is a square in Z7, but x2 � 2 does not factor in Z11 since 2 is not a square in Z11.

GAP will also factor polynomials over the rationals. For example the following factors f(x) =
x2 � 1 2 Q[x]:

gap> R:= Rationals;

Rationals

gap> z:= X(R, "z");

z

gap> f:= z^2-1;

z^2-1

gap> Factors(f);

[z-1, z+1]

If you do not need to know the factors of a polynomial but only whether or not it is irreducible,
you can use the IsIrreducible command:

gap> IsIrreducible(x^2-2);

false

gap> IsIrreducible(y^2-2);

true

gap> IsIrreducible(z^2-1);

false

Exercises

16.1 Use GAP to factor xp�1 � 1 in Zp[x] for p = 3, 5, 7 and 11.

16.2 Using Exercise 16.1, make a conjecture about the factors of xp�1 � 1 in Zp[x] for any prime p.

16.3 Find three monic irreducible polynomials in Z3[x] of degree three and three of degree four.

16.4 For the polynomials found in Exercise 16.3 use GAP to determine if these polynomials are
irreducible over the rational numbers. (Treat the coe�cient 2 mod 3 in a polynomial over Z3, for
example, as the coe�cient 2 in a polynomial over the rational numbers.)

61

16.5 Repeat Exercises 16.3 and 16.4 for the field Z5.

16.6 What do you think the irreducibility of a polynomial in Zp for p a prime tells you about
the same polynomial over the rational numbers?

62

17 Chapter: Factorization of Polynomials

In this chapter we will investigate the factorization of xn � 1 into its irreducibles over the rational
numbers. Recall the GAP commands for creating a polynomial and for factoring this polynomial
from the previous chapter. For example:

gap> R:= Rationals;

Rationals

gap> x:= X(R,"x");

x

gap> Factors(x^2-1);

[x-1, x+1]

gap> Factors(x^4-1);

[x-1, x+1, x^2+1]

Exercises

17.1 Factor xn � 1 into its irreducibles over the rational numbers for n = 6, 8, 12, 20 and 30.
On the basis of these data make a conjecture about the coe�cients of the irreducible factors of
xn � 1. Test your conjecture for n = 40, 50 and 105.

17.2 Notice that your conclusion in Exercise 16.6 of this manual is the Mod p Irreduciblity Test
[Gallian, Theorem 17.3]: Let p be a prime and suppose that f(x) 2 Z[x] with degf(x) � 1. Let
f̄(x) be the polynomial in Zp[x] obtained from f(x) by reducing all the coe�cients of f(x) modulo
p. If f̄(x) is irreducible over Zp and degf̄(x) = degf(x), then f(x) is irreducible over Q. Use this
theorem and the IsIrreducible command to determine if the following polynomials are irreducible
over Q:
a) x5 + 9x4 + 12x2

b) x4 + x+ 1
c) x4 + 3x2 + 3
d) x5 + 5x2 + 1
e) 21x3 � 3x2 + 2x+ 9 [Gallian, Chapter 17, Computer Exercise 1]

63

18 Chapter: Divisibility in Integral Domains

Recall the ring of Gaussian integers, Z[i] = {a + bi | a, b 2 Z}. The ring Z[i] is an Euclidean
domain. In this chapter we will investigate the irreducible elements of Z[i]. The command for
creating Z[i] is GaussianIntegers:

gap> R:=GaussianIntegers;

GaussianIntegers

The
p
�1 is denoted in GAP by E(4) (since

p
�1 is a primitive fourth root of one).

gap> i:=E(4);

E(4)

gap> i^2;

-1

We can now factor elements in Z[i] using the Factors command.

gap> Factors(R,4);

[-1-E(4), 1+E(4), 1+E(4), 1+E(4)]

gap> Factors(R,3+i);

[1-E(4), 1+2*E(4)]

Thus we see the irreducible factors of 4 in Z[i] are �1� i, 1 + i, 1 + i and 1+ i and the irreducible
factors of 3 + i are 1� i and 1 + 2i.

Careful: If you do not specify the ring, GAP will assume you want the factorization over the
integers:

gap> Factors(4);

[2, 2]

Exercises

18.1 Make a list of the prime numbers in Z that are less than 60. For these primes determine
whether or not they are irreducible elements in Z[i].

18.2 For all the primes p 2 Z less than 60 compute p mod 4.

18.3 Make a conjecture stating which p 2 Z are irreducible elements in Z[i].

18.4 For the primes p 2 Z, p  60, that are not irreducible in Z[i] find positive integers a, b 2 Z
such that a2 + b2 = p. Is a+ bi irreducible in Z[i]? Is a� bi irreducible in Z[i]?

A proposition that is often proved in more advanced algebra courses states that every irreducible
element in Z[i] is one of the following:
i) the elements you found in Exercise 18.3 (assuming you did the problem correctly)
ii) the elements you found in Exercise 18.4 (assuming you did the problem correctly).

64

19 Chapter: Vector Spaces

Recall from Chapter 13 that Zp is a field for every prime p. Let GF (p)n = {(a1, a2, . . . , an) | ai 2
Zp}. Then GF (p)n is an n dimensional vector space over Zp. In this chapter we will investigate
subspaces of GF (p)n. For example consider the vector space GF (3)2:

gap> V:=GF(3)^2;

(GF(3)^2)

gap> Elements(V);

[[0*Z(3), 0*Z(3)], [0*Z(3), Z(3)^0], [0*Z(3), Z(3)],

[Z(3)^0, 0*Z(3)], [Z(3)^0, Z(3)^0], [Z(3)^0, Z(3)], [Z(3), 0*Z(3)],

[Z(3), Z(3)^0], [Z(3), Z(3)]]

(Recall a generator of the multiplicative group of units in Zp is denoted in GAP by Z(p).)

Careful: Note that GF (p)n is the direct product of n copies of Zp not the field of order pn.

The vector space V is small enough that we can easily find all the 1-dimensional subspaces by
hand. The Display command is useful here:

gap> Display(Elements(V));

. .

. 1

. 2

1 .

1 1

1 2

2 .

2 1

2 2

The zero in denoted by a dot and Z(3) is denoted by 2. The following GAP work shows the
1-dimensional subspaces:

gap> D:=Subspaces(V,1);

Subspaces((GF(3)^2), 1)

gap> e:= Elements(D);;

gap> Display(Elements(e));

[VectorSpace(GF(3), [[0*Z(3), Z(3)^0]]),

VectorSpace(GF(3), [[Z(3)^0, 0*Z(3)]]),

VectorSpace(GF(3), [[Z(3)^0, Z(3)^0]]),

VectorSpace(GF(3), [[Z(3)^0, Z(3)]])]

gap> Display(Elements(e[1]));

. .

. 1

. 2

65

gap> Display(Elements(e[2]));

. .

1 .

2 .

gap> Display(Elements(e[3]));

. .

1 1

2 2

gap> Display(Elements(e[4]));

. .

1 2

2 1

Thus, as expected, we see that the 1-dimensional subspaces are {(0, 0), (0, 1), (0, 2)}, {(0, 0), (1, 0), (2, 0)},
{(0, 0), (1, 1), (2, 2)}, and {(0, 0), (1, 2), (2, 1)}. If you just need to find the number of 1-dimensional
subspaces you can type:

gap> Size(Subspaces(V,1));

4

Exercises

19.1 By hand find all the 1-dimensional subspaces of GF (3)3.

19.2 Use GAP to check your answer to Exercise 19.1.

19.3 Use GAP to find the number of 1-dimensional subspaces of GF (p)3 for p = 2, 5, 7 and 11.

19.4 Make a conjecture about the number of 1-dimensional subspaces of GF (p)3. Prove your
conjecture.

19.5 By hand find all the 2-dimensional subspaces of GF (3)3.

19.6 Use GAP to check your answer to Exercise 19.5.

19.7 Use GAP to find the number of 2-dimensional subspaces of GF (p)3 for p = 5, 7 and 11.

19.8 Make a conjecture about the number of 2-dimensional subspaces of GF (p)3.

66

20 Chapter: Extension Fields

Consider the polynomial g(x) = x3
2 � x 2 Z3. If we factor this polynomial in Z3[x] we get

x(x+ 1)(x� 1)(x2 + 1)(x2 + x� 1)(x2 � x� 1):

gap> x:= X(GF(3),"x");

x

gap> Factors(x^9-x);

[x, x+Z(3)^0, x-Z(3)^0, x^2+Z(3)^0, x^2+x-Z(3)^0, x^2-x-Z(3)^0]

The above shows that x9 � x does not factor over GF (3) into linear factors. Alternatively you can
have GAP list just the degrees of the factors of x9 � x:

gap> factors:= Factors(x^9-x);;

gap> List(factors, DegreeOfLaurentPolynomial);

[1, 1, 1, 2, 2, 2]

This shows x9�x factors over GF (3) into 3 irreducible polynomials of degree one and 3 irreducible
polynomials of degree 2. Let ↵ denote a zero of an irreducible factor of g(x) of degree 2. If we
adjoin ↵ to Z3 we get a field with 9 elements. You will see later that there is only one field (up to
isomorphism) of order pn for each prime p and each positive integer n. The field of order pn for p a
prime is denoted in GAP by GF(p^n). The element Z(pn) in GAP denotes a generator of the cyclic
group of nonzero elements in GF (pn). To see if g(x) splits over this larger field use the command
Factors(P,g) where P is the polynomial ring over this larger field and g is the polynomial. Notice
that (x3

2 � 1) splits into linear factors over GF (9):

gap> polyring:= PolynomialRing(GF(9));

GF(3^2)[x]

gap> factors:= Factors(polyring, x^9-x);

[x, x+Z(3)^0, x-Z(3)^0, x+Z(3^2), x+Z(3^2)^2, x+Z(3^2)^3, x+Z(3^2)^5,

x+Z(3^2)^6, x+Z(3^2)^7]

gap> List(factors, DegreeOfLaurentPolynomial);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

The above output shows that (x3
2 �1) = x(x+1)(x+2)(x+b)(x+b2)(x+b3)(x+b5)(x+b6)(x+b7)

where b is a generator of the cyclic group of nonzero elements in GF (9).

Exercises

20.1 Factor the polynomial f(x) = xp
n � x 2 Zp[x]. For p = 5 and n = 3.

20.2 If you adjoin a zero of a nonlinear irreducible factor of the polynomial in Exercise 20.1 to
Zp, what field do you get? Does f(x) split in this extension field? If it does not split continue
adjoining zeros until you get the splitting field.

20.3 Repeat Exercises 20.1 and 20.2 for p = 7 and n = 2.

20.4 Repeat Exercises 20.1 and 20.2 for p = 7 and n = 4.

67

21 Chapter: Algebraic Extensions

In this chapter we discuss how to create algebraic extensions in GAP. The polynomials x5 � 7 is
irreducible over Q:

gap> x:= X(Rationals, "x");

x

gap> f:= x^5-7;

x^5-7

gap> Factors(x^5-7);

[x^5-7]

Thus if we adjoin a zero of this polynomial to Q we get a field of degree five over Q.

gap> F:=AlgebraicExtension(Rationals,f);

<algebraic extension over the Rationals of degree 5>

gap> a:= RootOfDefiningPolynomial(F);

a

The first command above defines a field F that is obtained by adjoining a zero of x5 � 7 to Q.
The second command assigns the name a to a zero of f . (Thus F = Q(a).) Every element in
Q(a) can be written in the form q0 + q1a + q2a

2 + q3a
3 + q4a

4 for qi 2 Q. We can now find
the minimal polynomial of linear combinations of a over Q. For example, the following finds the
minimal polynomial of 4(71/5) + 10 over Q.

gap> MinimalPolynomial(Rationals, 4*a+10);

x^5-50*x^4+1000*x^3-10000*x^2+50000*x-107168

Exercises

21.1 Use GAP to find the minimal polynomial of 3
p
2+ 3

p
4 over Q. [Gallian, Chapter 21, Exercise 16]

21.2 Use GAP to find the minimal polynomial of 5 + 4(3
p
2) + 10(3

p
4) over Q.

21.3 By hand find the minimal polynomial of 1 + i over Q. Check your work using GAP.

We can also set up a finite field of order pn by adjoining a root of an irreducible polynomial
of degree n over GF (p) to GF (p). For example, the following creates the field of order 27 by
adjoining a root of an irreducible cubic polynomial over GF (3) to GF (3):

gap> r:= GF(3);;

gap> x:= X(GF(3),"x");;

gap> f:= x^3 + 2*x^2 + 1;

x^3-x^2+Z(3)^0

gap> IsIrreducible(f);

true

gap> F:= AlgebraicExtension(r, f);

<field of size 27>

68

We can then use GAP to convert from multiplicative to additive notation in this field. [See Gallian,
Chapter 22, Table 22.1]

gap> a:= RootOfDefiningPolynomial(F);

a

gap> a^3;

a^2-Z(3)^0

gap> a^4;

a^2-a-Z(3)^0

gap> a^6+Z(3)^0;

-a^2-a+Z(3)^0

Careful: Recall GAP denotes the number 1 in this field by Z(3)0 and the number 2 by Z(3).

69

22 Chapter: Finite Fields

For every prime p and every positive integer n there is one and only one field (up to isomorphism)
of order pn. [Gallian, Theorem 22.1] This field is denoted in GAP by GF(p^n). The set of nonzero
elements in GF (pn) form a cyclic group under multiplication of order pn � 1. [Gallian, Theorem
22.2] GAP denotes a generator of this cyclic group by Z(p^n) and the remaining elements of GF (pn)
are expressed in terms of Z(pm) for m a divisor of n. For example, the following defines F to be
the field GF (16) and then lists the elements in F :

gap> F:=GF(2^4);

GF(2^4)

gap> Elements(F);

[0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2, Z(2^4), Z(2^4)^2, Z(2^4)^3, Z(2^4)^4,

Z(2^4)^6, Z(2^4)^7, Z(2^4)^8, Z(2^4)^9, Z(2^4)^11, Z(2^4)^12, Z(2^4)^13,

Z(2^4)^14]

Careful: Z(pn)m is not the same as Z(pmn). The element Z(pn) is an element in GF (pn) of
multiplicative order pn � 1 and Z(pn)m is the mth power of this element. The element Z(pmn) is
an element in GF (pmn) of multiplicative order pmn � 1.

gap> Order(Z(2^6));

63

gap> Order(Z(2^2)^3);

1

To understand the GAP notation think of the multiplicative group of nonzero elements in GF (16)
as generated by a. That is, GF (16) = {0, 1, a, a2, . . . , a14}. The field GF (pn) has one and only one
subfield of order pm for every integer m that divides n. [Gallian, Theorem 22.3] Thus GF (16) has
a unique subfield of order 2 and a unique subfield of order 4. The subfield of order 2 is {0, 1} and
the subfield of order 4 is {0, 1, a5, a10}. In the GAP notation Z(24) = a, Z(22) = Z(24)5 = a5, and
Z(22)2 = a10. We can use GAP to test this as follows:

gap> Z(2^2) = Z(2^4)^5;

true

gap> Z(2^2)^2 = Z(2^4)^10;

true

The command DegreeFFE(Z(p^n)^m), for p a prime and m and n positive integers, returns the
degree of the smallest field containing Z(pn)m over GF (p). For example:

gap> DegreeFFE(Z(2^4));

4

gap> DegreeFFE(Z(2^4)^3);

4

gap> DegreeFFE(Z(2^4)^5);

2

70

The GAP commands, discussed in Chapter 21 of this manual, for defining fields by adjoining zeros
of irreducible polynomials also work over finite fields. For example, we can create a field of order
16 in GAP [See Gallian, Chapter 22, Example 1]:

gap> x:= X(GF(2), "x");;

gap> f:= x^4+x+1;

x^4+x+Z(2)^0

gap> IsIrreducible(f);

true

gap> F:= AlgebraicExtension(GF(2),f);

<field of size 16>

Exercises

22.1 Using GAP, find the degree of the smallest field containing Z(24)m over GF (2) for m =
1, 2, 3, . . . , 10. For which values of m is this degree strictly less than 4?

22.2 Find the multiplicative orders of Z(24)m for m = 1, 2, 3, . . . , 10.

22.3 Using GAP, find the degree of the smallest field containing Z(33)m over GF (3) for m =
1, 2, 3, . . . , 15. For which values of m is this degree strictly less than 3?

22.4 Find the multiplicative orders of Z(33)m for m = 1, 2, 3, . . . , 15.

22.5 Under what condition will the degree of the smallest field containing Z(pn)m over GF (p)
equal n? Under what condition will this degree be less than n?

22.6 Using GAP factor the polynomial x3
n � x over GF (3) for n = 2, 3 and 4. For each n, what

was the largest degree of an irreducible factor?

22.7 Using GAP factor the polynomial x5
n � x over GF (5) for n = 2 and 3. For each n, what

was the largest degree of an irreducible factor?

22.8 Make a conjecture concerning the largest degree of any irreducible factor of xp
n�x over GF (p).

22.9 Prove your conjecture in Exercise 22.8. [Gallian, Chapter 22, Exercise 26]

22.10 a) Construct a field of order 32 using GAP by adjoining a zero of an appropriate irreducible
polynomial over GF (p) to GF (p) for some prime p.
b) Construct a field of order 81 using GAP by adjoining a zero of an appropriate irreducible poly-
nomial over GF (p) to GF (p) for some prime p.

71

23 Chapter: Geometric Constructions

Exercises

23.1 Use GAP to determine whether or not 8x3+4x2�4x�1 is irreducible. Note that 8 cos3(2⇡/7)+
4 cos2(2⇡/7)� 4 cos(2⇡/7)� 1 = 0. Use these two facts to help you show that a regular seven-sided
polygon is not constructible with a straightedge and compass. [Gallian, Chapter 23, Exercise 14]

23.2 Use GAP to determine whether or not 4x2 + 2x � 1 is irreducible. Note that 4 cos2(2⇡/5) +
2 cos(2⇡/5)� 1 = 0. Use these two facts to help you show that a regular pentagon is constructible
with a straightedge and compass. [Gallian, Chapter 23, Exercise 18]

23.3 Use GAP to verify that 8x3 � 6x � 1 is irreducible over Q. (This fact can be used in the
proof that a 60 degree angle can not be trisected using only a straightedge and compass.) [Gallian,
Chapter 23, Exercise 13]

72

24 Chapter: Sylow Theorems

Let G be a finite group and let p be a prime that divides the order of G. Let pk be the largest
power of p that divides the order of G. A subgroup of G of order pk is called a Sylow p-subgroup of G.

To do the exercises in this chapter you will need to fetch the file “sylows” from the website.
This file contains a function that returns a list of all the Sylow p-subgroups of a group for a given
group and a given prime.

gap> Read("sylows");

gap> G:=SymmetricGroup(6);

Sym([1 .. 6])

gap> sylows(G,3);

The Sylow 3-subgroups of SymmetricGroup([1 .. 6]) are:

[Group([(1,2,3), (4,5,6)]), Group([(1,2,4), (3,5,6)]),

Group([(1,2,5), (3,4,6)]), Group([(1,2,6), (3,4,5)]),

Group([(1,3,4), (2,5,6)]), Group([(1,3,5), (2,4,6)]),

Group([(1,3,6), (2,4,5)]), Group([(1,4,5), (2,3,6)]),

Group([(1,4,6), (2,3,5)]), Group([(1,5,6), (2,3,4)])]

From the above output we see that S6 has ten Sylow 3-subgroups. The first Sylow 3-subgroup
in the list is the subgroup of S6 generated by (1, 2, 3) and (4, 5, 6). Observe that all ten Sylow 3-
subgroups are generated by two disjoint 3-cycles. Thus the Sylow 3-subgroups are Abelian because
disjoint cycles commute.

Exercises

24.1 By hand find all the Sylow p-subgroups of S4 for every prime p that divides the order of
S4.

24.2 Use GAP to check your answer to Exercise 24.1.

24.3 Use GAP to find the number of Sylow p-subgroups in A6 for each prime p that divides
|A6|. (Recall the command for the alternating group is AlternatingGroup(n);.)

24.4 Repeat Exercise 24.3 for the group S7.

24.5 Repeat Exercise 24.3 for a cyclic group of order 60.

24.6 Make a conjecture about the number of Sylow p-subgroups of a group mod p.

73

25 Chapter: Finite Simple Groups

The computer exercises in this section are based on material written by Christine Stevens at Saint
Louis University. In this chapter we will use GAP to help us prove that A5 and A6 are simple groups.

The command ConjugacyClasses(G) lists all the conjugacy classes of a group G. For exam-
ple:

gap> a4:=AlternatingGroup(4);

Alt([1 .. 4]

gap> ConjugacyClasses(a4);

[()^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,4)^G]

For a 2 G, the notation aˆG above means the set of all conjugates of a in G. Thus we see
that A4 has four conjugacy classes: the conjugates of the identity, the conjugates of (1, 2)(3, 4), the
conjugates of (1, 2, 3) and the conjugates of (1, 2, 4). The command ConjugacyClass(G,a) creates
the conjugacy class of G containing a:

gap> c:= ConjugacyClass(a4,(1,2,3));

(1,2,3)^G

gap> Elements(c);

[(2,4,3), (1,2,3), (1,3,4), (1,4,2)]

Exercises

25.1 Suppose you have disjoint sets T, U, V,W,X, Y and Z with cardinalities 1, 40, 40, 45, 72,
72 and 90 respectively. Suppose H is a set that is formed by taking the union of T with one or
more of the other sets. List all the possible cardinalities of H. Which of these answers divide 360?

25.2 Use GAP to find all the conjugacy classes of A6 and their cardinalities.

25.3 Let G be a group and H a normal subgroup of G. Let h 2 H. Show the conjugacy class
of h is a subset of H.

25.4 Use Exercises 25.1 - 25.3 to prove that A6 is simple.

25.5 Use similar techniques as above to show A5 is simple.

25.6 Show A4 is not simple.

74

26 Chapter: Generators and Relations

Groups defined using generators and relations can be easily created in GAP. If you want to create
an n-generated group, start with a free group on n generators. Then create the group by “moding
out by” the relations. For example, D4 is a 2-generated group with relations a4 = b2 = (ab)2 = e,
where a and b are the generators. [Gallian, Chapter 26, Examples 2 and 3] The following creates
the group D4 in GAP:

gap> f:=FreeGroup(2);

<free group on the generators [f1, f2]>

gap> d4:=f/[f.1^4, f.2^2, (f.1*f.2)^2];

<fp group on the generators [f1, f2]>

gap> Elements(d4);

[<identity ...>, f2, f1^3*f2, f1, f1^3, f1*f2, f1^2*f2, f1^2]

The first command above creates a free group with two generators. The element f.1 denotes the
first generator and f.2 denotes the second generator in the free group f:

gap> f.1;

f1

gap> f.2;

f2

The line gap> d4:=f/[f.1^4, f.2^2, (f.1*f.2)^2]; creates D4 as the free group on two gen-
erators mod the relations f.1^4 = f.2^2 = (f.1 * f.2)^2= e.

We can now use the group theory GAP commands discussed in previous chapters on d4. For
example:

gap> IsAbelian(d4);

false

gap> Size(d4);

8

gap> Center(d4);

Group([f1^2])

In addition, the Factorization command (see Chapter 5 of this manual) can be used to express
the image of a word in the free group as an element in the factor group:

gap> a:=d4.1;;

gap> b:=d4.2;;

gap> Factorization(d4, a*b*a^3*b*a^5);

x1^-1

The first two above commands assign the letters a and b to the image of the two generators of the
free group. The Factorization output tells us that aba3ba5 reduces to a�1(= a3) in D4. (GAP
will denote the ith generator of the factor group by xi.)

75

You can also use GAP to help you classify a group that is defined using generators and relations.
For example consider the group G defined by G =< a, b | a3 = b9 = e, a�1ba = b�1 >. [Gallian,
Chapter 26, Example 6]. Note that the relation a�1ba = b�1 can be rewritten as a2bab = e. The
below GAP commands create this group G:

gap> f:=FreeGroup(2);

<free group on the generators [f1, f2]>

gap> G:=f/[f.1^3, f.2^9, f.1^2*f.2*f.1*f.2];

<fp group on the generators [f1, f2]>

gap> Size(G);

3

Since there is only one group (up to isomorphism) of order 3, G must be the cyclic group of order
3.

Exercises

26.1 Use GAP to show that < a, b | a5 = b2 = e, ba = a2b > is isomorphic to Z2. [Gallian,
Chapter 26, Exercise 4]

26.2 Let G = < a, b | a2 = b4 = e, ab = b3a >.
a) Without using GAP express a3b2abab3 in the form aibj . Check your work using GAP.
b) Without using GAP express b3abab3a in the form aibj . Check your work using GAP. [Gallian,
Chapter 26, Exercise 12]

26.3 Let G = < a, b | a8 = b2 = e, baba3 = e >.
a) Use GAP to find |G|.
b) Find the order of ab.
c) Find the center of G. [Gallian, Chapter 26, Exercise 15]

26.4 Let G = < a, b | a6 = b3 = e, b�1ab = a3 >. Use GAP to help you determine to which
familiar group G is isomorphic. [Gallian, Chapter 26, Exercise 21]

26.5 Let G = < a, b, c, d | ab = c, bc = d, cd = a, da = b >. Use GAP to help you determine
to which familiar group G is isomorphic.

26.6 Let Xn = < a, b | an = b2 = e, ab = ba2 >.
a) Find the order of Xn when n = 3, 6, 24 and 300.
b) Make a conjecture about the isomorphism type of Xn when n is a multiple of 3.
c) Make a conjecture about the isomorphism type of Xn when n and 3 are relatively prime. (First
find the order of Xn for many appropriate values of n to help you formulate the conjecture.)

26.7 Let G = < a, b | a3 = b3 = (ab)2 = e >. Use GAP to help you determine to which fa-
miliar group G is isomorphic.

76

Recall the command IsomorphismGroups(G, H); computes an isomorphism between the groups
G and H. (If they are not isomorphic the command returns fail.) This command can also be
used on groups defined using generators and relations.

gap> f:= FreeGroup(1);

<free group on the generators [f1]>

gap> G:= f/[f.1^6];

<fp group on the generators [f1]>

gap> H:= Subgroup(SymmetricGroup(6), [(1,2,3,4,5,6)]);

Group([(1,2,3,4,5,6)])

gap> K:= SymmetricGroup(3);

Sym([1 .. 3])

gap> IsomorphismGroups(H,K);

fail

gap> IsomorphismGroups(H,G);

[(1,4)(2,5)(3,6), (1,3,5)(2,4,6)] -> [f1^-3, f1^2]

77

27 Chapter: Symmetry Groups

The first figure on the page of figures at the end of this chapter is a 3-prism. The front and back
faces are equilateral triangles. We will use GAP to help us show the group of rotations in R3 of a
3-prism is isomorphic to D3. [Gallian, Chapter 27, Exercise 4] Let G denote this group of rotations.
Label the vertices of the facing triangle 1,2 and 3. Label the vertices of the other triangle in the
prism 4,5 and 6. (See figure of the labeled 3-prism on last page of this chapter.) The group of
rotations must be a subgroup of the group of permutations of the set {1, 2, 3, 4, 5, 6}. There are
two types of rotations. We can rotate each triangle the same amount. Thus (1, 2, 3)(4, 5, 6) is in G.
We can also rotate the front facing triangle to the back. Thus the rotation (1, 4)(2, 6)(3, 5) is in G.

gap> G:=Subgroup(SymmetricGroup(6), [(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]);

Group([(1,2,3)(4,5,6), (1,4)(2,6)(3,5)])

gap> Elements(G);

[(), (1,2,3)(4,5,6), (1,3,2)(4,6,5), (1,4)(2,6)(3,5), (1,5)(2,4)(3,6),

(1,6)(2,5)(3,4)]

The above exhibits G as a subgroup of S6. We can now have GAP set up an isomorphism between
D3 and G. (We use here that D3

⇠= S3.)

gap> d3:= SymmetricGroup(3);

Sym([1 .. 3])

gap> IsomorphismGroups(d3,G);

[(1,2,3), (1,2)] -> [(1,2,3)(4,5,6), (1,5)(2,4)(3,6)]

That is, the homomorphism that maps the generators (1, 2, 3) and (1, 2) of D3 to the generators
(1, 2, 3)(4, 5, 6) and (1, 5)(2, 4)(3, 6) respectively of G is an isomorphism. If a pair of groups are not
isomorphic then this command returns fail:

gap> IsomorphismGroups(SymmetricGroup(3), AlternatingGroup(4));

fail

Exercises
For the exercises in this chapter see figures on the last page of this chapter.

27.1 Exhibit the group of rotations in R3 of a 4-prism as a subgroup of S8. This group is iso-
morphic to which familiar group?

27.2 Exhibit the group of rotations in R3 of a 5-prism as a subgroup of S10. This group is isomor-
phic to which familiar group?

27.3 Exhibit the group of rotations in R3 of a 6-prism as a subgroup of S12. This group is isomor-
phic to which familiar group?

27.4 Make a conjecture about what the group of rotations in R3 of a n-prism is.

27.5 Prove your conjecture in Exercise 27.4.

78

27.6 The order of the symmetry group (including both rotations and reflections) in R3 of a 3-
prism is 12. Exhibit this symmetry group as a subgroup of S6. This group is isomorphic to which
familiar group of order 12?

27.7 Exhibit the symmetry group in R3 of a 5-prism as a subgroup of S10. This group is iso-
morphic to which familiar group?

27.8 Make a conjecture about what the symmetry group in R3 of an n-prism is.

27.9 Test your conjecture in Exercise 27.8 for n = 4.

79

1

2
3

4

5
6

1

2
3

4

5

6

8 7

1

2
34

5

6

7
8

9

1
0

1

2

3
4

5

6

7

8

9
1
0

1
1

1
2

C
h

a
p

te
r

2
7
 F

ig
u

re
s

28 Chapter: Frieze Groups and Crystallographic Groups

In order to do the exercises in this chapter you will first need to read the section on frieze groups
in Chapter 28 of Gallian.

Exercises

28.1 In the frieze group F6 let x denote a translation generator and y denote a horizontal re-
flection generator. [See Gallian Figure 28.9] Find a presentation of F6 in terms of these generators.
Enter the group F6 into GAP using this presentation.

28.2 In the frieze group F7 let x denote a translation generator, y denote a horizontal reflection
generator and z denote a vertical reflection generator. [See Gallian Figure 28.9] Find a presentation
of F7 in terms of these generators. Enter the group F7 into GAP using this presentation.

28.3 In the frieze group F7 write x2yzxz in the form xnymzk by hand. Use GAP to check your
work. [Gallian, Chapter 28, Exercise 3]

28.4 In the frieze group F7 write x�3zxyz in the form xnymzk by hand. Use GAP to check your
work. [Gallian, Chapter 28, Exercise 4]

28.5 Use GAP to show that in the frieze group F7 we have that yz = zy and xy = yx but xz 6= zx.
[Gallian, Chapter 28, Exercise 5]

28.6 Use GAP to show that in the frieze group F7 we have that zxz = x�1. [Gallian, Chapter
28, Exercise 6]

81

29 Chapter: Symmetry and Counting

A group G is said to act on a set S if there is a homomorphism from G to sym(S) where sym(S) is
the group of all permutations on S. In this chapter we will consider the action of G on itself given
by conjugation. That is, given g 2 G, define �g : G ! G by �g(h) = ghg�1 for all h 2 G. Then �g

is a permutation of the elements in G (that is, �g 2 sym(G)). The map � : G ! sym(G) given by
�(g) = �g is a homomorphism. Thus this map � gives an action of G on itself.

For elements a, b in a group G the command a^b in GAP computes b�1ab. For example:

gap> (2,3,4)^(1,4,2);

(1,3,2)

gap> (1,2,4)*(2,3,4)*(1,4,2);

(1,3,2)

Note: Remember GAP multiplies permutations from left to right.

Given an action, �, of a group G on a set S, define the kernel of the action to be the set
{g 2 G | �(g) = e} where e denotes the identity in sym(S). The question we will investigate
is: What is the kernel of the action when G acts on itself by conjugation? First we will consider
this question when G is a cyclic group of order 4.

gap> G:=Group((1,2,3,4));

Group([(1,2,3,4)])

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3,4)],[(1,2,3,4)^()]);

[(1,2,3,4)] -> [(1,2,3,4)]

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3,4)],[(1,2,3,4)^(1,2,3,4)]);

[(1,2,3,4)] -> [(1,2,3,4)]

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3,4)],[(1,2,3,4)^(1,3)(2,4)]);

[(1,2,3,4)] -> [(1,2,3,4)]

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3,4)],[(1,2,3,4)^(1,4,3,2)]);

[(1,2,3,4)] -> [(1,2,3,4)]

Since conjugation by any element in G maps the generator (1, 2, 3, 4) back to (1, 2, 3, 4), we see the
kernel of the action is all of G.

Exercises

29.1 Prove that the maps �g and � defined above are homomorphisms.

29.2 Prove G is Abelian if and only if the kernel of the action of G on itself by conjugation is
G.

In general, g 2 G will be in the kernel if and only if �g maps each element of a set of genera-
tors of G to itself. The below output investigates the kernel of this conjugation action of S3 on
itself.

82

gap> G:=SymmetricGroup(3);

Sym([1 .. 3])

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3),(1,2)],[(1,2,3)^(),(1,2)^()]);

[(1,2,3), (1,2)] -> [(1,2,3), (1,2)]

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3),(1,2)],[(1,2,3)^(2,3),

> (1,2)^(2,3)]);

[(1,2,3), (1,2)] -> [(1,3,2), (1,3)]

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3),(1,2)],[(1,2,3)^(1,2),

> (1,2)^(1,2)]);

[(1,2,3), (1,2)] -> [(1,3,2), (1,2)]

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3),(1,2)],[(1,2,3)^(1,3),

> (1,2)^(1,3)]);

[(1,2,3), (1,2)] -> [(1,3,2), (2,3)]

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3),(1,2)],[(1,2,3)^(1,2,3),

> (1,2)^(1,2,3)]);

[(1,2,3), (1,2)] -> [(1,2,3), (2,3)]

gap> f:=GroupHomomorphismByImages(G,G,[(1,2,3),(1,2)],[(1,2,3)^(1,3,2),

> (1,2)^(1,3,2)]);

[(1,2,3), (1,2)] -> [(1,2,3), (1,3)]

Thus we see the kernel of this action contains only the identity of S3.

Exercises

29.3 Assume G is a group that is generated by two elements. Write a subroutine in GAP that
lists the elements in the kernel of the action of a group on itself by conjugation.

29.4 Use your subroutine in Exercise 29.3 to find the kernel of the conjugation action when G
is S6, D12, D19 and A4.

29.5 For any group G the kernel of the conjugation action is a familiar subgroup. Use your answers
to Exercise 29.4 to help you conjecture what the kernel is in general.

29.6 Prove your conjecture in Exercise 29.5

83

30 Chapter: Cayley Digraphs of Groups

The chapter assumes familiarity with the notation and material in Chapter 30 of [Gallian].

To work the exercises in this chapter you will first need to know how to create lists in GAP. A
list is a collection of elements. The elements are enclosed within square brackets and are separated
by commas. For example, the following creates the list consisting of the numbers 1, 2, 5 and 8.

gap> listexample:=[1,2,5,8];

[1, 2, 5, 8]

You can append additional elements to the end of the list using the command Add. For example,
to add the number 11 to our list type:

gap> Add(listexample,11);

gap> listexample;

[1, 2, 5, 8, 11]

We can refer to the ith element in a list by typing the name of the list followed by [i]. For example:

gap> listexample[4];

8

gap> listexample[3]*20;

100

We can now use GAP to test whether we have a Hamiltonian circuit for a particular group and set
of generators. In addition, we can get GAP to list the elements in this circuit in the order that they
are traversed in the circuit (given a particular starting element).

A Hamiltonian circuit of D4 with generators R90 = (1, 2, 3, 4) and H = (1, 2)(3, 4) is obtained
by applying 2 ⇤ (3 ⇤ R90, H). [Gallian, Chapter 30, Example 3] We begin with a list containing
only the identity:

gap> d:=[()];

[()]

Append elements to the list using the rule 2 ⇤ (3 ⇤R90, H).

gap> Add(d,(1,2,3,4)*d[1]);

gap> d;

[(), (1,2,3,4)]

gap> Add(d,(1,2,3,4)*d[2]);

gap> d;

[(), (1,2,3,4), (1,3)(2,4)]

gap> Add(d,(1,2,3,4)*d[3]);

gap> d;

[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)]

gap> Add(d,(1,2)(3,4)*d[4]);

gap> d;

84

[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2), (2,4)]

gap> Add(d,(1,2,3,4)*d[5]);

gap> d;

[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2), (2,4), (1,4)(2,3)]

gap> Add(d,(1,2,3,4)*d[6]);

gap> d;

[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2), (2,4), (1,4)(2,3), (1,3)]

gap> Add(d,(1,2,3,4)*d[7]);

gap> d;

[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2), (2,4), (1,4)(2,3), (1,3), (1,2)(3,4)]

gap> Add(d,(1,2)(3,4)*d[8]);

gap> d;

[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2), (2,4), (1,4)(2,3), (1,3), (1,2)(3,4),

()]

Thus starting with the identity of D4 and using the rule 2 ⇤ (3 ⇤ R90, H) (where R90 = (1, 2, 3, 4)
and H = (1, 2)(3, 4)) we get the Hamiltonian circuit:

{e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), (2, 4), (1, 4)(2, 3), (1, 3), (1, 2)(3, 4), e}.

We could reduce the number of repetitive operations needed to produce this circuit by writing a
short program in GAP. The following program performs the same operations as the above but also
allows you to choose which element you want to be the first element in the circuit. The first line
of the program says it will take as input a single element n. This is the element of D4 which we
want to be the first element in the circuit. The next line defines local variables that will be used
in the program. The next line starts the Hamiltonian circuit list. The list is called s and the first
element in the list is set equal to the element n (the element that was input into the function).
The next 9 lines of the program are a for-do loop that is performed 8 times (the order of D4). The
elif command means “else if”. The fi; command ends the if-then-else statement. Similarly the
od; command ends the for-do loop. The next to last line tells GAP to output the created list s.

CircuitCheck:= function(n)

local s,i;

s:=[n];

for i in [1..8] do

if i = 4 then

Add(s,(1,2)(3,4)*s[i]);

elif i = 8 then

Add(s,(1,2)(3,4)*s[i]);

else

Add(s,(1,2,3,4)*s[i]);

fi;

od;

return s;

end;

Now we can read this program into GAP.

85

gap> Read("CircuitCheck");

gap> CircuitCheck(());

[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2), (2,4), (1,4)(2,3), (1,3), (1,2)(3,4),

()]

gap> CircuitCheck((1,2,3,4));

[(1,2,3,4), (1,3)(2,4), (1,4,3,2), (), (1,2)(3,4), (2,4), (1,4)(2,3), (1,3),

(1,2,3,4)]

Thus we see the Hamiltonian circuit 2 ⇤ (3 ⇤R90, H) starting with the identity is

{e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), (2, 4), (1, 4)(2, 3), (1, 3), (1, 2)(3, 4), e}

and the circuit starting with (1, 2, 3, 4) is

{(1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2), e, (1, 2)(3, 4), (2, 4), (1, 4)(2, 3), (1, 3), (1, 2, 3, 4)}

.
Exercises

30.1 Let D4 =< r, f | r4 = e = f2, rf = fr�1 >. Write a short GAP program to verify that
6 ⇤ [3 ⇤ (r, 0), (f, 0), 3 ⇤ (r, 0), (e, 1)] is a Hamiltonian circuit in Cay({(r, 0), (f, 0), (e, 1)} : D4 � Z6).
[Gallian, Chapter 30, Exercise 9]

30.2 Use your program in Exercise 30.1 to find Hamiltonian circuits for Cay({(r, 0), (f, 0), (e, 1)} :
D4 � Z6) starting with the elements (r, 0), (f, 0) and (e, 1).

30.3 Use GAP to find a Hamiltonian circuit in Cay({(a, 0), (b, 0), (e, 1)} : Q4 � Z2). [Gallian,
Chapter 30, Exercise 2]

30.4 Use GAP to find a Hamiltonian circuit in Cay({(a, 0), (b, 0), (e, 1)} : Q4�Z4). Find a Hamilto-
nian circuit in Cay({(a, 0), (b, 0), (e, 1)} : Q4�Zm) whenm is even. [Gallian, Chapter 30, Exercise 3]

30.5 Use GAP to find a Hamiltonian circuit in Cay({(a, 0), (b, 0), (e, 1)} : Q4 � Z3). [Gallian,
Chapter 30, Exercise 23]

30.6 Use GAP to find a Hamiltonian circuit in Cay({(a, 0), (b, 0), (e, 1)} : Q4�Z5). Find a Hamilto-
nian circuit in Cay({(a, 0), (b, 0), (e, 1)} : Q4 � Zm) when m is odd. [Gallian, Chapter 30, Exercise
24]

86

31 Chapter: Introduction to Algebraic Coding Theory

The chapter assumes familiarity with the notation and material in Chapter 31 of [Gallian].

A vector in GAP is entered by listing the components within square brackets. For example the
vector v = (1, 3, 7) is entered as:

gap> v:= [1,3,7];

[1, 3, 7]

A matrix can be entered as a list of row vectors. For example, the matrix

M =

2

64
1 2 3
4 5 6
7 8 9

3

75

is entered into GAP by typing

gap> M:= [[1,2,3], [4,5,6], [7,8,9]];

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

If you prefer to exhibit the matrix M as a 3 by 3 array use the command PrintArray:

gap> PrintArray(M);

[[1, 2, 3],

[4, 5, 6],

[7, 8, 9]]

The notation M[i][j] denotes the entry in the ith row and jth column of M . Similarly, the
notation M[i] denotes the ith row of M .

gap> M[2][3];

6

gap> M[1];

[1, 2, 3]

To multiply v and M type:

gap> v*M;

[62, 73, 84]

gap> M*v;

[28, 61, 94]

That is, vM = (62, 73, 84) and Mv = (28, 61, 94). Notice that GAP automatically treats v as a row
vector in the multiplication vM but as a column vector in the multiplication Mv.

Read Example 9 of [Gallian, Chapter 31]. The software GAP easily performs the computations
needed to decode received codes. First set up the parity check matrix given in [Gallian, Chapter
31, Example 9]:

87

gap> Elements(Integers mod 2);

[0*Z(2), Z(2)^0]

gap> z:= 0*Z(2);;

gap> a:= Z(2)^0;;

gap> H:= [[a,a,z],

> [a, z, a],

> [a, a, a],

> [z, a, a],

> [a, z, z],

> [z, a, z],

> [z, z, a]];;

gap> PrintArray(H);

[[Z(2)^0, Z(2)^0, 0*Z(2)],

[Z(2)^0, 0*Z(2), Z(2)^0],

[Z(2)^0, Z(2)^0, Z(2)^0],

[0*Z(2), Z(2)^0, Z(2)^0],

[Z(2)^0, 0*Z(2), 0*Z(2)],

[0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0]]

Next enter in the received the word v = 0000110, compute vH and note vH is the first row of H:

gap> v:=[z,z,z,z,a,a,z];

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2)]

gap> PrintArray(v*H);

[Z(2)^0, Z(2)^0, 0*Z(2)]

gap> v*H = H[1];

true

Similarly, if the received word is w = 1011111, we can use GAP to compute wH:

gap> w:=[a,z,a,a,a,a,a];

[Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0, Z(2)^0]

gap> PrintArray(w*H);

[Z(2)^0, 0*Z(2), Z(2)^0]

gap> w*H = H[2];

true

Thus, since vH equals the first row of H we decode v = (0, 0, 0, 0, 1, 1, 0) as (1, 0, 0, 0, 1, 1, 0). Since
wH equals the second row of H we decode w = (1, 0, 1, 1, 1, 1, 1) as (1, 1, 1, 1, 1, 1, 1).

Read Example 11 of [Gallian, Chapter 31]. We will now use GAP to do syndrome decoding.
First enter in the parity check matrix in [Gallian, Chapter 31, Example 11]. Here a and z are
defined as in the example above:

gap> H:= [[a,a,z],

> [a,z,a],

88

> [z,a,a],

> [a,z,z],

> [z,a,z],

> [z,z,a]];;

gap> PrintArray(H);

[[Z(2)^0, Z(2)^0, 0*Z(2)],

[Z(2)^0, 0*Z(2), Z(2)^0],

[0*Z(2), Z(2)^0, Z(2)^0],

[Z(2)^0, 0*Z(2), 0*Z(2)],

[0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0]]

Now set up the matrix CL whose rows are the coset leaders:

gap> CL:= [[z,z,z,z,z,z],

> [a,z,z,z,z,z],

> [z,a,z,z,z,z],

> [z,z,a,z,z,z],

> [z,z,z,a,z,z],

> [z,z,z,z,a,z],

> [z,z,z,z,z,a],

> [a,z,z,z,z,a]];;

gap> PrintArray(CL);

[[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0],

[Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2), 0*Z(2), Z(2)^0]]

The matrix CL*H will be the matrix whose rows are the syndromes.

gap> Synd:=CL*H;;

gap> PrintArray(Synd);

[[0*Z(2), 0*Z(2), 0*Z(2)],

[Z(2)^0, Z(2)^0, 0*Z(2)],

[Z(2)^0, 0*Z(2), Z(2)^0],

[0*Z(2), Z(2)^0, Z(2)^0],

[Z(2)^0, 0*Z(2), 0*Z(2)],

[0*Z(2), Z(2)^0, 0*Z(2)],

[0*Z(2), 0*Z(2), Z(2)^0],

[Z(2)^0, Z(2)^0, Z(2)^0]]

To decode the word v = 101001 compute vH. Since vH equals the 5th row of Synd we decode v as
v minus the 5th row of CL:

89

gap> v:=[a,z,a,z,z,a];;

gap> PrintArray(v*H);

[Z(2)^0, 0*Z(2), 0*Z(2)]

gap> v*H = Synd[5];

true

gap> decodev:= v - CL[5];;

gap> PrintArray(decodev);

[Z(2)^0, 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0]

That is, we decode the word 101001 as 101101. Similarly, the following output shows we should
decode the word w = 011001 as 111000:

gap> w:=[z,a,a,z,z,a];;

gap> PrintArray(w*H);

[Z(2)^0, Z(2)^0, Z(2)^0]

gap> w*H = Synd[8];

true

gap> decodew:= w - CL[8];;

gap> PrintArray(decodew);

[Z(2)^0, Z(2)^0, Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2)]

Exercises

31.1 Find the parity check matrix of the binary linear code whose generator matrix is

G =

2

6664

1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

3

7775 .

[Gallian, Chapter 31, Exercise 13]

31.2 For the (7,4) binary linear code in Exercise 31.1, use GAP and the parity-check matrix method
to decode each of the following received words

0001111, 0101011, 0111101, 0101110

.

31.3 Find the parity check matrix of the binary linear code whose generator matrix is

G =

2

64
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

3

75 .

90

31.4 For the (6,3) binary linear code in Exercise 31.3, use GAP and the parity-check matrix method
to decode each of the following received words

001001, 011000, 000110, 100001.

[Gallian, Chapter 31, Exercise 17]

31.5 Redo Exercise 31.2 using GAP and the syndrome decoding method.

31.6 Redo Exercise 31.4 using GAP and the syndrome decoding method.

91

32 Chapter: An Introduction to Galois Theory

Recall the GAP commands, discussed in Chapter 21 of this manual, for creating algebraic extensions
of fields. For example, if we want to construct the field Q(

p
2,
p
3) = Q(

p
2+

p
3) we adjoin a root

of the minimal polynomial of
p
2 +

p
3 over Q to Q. The polynomial x4 � 10x2 + 1 is the minimal

polynomial of
p
2 +

p
3 over Q. The below commands create the field F = Q(

p
2 +

p
3).

gap> x:= X(Rationals,"x");

x

gap> F:= AlgebraicExtension(Rationals, x^4-10*x^2+1);

<algebraic extension over the Rationals of degree 4>

We can now give this adjoined root,
p
2 +

p
3, a name:

gap> a:=RootOfDefiningPolynomial(F);

a

gap> a^4;

10*a^2-1

A similar construction can be done over finite fields. Recall the finite field of order pn is denoted
in GAP by GF(p^n). Also recall (see Chapter 20 of this manual) the splitting field of xp

n � x over
GF (p) is GF (pn).

gap> x:= X(GF(3), "x");

x

gap> Factors(x^9-x);

[x, x+Z(3)^0, x-Z(3)^0, x^2+Z(3)^0, x^2+x-Z(3)^0, x^2-x-Z(3)^0]

gap> F:=AlgebraicExtension(GF(3),Z(3)^0+x^2);

<field of size 9>

The field F was constructed by adjoining a root of an irreducible factor of x9 � x of degree two.
Since |F | = 9, F must be GF (9).

Let E be an extension field of the field F . The Galois group of E over F , GAL(E/F), is the
set of all automorphisms of E that map every element of F to themselves. GAP has a command for
setting up Galois groups. For example the following creates the Galois group Gal(GF (81)/GF (3)):

gap> g:=GaloisGroup(AsField(GF(3),GF(81)));

<group with 1 generators>

gap> Elements(g);

[IdentityMapping(GF(3^4)), FrobeniusAutomorphism(GF(3^4))^2,

FrobeniusAutomorphism(GF(3^4)), FrobeniusAutomorphism(GF(3^4))^3]

Notice the GAP command GaloisGroup requires that the subfield of the extension field be listed
first.

From the above output we see that the Galois group Gal(GF (81)/GF (3)) is a cyclic group of
order 4.

92

The commands for listing the subfields of a field is Subfield. For example, the below output
shows GF (81) contains three subfields:

gap> Subfields(GF(81));

[GF(3), GF(3^2), GF(3^4)]

Let E be the splitting field of xp
n�x over GF (pm) for some positive integer m that divides n. That

is, E = GF (pn). By the Fundamental Theorem of Galois Theory, there is a correspondence between
the set of subfields of GF (pn) containing GF (pm) and the subgroups of Gal(GF (pn)/GF (pm)).

Exercises

32.1 Determine the isomorphism class of Gal(GF (pn)/GF (pm)) for p = 2, m = 1 and n = 3, 5, 9.

32.3 Repeat Exercise 32.1 for p = 3, m = 1 and n = 2, 6.

32.3 Repeat Exercise 32.1 for p = 3, m = 2 and n = 4, 8 and 10 and for p = 5, m = 2 and
n = 4 and 6.

32.4 Repeat Exercise 32.1 for p = 3, m = 3 and n = 6, 9.

32.5 Make a conjecture about the isomorphism class of Gal(GF (pn)/GF (pm)). Careful: Is it
always the case that GF (pm) is a subfield of GF (pn) for m  n?

GAP has commands for determining when a group G is solvable and, in the case when G is solvable,
for producing a series

{e} = H0 ⇢ H1 ⇢ · · · ⇢ Hk = G

such that Hi is normal in Hi+1 and Hi+1/Hi is Abelian for 0  i < k.

gap> S:=SymmetricGroup(3);

Sym([1 .. 3])

gap> DerivedSeries(S);

[Sym([1 .. 3]), Group([(1,3,2)]), Group(())]

The above output is a series of subgroups H0 = {e}, H1 =< (1, 3, 2) >= {e, (1, 3, 2), (1, 2, 3)} and
S3 = Hk =< (2, 3), (1, 3, 2) >. This series shows S3 is solvable. For another example, the following
finds a series for D4 which shows it is solvable:

gap> d4:=Group((1,2,3,4),(1,4)(2,3));

Group([(1,2,3,4), (1,4)(2,3)])

gap> DerivedSeries(d4);

[Group([(1,2,3,4), (1,4)(2,3)]), Group([(1,3)(2,4)]), Group(())]

If the command DerivedSeries(G) is used on a group that is not solvable the last element in the
series will not be the identity subgroup.

93

gap> S5:=SymmetricGroup(5);

Sym([1 .. 5])

gap> DerivedSeries(S5);

[Sym([1 .. 5]), Group([(1,3,2), (1,4,3), (1,4,5)])]

gap> IsSolvable(S5);

false

Exercises

32.6 By hand find a series of subgroups of Dn that shows Dn is solvable for n = 5, 10, 30.

32.7 Rework Exercise 32.6 using GAP. Is there only one possible such series for a given dihe-
dral group?

32.8 Determine if An is solvable for n = 4, 5 and 8.

32.9 Determine if D4 �D8 is solvable.

32.10 Determine if S3 � S3 is solvable.

32.11 Prove or disprove: The direct product of solvable groups is solvable.

94

33 Chapter: Cyclotomic Extensions

Let n be an integer greater than 1 and let �(n) denote the number of positive integers less than n
and relatively prime to n. For any positive integer n there are �(n) primitive nth roots of unity.
Denote these primitive nth roots of unity by !i, i = 1, . . . , �(n). The nth cyclotomic polynomial
over Q is the polynomial �n(x) = (x � !1)(x � !2) · · · (x � !�(n)). The command in GAP for the
nth cyclotomic polynomial is CyclotomicPolynomial(Rationals,n). For example the following
commands output �15(x):

gap> x:= X(Rationals, "x");;

gap> CyclotomicPolynomial(Rationals,15);

x^8-x^7+x^5-x^4+x^3-x+1

The nth cyclotomic extension of Q is the smallest extension field of Q that contains a primitive
nth root of unity. The nth cyclotomic extension of Q is denoted in GAP by CF(n). The element
cos(2⇡/n) + i sin(2⇡/n) in CF(n) is denoted by E(n).

gap> f:= CF(8);

CF(8)

gap> E(8)^8;

1

gap> E(8)^2;

E(4)

gap> E(8)^4;

-1

Unfortunately polynomials can only be factored in GAP over finite fields or over the rationals. So
we will not be able to factor polynomials over CF(n). We can list the subfields of CF(n):

gap> Subfields(f);

[Rationals, GaussianRationals, CF(8), NF(8,[1, 3]), NF(8,[1, 7])]

The first three subfields listed are Q, Q(i), and Q(!) where ! is a primitive 8th root of unity. The
notation NF(8,[1, 3]) means the subfield Q(! + !3). Similarly NF(8,[1, 7]) means the
subfield Q(! + !7).

GAP will also find the Galois groups of cyclotomic fields:

gap> g:=GaloisGroup(AsField(Rationals,CF(8)));

<group of size 4 with 2 generators>

gap> Elements(g);

[IdentityMapping(CF(8)), ANFAutomorphism(CF(8), 3),

ANFAutomorphism(CF(8), 5), ANFAutomorphism(CF(8), 7)]

The above output tells us that Gal(Q(!)/Q) has the four elements: the identity map, the auto-
morphism of Q(!) that maps E(8) to E(8)3, the automorphism that maps E(8) to E(8)5 and the
automorphism that maps E(8) to E(8)7.

Since Q(!) has five subfields, the Fundamental Theorem of Galois Theory says that Gal(Q(!)/Q)
must have five subgroups. Notice each nonidentity element of Gal(Q(!)/Q) has order 2:

95

gap> e:=Elements(g);;

gap> Order(e[1]);

1

gap> Order(e[2]);

2

gap> Order(e[3]);

2

gap> Order(e[4]);

2

Thus the five subgroups of Gal(Q(!)/Q) are the identity subgroup, the whole group, and three
subgroups of order 2.

Exercises

33.1 a) Factor x12 � 1 as a product of irreducibles over Z.
b) Factor x8 � 1 as a product of irreducibles over Z2,Z3 and Z5. [Gallian, Chapter 33, Exercises 2
and 3]

33.2 Use GAP to show the Galois groups of x9 � 1 and x7 � 1 over Q are isomorphic. [Gal-
lian, Chapter 33, Exercise 16]

33.3 Use GAP to show the Galois groups of x10� 1 and x8� 1 over Q are not isomorphic. [Gallian,
Chapter 33, Exercise 18]

33.4 Let G be the group Gal(Q(!)/Q) where ! is a primitive 15th root of unity. Find the or-
ders of all the elements in G.

33.5 Use GAP to determine whether or not the Galois groups of x64 � 1 and x80 � 1 over Q
are isomorphic.

33.6 Find all the subfields of the 60th cyclotomic extension of Q.

33.7 Find all the subgroups of the Galois group of x60 � 1 over Q. List the correspondence (from
the Fundamental Theorem of Galois Theory) with the fields obtained in Exercise 33.6.

96

