THE SECOND DERIVATIVE TEST




Suppose you have a point on the graph of some
function, and suppose that the first derivative is
zero at this point.
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In that case, there will be a horizontal tangent line
at this point.
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Now suppose that we also know that the second
derivative is positive at this point.
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Then that means that the graph will also be concave
up at this point.
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Taken together, these two facts mean that we will
have a relative minimum value at our point X.
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Similarly, if the first derivative was zero and the
second derivative was negative, then we would
have a relative maximum value at our point Xx.
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The Second Derivative Test:

1. If y=f(x) isafunction and if at some pointa, f'(a)=0andf" >0,
then f (a) is a relative minimum.

2. If y=1(x) isafunction and if at some pointa, f'(a)=0and f" <0,
then f (a) is a relative maximum.



