## RELATED RATES



Suppose we have a circle of radius $r$. Then we all know the formula that gives us the relationship between the radius of the circle and its area.


Suppose we have a circle of radius $r$. Then we all know the formula that gives us the relationship between the radius of the circle and its area.


$$
A=\pi r^{2}
$$

Now suppose that you create a circle by tossing a pebble into a pond. The result will now be that you see a circular wave that gets bigger over time.


This means that both area and radius are now changing over time. In other words, they are now both functions of time.


$$
A(t)=\pi[r(t)]^{2}
$$

However, just as area and radius are related by a formula, so will the rates of change of area and radius over time be related by a formula.


And this is how we work it out using the chain rule.

$$
\begin{aligned}
& A(t)=\pi[r(t)]^{2} \\
& \Rightarrow \frac{d A(t)}{d t}=\frac{d \pi[r(t)]^{2}}{d t} \\
& \Rightarrow \frac{d A(t)}{d t}=\pi \cdot 2 r(t) \frac{d r(t)}{d t} \\
& \Rightarrow \frac{d A}{d t}=2 \pi r \frac{d r}{d t}
\end{aligned}
$$

Also, we usually streamline the notation as follows.

$$
A=\pi r^{2}
$$

$$
\Rightarrow \frac{d A}{d t}=\frac{d \pi r^{2}}{d t}
$$



$$
\Rightarrow \frac{d A}{d t}=\pi \cdot 2 r \frac{d r}{d t}
$$

$$
\Rightarrow \frac{d A}{d t}=2 \pi r \frac{d r}{d t}
$$

## We usually call this type of problem a related rates problem.

$$
\begin{aligned}
& A=\pi r^{2} \\
& \Rightarrow \frac{d A}{d t}=2 \pi r \frac{d r}{d t}
\end{aligned}
$$



In other words, if two variables are related by a formula, and if those same variables are also, for example, changing over time, then their rates of change with respect to time will also be related.

$$
\begin{aligned}
& A=\pi r^{2} \\
& \Rightarrow \frac{d A}{d t}=2 \pi r \frac{d r}{d t}
\end{aligned}
$$



For instance, suppose that the radius of the circle is increasing at a rate of 2 feet/second. Then what is the rate at which the area is increasing when the radius is 4 feet?

$$
\begin{aligned}
& A=\pi r^{2} \\
& \Rightarrow \frac{d A}{d t}=2 \pi r \frac{d r}{d t}
\end{aligned}
$$



For instance, suppose that the radius of the circle is increasing at a rate of 2 feet/second. Then what is the rate at which the area is increasing when the radius is 4 feet?

$$
\begin{aligned}
& A=\pi r^{2} \\
& \Rightarrow \frac{d A}{d t}=2 \pi r \frac{d r}{d t}
\end{aligned}
$$


$\frac{d A}{d t}=2 \pi(4$ feet $)(2$ feet/second $)=16 \pi$ feet $^{2} /$ second

$$
\approx 50.27 \text { feet }^{2} / \text { second }
$$

For instance, suppose that the radius of the circle is increasing at a rate of 2 feet/second. Let's take this same scenario and figure out the rate at which the circumference of the circle is changing when $r=4$ feet.
$C=2 \pi r$


For instance, suppose that the radius of the circle is increasing at a rate of 2 feet/second. Let's take this same scenario and now figure out the rate at which the circumference of the circle is changing when $r=4$ feet.
$C=2 \pi r$
$\Rightarrow \frac{d C}{d t}=2 \pi \frac{d r}{d t}$


For instance, suppose that the radius of the circle is increasing at a rate of 2 feet/second. Let's take this same scenario and now figure out the rate at which the circumference of the circle is changing when $r=4$ feet.
$C=2 \pi r$

$$
\Rightarrow \frac{d C}{d t}=2 \pi \frac{d r}{d t}
$$


$\frac{d C}{d t}=2 \pi(2$ feet $/$ second $)=4 \pi$ feet $/$ second

$$
\approx 12.57 \text { feet / second }
$$

Now suppose we have a 5 foot ladder leaning against a wall. Suppose also that the base of the ladder is 3 feet from the wall. Then by the Pythagorean Theorem, the top of the ladder is 4 feet from the floor.


Additionally, suppose that the bottom part of the ladder is sliding away from the wall at a rate of 3 feet/second. At the moment when the bottom of the ladder is 4 feet from the wall, what is the rate at which the top of the ladder is approaching the floor?


First, when $x=4$, we have by the Pythagorean Theorem that $y=3$.

$$
\frac{d y}{d t}=? \quad x^{2}+y^{2}=5^{2}=25
$$

Now just differentiate both sides of the equation below with respect to $t$, plug in the values you have, and solve for $d y / d t$.

$$
x^{2}+y^{2}=25
$$

$$
\begin{aligned}
& x=4 \\
& y=3 \\
& \frac{d x}{d t}=3 \\
& \frac{d y}{d t}=?
\end{aligned}
$$

Now just differentiate both sides of the equation below with respect to $t$, plug in the values you have, and solve for $d y / d t$.

$$
x^{2}+y^{2}=25
$$

$$
\Rightarrow \frac{d\left(x^{2}+y^{2}\right)}{d t}=\frac{d(25)}{d t}
$$

$$
\begin{aligned}
& x=4 \\
& y=3 \\
& \frac{d x}{d t}=3 \\
& \frac{d y}{d t}=?
\end{aligned}
$$

Now just differentiate both sides of the equation below with respect to $t$, plug in the values you have, and solve for $d y / d t$.

$$
x^{2}+y^{2}=25
$$

$$
\Rightarrow \frac{d\left(x^{2}+y^{2}\right)}{d t}=\frac{d(25)}{d t}
$$

$$
\Rightarrow 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0
$$

$$
\begin{aligned}
& x=4 \\
& y=3 \\
& \frac{d x}{d t}=3 \\
& \frac{d y}{d t}=?
\end{aligned}
$$

Now just differentiate both sides of the equation below with respect to $t$, plug in the values you have, and solve for $d y / d t$.

$$
\begin{array}{ll}
x^{2}+y^{2}=25 & x=4 \\
\Rightarrow \frac{d\left(x^{2}+y^{2}\right)}{d t}=\frac{d(25)}{d t} & \frac{d x}{d t}=3 \\
\Rightarrow 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 & \frac{d y}{d t}=? \\
\Rightarrow \frac{d y}{d t}=\frac{-2 x \frac{d x}{d t}}{2 y}=-\frac{x}{y} \frac{d x}{d t} &
\end{array}
$$

Now just differentiate both sides of the equation below with respect to $t$, plug in the values you have, and solve for $d y / d t$.

$$
x=4
$$

$$
\begin{array}{ll}
x^{2}+y^{2}=25 & y=3 \\
\Rightarrow \frac{d\left(x^{2}+y^{2}\right)}{d t}=\frac{d(25)}{d t} & \frac{d x}{d t}=3 \\
\Rightarrow 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 & \frac{d y}{d t}=?
\end{array}
$$

$$
\Rightarrow \frac{d y}{d t}=\frac{-2 x \frac{d x}{d t}}{2 y}=-\frac{x}{y} \frac{d x}{d t} \Rightarrow \frac{d y}{d t}=-\frac{4}{3} \cdot 3=-4 \frac{\text { feet }}{\text { second }}
$$

