MARGINAL ANALYSIS

In business and economics, the derivates of the cost, revenue, and profit functions are called, respectively, the marginal cost, marginal revenue, and marginal profit.

In business and economics, the derivates of the cost, revenue, and profit functions are called, respectively, the marginal cost, marginal revenue, and marginal profit.
derivative of cost $=$ marginal cost

In business and economics, the derivates of the cost, revenue, and profit functions are called, respectively, the marginal cost, marginal revenue, and marginal profit.
derivative of cost $=$ marginal cost
derivative of revenue $=$ marginal revenue

In business and economics, the derivates of the cost, revenue, and profit functions are called, respectively, the marginal cost, marginal revenue, and marginal profit.
derivative of cost $=$ marginal cost
derivative of revenue $=$ marginal revenue
derivative of profit $=$ marginal profit

Suppose the function below shows the cost in dollars to manufacture x portable CD players.

$$
C(x)=-0.0001 x^{2}+20 x+150,000
$$

What is the fixed cost?

$$
C(x)=-0.0001 x^{2}+20 x+150,000
$$

What is the fixed cost?

$C(x)=-0.0001 x^{2}+20 x+150,000$
Fixed cost $=\$ 150,000$

What is the cost of producing 50,000 CDs?

$C(x)=-0.0001 x^{2}+20 x+150,000$
Fixed cost $=\$ 150,000$

What is the cost of producing 50,000 CDs?

$C(x)=-0.0001 x^{2}+20 x+150,000$
Fixed cost $=\$ 150,000$
$C(50,000)=-0.0001\left(50,000^{2}\right)+20(50,000)+150,000$
$=\$ 900,000$

What is the formula for the marginal cost?

$$
C(x)=-0.0001 x^{2}+20 x+150,000
$$

What is the formula for the marginal cost?

$$
\begin{aligned}
& C(x)=-0.0001 x^{2}+20 x+150,000 \\
& C^{\prime}(x)=\frac{d C}{d x}=-0.0002 x+20 \text { dollars per } C D
\end{aligned}
$$

What is the marginal cost when $x=50,000 ?$

$$
\begin{aligned}
& C(x)=-0.0001 x^{2}+20 x+150,000 \\
& C^{\prime}(x)=\frac{d C}{d x}=-0.0002 x+20 \text { dollars per } C D
\end{aligned}
$$

What is the marginal cost when $x=50,000 ?$

$C(x)=-0.0001 x^{2}+20 x+150,000$
$C^{\prime}(x)=\frac{d C}{d x}=-0.0002 x+20$ dollars per $C D$
$C^{\prime}(50,000)=-0.0002(50,000)+20$
$=-10+20=10$ dollars per CD

Use this result to estimate the cost of producing 50,001 CDs.
$C(x)=-0.0001 x^{2}+20 x+150,000$
$C^{\prime}(50,000)=-0.0002(50,000)+20$
$=-10+20=10$ dollars per CD

Use this result to estimate the cost of producing 50,001 CDs.
$C(x)=-0.0001 x^{2}+20 x+150,000$
$C^{\prime}(50,000)=-0.0002(50,000)+20$
$=-10+20=10$ dollars per CD
$C(50,001) \approx C(50,000)+10=\$ 900,010$

What is the actual cost of producing 50,001 CDs?

$$
\begin{aligned}
& C(x)=-0.0001 x^{2}+20 x+150,000 \\
& C^{\prime}(50,000)=-0.0002(50,000)+20 \\
& =-10+20=10 \text { dollars per CD }
\end{aligned}
$$

$$
C(50,001) \approx C(50,000)+10=\$ 900,010
$$

What is the actual cost of producing 50,001 CDs?

$C(x)=-0.0001 x^{2}+20 x+150,000$
$C^{\prime}(50,000)=-0.0002(50,000)+20$
$=-10+20=10$ dollars per CD
$C(50,001)=-0.0001\left(50,001^{2}\right)+20(50,001)+150,000$
$=\$ 900,009.99 \ldots$

Given the cost and revenue functions below for refurbishing x ipods, find the marginal profit.

$$
C(x)=0.25 x^{2}+40 x+1000 \text { dollars }
$$

$R(x)=80 x$ dollars

Given the cost and revenue functions below for refurbishing x ipods, find the marginal profit.

$$
C(x)=0.25 x^{2}+40 x+1000 \text { dollars }
$$

$$
R(x)=80 x \text { dollars }
$$

$$
\text { Profit }=\text { Revenue }- \text { Cost }=R(x)-C(x)
$$

$$
=80 x-\left(0.25 x^{2}+40 x+1000\right)
$$

$$
\Rightarrow P(x)=-0.25 x^{2}+40 x-1000
$$

Given the cost and revenue functions below for refurbishing x ipods, find the marginal profit.

$$
C(x)=0.25 x^{2}+40 x+1000 \text { dollars }
$$

$$
R(x)=80 x \text { dollars }
$$

$$
\text { Profit }=\text { Revenue }- \text { Cost }=R(x)-C(x)
$$

$$
=80 x-\left(0.25 x^{2}+40 x+1000\right)
$$

$$
\Rightarrow P(x)=-0.25 x^{2}+40 x-1000
$$

$$
P^{\prime}(x)=\frac{d P}{d x}=-0.5 x+40 \frac{\text { dollars }}{\text { ipod }}
$$

What is the marginal profit on refurbishing 20 ipods?

$$
\begin{aligned}
& C(x)=0.25 x^{2}+40 x+1000 \text { dollars } \\
& R(x)=80 x \text { dollars } \\
& \text { Profit }=\text { Revenue }- \text { Cost }=R(x)-C(x) \\
& =80 x-\left(0.25 x^{2}+40 x+1000\right) \\
& \Rightarrow P(x)=-0.25 x^{2}+40 x-1000 \\
& \quad P^{\prime}(x)=\frac{d P}{d x}=-0.5 x+40 \frac{\text { dollars }}{\text { ipod }}
\end{aligned}
$$

What is the marginal profit on refurbishing 20 ipods?

$$
\begin{aligned}
& P^{\prime}(x)=\frac{d P}{d x}=-0.5 x+40 \frac{\text { dollars }}{\text { ipod }} \\
& P^{\prime}(20)=-0.5(20)+40=30 \frac{\text { dollars }}{\text { ipod }}
\end{aligned}
$$

Estimate the profit on refurbishing 21 ipods.

$$
\begin{aligned}
& P^{\prime}(x)=\frac{d P}{d x}=-0.5 x+40 \frac{\text { dollars }}{\text { ipod }} \\
& P^{\prime}(20)=-0.5(20)+40=30 \frac{\text { dollars }}{\text { ipod }}
\end{aligned}
$$

Estimate the profit on refurbishing 21 ipods.

$$
\begin{aligned}
& P^{\prime}(20)=-0.5(20)+40=30 \frac{\text { dollars }}{\text { ipod }} \\
& P(20)=-0.25\left(20^{2}\right)+40(20)-1000=-300 \text { dollars } \\
& P(21) \approx-300+30=-270 \text { dollars }
\end{aligned}
$$

What is the actual profit on refurbishing 21 ipods?

$$
\begin{aligned}
& P^{\prime}(20)=-0.5(20)+40=30 \frac{\text { dollars }}{\text { ipod }} \\
& P(20)=-0.25\left(20^{2}\right)+40(20)-1000=-300 \text { dollars } \\
& P(21) \approx-300+30=-270 \text { dollars }
\end{aligned}
$$

What is the actual profit on refurbishing 21 ipods?

$$
P^{\prime}(20)=-0.5(20)+40=30 \frac{\text { dollars }}{\text { ipod }}
$$

$P(20)=-0.25\left(20^{2}\right)+40(20)-1000=-300$ dollars

$$
P(21)=-0.25\left(21^{2}\right)+40(21)-1000=-270.25 \text { dollars }
$$

