Finding Limits Numerically

We can easily explore limits numerically on our calculator by performing the following steps.

We can easily explore limits numerically on our calculator by performing the following steps.

-Enter the function into your calculator

We can easily explore limits numerically on our calculator by performing the following steps.
-Enter the function into your calculator

- Go to TBLSET and set Indpnt to Ask

We can easily explore limits numerically on our calculator by performing the following steps.
-Enter the function into your calculator

- Go to TBLSET and set Indpnt to Ask
- Go to TABLE and manually enter x-values that are both slightly below and slightly above the value at which you want to find the limit

EXAMPLE:

$$
\begin{aligned}
& y=x^{2} \\
& \lim _{x \rightarrow 2} x^{2}=?
\end{aligned}
$$

EXAMPLE:

$$
y=x^{2}
$$

$$
\lim _{x \rightarrow 2} x^{2}=?
$$

EXAMPLE:

-1 + Eriz
-1家三
-19
$\cdots 4=$
-16=
-17

$$
y=x^{2}
$$

$$
\lim x^{2}=?
$$

$$
x \rightarrow 2
$$

EXAMPLE:

$$
\begin{aligned}
& y=x^{2} \\
& \lim _{x \rightarrow 2} x^{2}=?
\end{aligned}
$$

X	Y1	
1.9 1.95 1.999		
X=		

EXAMPLE:

$$
\begin{aligned}
& y=x^{2} \\
& \lim _{x \rightarrow 2} x^{2}=?
\end{aligned}
$$

EXAMPLE:

$$
\begin{aligned}
& y=x^{2} \\
& \lim _{x \rightarrow 2} x^{2}=?
\end{aligned}
$$

$\lim x^{2}=4$
$x \rightarrow 2^{-}$
$\lim x^{2}=4$
$x \rightarrow 2^{+}$
$\lim x^{2}=4$
$x \rightarrow 2$

EXAMPLE:

$$
\begin{gathered}
y=\frac{1}{x} \\
\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=?
\end{gathered}
$$

EXAMPLE:

$$
\begin{gathered}
y=\frac{1}{x} \\
\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=?
\end{gathered}
$$

EXAMPLE:

$$
\begin{gathered}
y=\frac{1}{x} \\
\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)=?
\end{gathered}
$$

$x \rightarrow 0^{-}$
$\lim 1 / x=\infty$
$x \rightarrow 0^{+}$
$\lim 1 / x=$ does not exist

We can also explore piecewise-defined functions.

$$
y=f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 1 \\ x & \text { if } x>1\end{cases}
$$

$$
\lim _{x \rightarrow 1} f(x)=?
$$

We can also explore piecewise-defined functions.

$$
\begin{aligned}
& y=f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 1 \\
x & \text { if } x>1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 1} f(x)=\text { ? }
\end{aligned}
$$

We can also explore piecewise-defined functions.

$$
\begin{aligned}
& y=f(x)=\left\{\begin{array}{lll}
x^{2}-1 & \text { if } x \leq 1 \\
x & \text { if } x>1
\end{array}\right. \\
& \\
& \lim _{x \rightarrow 1} f(x)=? \\
& \\
& \lim _{x \rightarrow 1^{-}} f(x)=0 \\
& \\
& \lim _{x \rightarrow 1^{+}} f(x)=1 \\
& \\
& \lim _{x \rightarrow 1} f(x)=\text { does not exist }
\end{aligned}
$$

EXAMPLE:

$$
y=f(x)= \begin{cases}-x+1 & \text { if } x \leq 1 \\ x-1 & \text { if } x>1\end{cases}
$$

$$
\lim _{x \rightarrow 1} f(x)=\text { ? }
$$

EXAMPLE:

$$
\begin{aligned}
& y=f(x)= \begin{cases}-x+1 & \text { if } x \leq 1 \\
x-1 & \text { if } x>1\end{cases} \\
& \lim f(x)=\text { ? } \\
& x \rightarrow 1
\end{aligned}
$$

EXAMPLE:

$$
y=f(x)= \begin{cases}-x+1 & \text { if } x \leq 1 \\ x-1 & \text { if } x>1\end{cases}
$$

$$
\lim _{x \rightarrow 1} f(x)=?
$$

$\lim f(x)=0$
$X \rightarrow 1^{-}$
$\lim f(x)=0$
$x \rightarrow 1^{+}$
$\lim _{x \rightarrow 1} f(x)=0$

